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In this study, based on the lumped-parameter theory and the Lagrange approach, a novel and generalized bending-torsional-
axial coupled dynamic model for analyzing the load sharing behavior in the herringbone planetary gear train (HPGT) is
presented by taking into account the actual structure of herringbone gears, manufacturing errors, time-dependent meshing
stiffness, bearing deflections, and gyroscopic effects. 'e model can be applied to the analysis of the vibration of the HPGTwith
any number of planets and different types of manufacturing errors in different floating forms. 'e HPGT equivalent meshing
error is analyzed and derived for the tooth profile errors and manufacturing eccentric errors of all components in the HPGT
system. By employing the variable-step Runge–Kutta approach to calculate the system dynamic response, in conjunction with
the presented calculation approach of the HPGT load sharing coefficient, the relationships among manufacturing errors,
component floating, and load sharing are numerically obtained. 'e effects of the combined errors and single error on the load
sharing are, respectively, discussed. Meanwhile, the effects of the support stiffness of the main components in the HPGTsystem
on load sharing behavior are analyzed. 'e results indicate that manufacturing errors, floating components, and system
support stiffness largely influence the load sharing behavior of the HPGT system. 'e research has a vital guiding significance
for the design of the HPGT system.

1. Introduction

Herringbone planetary gear train (HPGT) possesses the
advantages in power split, compact structure, large trans-
mission ratio, high transmission efficiency, strong carrying
capacity, and small axial force, and thus it has been widely
applied in the transmission systems of wind turbines, nu-
clear power plants, aircrafts, ships, and vehicles. However, in

the presence of the inevitable manufacturing errors, elastic
deformations, and so on, the HPGT cannot achieve the
uniform load distribution among different transmission
paths. On the one hand, this would lose the advantages of
herringbone planetary transmission, and on the other hand,
this would lead to overload, vibration, and noise of some
components, which affect the service life, stability, and re-
liability of the gear set [1]. Consequently, it is of practical
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significance to construct a refined dynamic load sharing
model of herringbone planetary gears to develop an in-depth
understanding of load distribution characteristics resulting
from the inevitable manufacturing errors.

Some studies were devoted to investigating the dynamic
behavior and load sharing of the planetary gear train (PGT).
Lin and Parker established a spur PGT dynamic model to
analyze its modal properties [2, 3]. Zhao and Ji developed a
torsional dynamic model of the multistage spur PGTs of a
wind turbine gearbox for the analysis of its nonlinear dy-
namic characteristics [4]. Zhang and Zhu investigated the
planet meshing phase effect on load sharing characteristics
of herringbone gear transmission system [5]. Mo et al.
studied the load distribution behavior of compound plan-
etary powertrains applied in wind turbine gearbox [6]. Singh
developed the load sharing behavior analysis model of
planetary gear transmission [7, 8]. Ligata et al. [9] and Bodas
and Kahraman [10] examined the static load sharing be-
haviors of the planetary transmission. Zhu and Xu
researched the impact of flexible pin shaft stiffness on load
sharing features of planetary gearbox used in wind turbines
[11]. Ren et al. investigated the effects of manufacturing
errors on the dynamic behaviors and floating characteristics
of herringbone planetary gears [1, 12, 13]. Li et al. conducted
the analysis of load sharing and reliability prediction of
helicopter planetary gear transmission [14]. Kang and
Kahraman presented the dynamic features of the double-
helical gear pair adopting theoretical and experimental
methods [15]. Sondkar and Kahraman studied the dynamics
of double-helical planetary gears [16].

Despite the extensive investigations on the PGT dy-
namics, there is little research on the effects of multicoupling
manufacturing errors and system stiffness on the load
sharing behavior of the HPGT system. Meanwhile, the
presence of multicoupling manufacturing errors can induce
the axial dynamic force for the HPGTsystem. 'erefore, the
axial degree of freedom (DOF) of each component needs to
be considered in the HPGTdynamic modeling. In addition,
the HPGT system has its own specific characteristics. Spe-
cifically, due to the assembly limitations, the internal ring
gear needs to adopt two separate helical gears. As a result,
there are the characteristics of both helical and herringbone
gears on both sides in HPGT. 'us, these specific charac-
teristics should be considered in the dynamic modeling of
the HPGT system.

Meanwhile, the load sharing coefficient is one of the key
design parameters of the HPGT system, whose reasonable
selection noticeably affects its dynamic characteristics. In the
past, the load sharing coefficient was chosen in terms of the
empirical value in the design manual, whereas in this paper,
a refined HPGTdynamic model will be proposed to calculate
the HPGT load sharing coefficient more accurately. It is
expected that this research provides an alternative and novel
methodology for accurately selecting the load sharing co-
efficient and thus has important scientific and engineering
significances in applications.

In this paper, based on the structure features of her-
ringbone gears, a novel refined dynamic load sharing model
for the HPGTconsidering manufacturing errors is presented

by using the lumped-parameter method. 'e load sharing
behavior of an example HPGT is numerically simulated, and
the effects of manufacturing errors and system support
stiffness on the dynamic load sharing behavior are analyzed.

2. Composition and Operation Principle of the
HPGT System

Figure 1 shows the structural and kinematic diagram of
herringbone planetary gear transmissions, which comprises
a herringbone sun gear, two ring gears (i.e., left and right
ring gears), N herringbone planet gears, and a carrier. As
demonstrated in Figure 1, the symbols s, r2, r1, pi, and c
indicate the sun gear, ring gears, planet gear, and carrier,
respectively. 'e sun gear s is taken as the input component,
carrier c is taken as the output member, and the two ring
gears are taken as the stationary components. By considering
assembly, the ring gear adopts two helical gears with con-
trary helix angles. In the HPGT system, there are two kinds
of meshing pairs, namely, internal mesh (i.e., planet-left ring
mesh and planet-right ring mesh) and external mesh (i.e.,
sun-planet mesh).

3. Dynamic Model of the HPGT System

3.1.DynamicModel. Figure 2 shows the three-dimensional
(3D) bending-torsional-axial coupled dynamic model for
the HPGT system in consideration of both sides of her-
ringbone gears and the axial DOF of each component,
which differentiate the developed dynamic model from
the existing models of two-dimensional (2D) PGT. For the
sake of simplicity, only one planet gear is displayed in
Figure 2.'e floating component is represented by the low
radial support stiffness. In the previous investigations on
herringbone gears, it was assumed that the axial forces
between two helical gears with opposite rotation direc-
tions canceled each other. Accordingly, the axial vibration
was ignored and the herringbone gear was simplified to a
2D plane model. As a matter of fact, since there exist
manufacturing errors, the dynamic performance of left
and right gear pairs cannot be identical. To more accu-
rately demonstrate the dynamic behaviors of herringbone
gears, the actual structural properties of herringbone
gears on both sides, the axial vibrations of the central
member, and each planet are considered in the present
dynamic model as depicted in Figure 2. In assembly, the
ring gear utilizes two helical gears with the opposite helix
angles. Consequently, each component (i.e., sun gear, left
and right ring gears, carrier, and each planet gear) has four
DOFs including one rotation and three translations,
which are denoted as xj, yj, zj, θj, j � s, r2, r1, c and ξi, ηi, ρi,
θi, i � 1, 2, . . ., N, respectively. 'e frames of reference are
illustrated in detail in Figures 2–5, where the superscripts
R and L indicate the right and left sides of the component,
respectively. In order to facilitate the calculation, each
angular displacement θ is converted into an equivalent
linear displacement u in the tangential direction of the
corresponding base circle:
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us � rs · θs,

ur2 � rr2 · θr2,

ur1 � rr1 · θr1,

uc � rc · θc,

ui � ri · θi, i � 1, 2, . . . , N,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

where rs, rr2, rr1, ri are, respectively, the base circle radius of
the sun gear, left and right ring gears, and the ith planet gear,
while rc is the distance from the carrier rotation center to the
planet gear center. Hence, there are a total of 16 + 4N DOFs

in the proposed model shown in Figure 2. 'ey can be
expressed as

U � Uc,Ur2,Ur1,Us,U1,U2, . . . ,UN 
T
, (2)

where Uc � xc, yc, zc, uc 
T, Ur2 � xr2, yr2, zr2, ur2 

T, Ur1 �

xr1, yr1, zr1, ur1 
T, Us � xs, ys, zs, us 

T, and Ui � ξi, ηi,

ρi, ui}
T (i � 1, · · · , N).

In the dynamic load sharing model shown in Figure 2,
kspi, kr1pi, and kr2pi are the meshing stiffness for the ith sun-
planet pair, right ring-planet pair, and left ring-planet pair,
respectively. ks, kc, kr1, kr2, and kp are the bearing support
stiffness of the sun gear, carrier, right and left ring gears, and
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Figure 1: Kinematic sketch of herringbone planetary gears.
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Figure 2: 'e refined coupled dynamic model of the HPGT system.
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planet gear, respectively. kt is the torsional support stiffness.
Here, the subscript spi stands for sun-planet gear i pair, the
subscript r1pi indicates right ring-planet gear i pair, and the
subscript r2pi represents left ring-planet gear i pair. 'e
symbol pi denotes the ith planet gear, and symbols s, c, r2,

and r1 are of the same meanings as those demonstrated in
Figure 1.

According to the presented HPGT dynamic model in
Figure 2, the equivalent displacements of the ith planet-sun
gear mesh, the ith planet-left (right) ring gear mesh, and the
ith planet-carrier pair can be derived as [12, 17, 18]

μL(R)
spi � −xs sin ϕsi · cos βb + ys cos ϕsi · cos βb + zs · sin ±βb(  + us · cos βb − ξi sin αt · cos βb − ηi cos αt·

cos βb − ρi · sin ±βb(  + ui · cos βb + e
L(R)
spi (t),

μL(R)
r2(1)pi � −xr2(1) sin ϕri · cos βb + yr2(1) cos ϕri · cos βb − zr2(1) · sin ±βb(  + ur2(1) · cos βb + ξi sin αt·

cos βb − ηi cos αt · cos βb + ρi · sin ±βb(  − ui · cos βb + e
L(R)
r2(1)pi(t),

ξcpi
μ � −ξi + xc · cos ϕi + yc · sin ϕi,

ηcpi
μ � −ηi − xc · sin ϕi + yc · cos ϕi + uc,

μρcpi � ρi − zc,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(3)

where μL(R)
spi indicates the equivalent microdeformation of the

ith planet-sun gear pair on the left (right) side. μL(R)
r2(1)pi in-

dicates the equivalent microdeformation of the ith planet-left
(right) ring gear pair. ξcpi

μ ,
ηcpi
μ , μρcpi are the relative de-

formations in the ξ-, η-, and ρ-directions of the ith carrier-
planet pair, respectively. e

L(R)
spi (t) represents the static

transmission error of the ith planet-sun gear pair on the left
(right) side. eL(R)

r2(1)pi(t) represents the static transmission error
of the ith planet-left (right) ring gear pair. Here, “+” refers to
the left-side sun-planet gear i pair (left ring-planet gear i pair)
and “−” for the right-side sun-planet gear i pair (right ring-
planet gear i pair) in symbol “±.” βb expresses the base helix
angle. ϕsi � ϕi − αt, ϕri � ϕi + αt, where ϕi denotes the ith
planet assembly position angle and αt stands for the trans-
verse pressure angle.

'e meshing forces can be expressed as

Fr2piL � k
L
r2pi · μL

r2pi,

Fr2piL � k
R
r1pi · μR

r1pi,

FspiL � k
L
spi · μL

spi,

FspiR � k
R
spi · μR

spi,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(4)

where FspiL and FspiR are the meshing forces for the ith
planet-sun gear pair on the left side and right side, re-
spectively. Fr2piL and Fr2spil are the meshing forces of the ith
planet-left and right ring gear pair, respectively.

3.2. Equations of Motion of the HPGT

3.2.1. Equations of Motion for the Herringbone Sun Gear.
Figure 3 presents the dynamic model of the ith planet-sun
gear pair in the HPGT system in isometric view. Based on
D’Alembert’s principle, the equations of motion for her-
ringbone sun gear can be obtained as

ms €xs − 2ωc _ys − ω2
cxs  − 

N

i�1 FspiR + FspiL  · cos βb · sin φsi + ksx · xs � 0,

ms €ys + 2ωc _xs − ω2
cys  + 

N

i�1 FspiR + FspiL  · cos βb · cos φsi + ksy · ys � 0,

ms€zs + 
N

i�1 FspiR + FspiL  · sin βb + ksz · zs � 0,

Js

r
2
s

 €us + 
N

i�1 FspiR + FspiL  · cos βb + kst · us −
Ts

rs

� 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(5)
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where ms is the sun gear mass; Js is the sun gear rotational
inertia; xs, ys, and zs are the vibration microdisplacements
in x-, y-, and z-direction, respectively. us is the torsional
microdisplacement about z-direction for the sun gear, and
Ts indicates the external torque acting on the herringbone
sun gear.

3.2.2. Equations of Motion for the Left Helical Ring Gear.
Figure 4 presents the dynamicmodel of the ith left ring- (right
ring-) planet gear pair in the HPGTsystem in isometric view.
According to the dynamic model of the internal meshing pair
shown in Figure 4 and D’Alembert’s principle, the equations
of motion for the left ring gear can be written as

mr €xr2 − 2ωc _yr2 − ω2
cxr2 () − 

N

i�1Fr2piL · cos βb · sin φri + kr2x · xr2 � 0,

mr €yr2 + 2ωc _xr2 − ω2
cyr2  + 

N

i�1Fr2piL · cos βb · cos φri + kr2y · yr2 � 0,

mrzr2 + 
N

i�1Fr2piL · sin βb + kr2z · zr2 � 0,

Jr

r
2
r

 ur2 + 
N

i�1Fr2piL · cos βb + kr2t · ur2 � 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(6)
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Figure 3: Dynamic model of the ith planet-sun gear pair.
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where mr is the ring gear mass and Jr is the ring gear ro-
tational inertia. xr2, yr2, and zr2 are the vibration micro-
displacements in x, y, and z directions for the left ring gear,
respectively. ur2 is the torsional microdisplacement about
z-direction for the left ring gear.

3.2.3. Equations of Motion for the Right Helical Ring Gear.
'e equations of motion for the right ring gear can be
deduced as

mr €xr1 − 2ωc _yr1 − ω2
cxr1  − 

N

i�1Fr1piR · cos βb · sin φri + kr1x · xr1 � 0,

mr €yr1 + 2ωc _xr1 − ω2
cyr1  + 

N

i�1Fr1piR · cos βb · cos φri + kr1y · yr1 � 0,

mr€zr1 − 
N

i�1Fr1piR · sin βb + kr1z · zr1 � 0,

Jr

r
2
r

 €ur1 + 
N

i�1Fr1piR · cos βb + kr1t · ur1 � 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(7)

where xr1, yr1, and zr1 are, respectively, the vibration
microdisplacements in x-, y-, and z-directions for the right
ring gear. ur1 refers to the torsional microdisplacement
about the z-direction for the right ring gear.

3.2.4. Equations of Motion for the Carrier. Figure 5 displays
the dynamic model of the ith planet-carrier pair in the
HPGT system. By applying D’Alembert’s principle, the
equations of motion for the carrier can be obtained as

oi
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Figure 4: Dynamic model of the ith left and right ring-planet gear pairs.
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mc €xc − 2ωc _yc − ω2
cxc  €xc − 2ωc _yc − ω2

cxc  + 
N

i�1 kpξ · μξcpi · cos φi − kpη · μηcpi · sin φi  + kcx · xc � 0,

mc €yc + 2ωc _xc − ω2
cyc  + 

N

i�1 kpξ · μξcpi · sin φi + kpη · μηcpi · cos φi  + kcy · yc � 0,

mc€zc − 
N

i�1kpρμρcpi + kcz · zc � 0,

Jc

r
2
c

 €uc + 
N

i�1kpημηcpi + kct · uc +
Tc

r
� 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(8)

where mc is the carrier mass; Jc is the carrier rotational
inertia; and xc, yc, and zc are the vibration micro-
displacements in the x-, y-, and z-direction for the carrier. uc

is the torsional microdisplacement about the z-direction for
the carrier. Tc refers to the load torque acting on the carrier.

3.2.5. Equations of Motion for the ith Herringbone Planet
Gear. According to Figures 2–5, the equations of motion for
the ith herringbone planet gear can be given by

mp
€ξi − 2ωc _ηi − ω2

cξi  − FspiR + FspiL  · sin αt · cos βb + Fr1piR + Fr2piL 
b

· sin αt · cos βb − kpξ · μξcpi � 0,

mp €ηi + 2ωc
_ξi − ω2

cηi  − FspiR + FspiL  · cos βb cos αt − Fr1piR + Fr2piL  · cos βb · cos αt − kpη · μηcpi � 0,

mp€ρi − FspiR · sin βb + FspiL · sin βb + Fr1piR · sin βb − Fr2piL · sin βb + kpρ · μρcpi � 0,

Jp

r
2
p

⎛⎝ ⎞⎠€ui + FspiR + FspiL  · cos βb − Fr1piR + Fr2piL  · cos βb � 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(9)

where mp is the planet gear mass and Jp is the planet gear
rotational inertia. ξi, ηi, and ρi mean the vibration micro-
displacements in the ξ, η, and ρ directions for the ith her-
ringbone planet gear, respectively. ui indicates the torsional
microdisplacement about the ρ-direction for the sun gear.

By assembling the above equations of motion for each
member, the matrix form of herringbone planetary gear
transmissions with N planet gears can be written as

[M] · €U(t)  + ωc · [G] · _U(t)  + Kb  + Km(t)  − ω2
c · KΩ   · U(t){ } � Tk  + T(t){ }, (10)

yc

zc

xc
O

ξi

ρi

Oikpξ

kpη

uc ui

φi

ηi

kpρ

Carrier Planet gear i,
i = 1, …, N

Figure 5: Dynamic model of the ith planet-carrier pair.
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where U(t){ } indicates the generalized displacement column
vector, [M] indicates the generalized inertial matrix, [Kb]
refers to the supporting stiffness matrix, [Km] means the
time-dependent meshing stiffness matrix, [G] represents the
gyroscopic matrix, [KΩ] denotes the centripetal stiffness
matrix, {Tk} expresses the excitation matrix caused by
meshing stiffness and manufacturing error, and {T(t)} de-
notes the vector of external excitation forces.

4. Multicoupling Manufacturing Error Analysis

'is study considers the manufacturing eccentric errors for
each component (i.e., the carrier and each gear) and tooth
profile errors of each gear. 'ese tooth profile errors and
eccentric errors are transformed into the line of action
(LOA) of the gear pair, respectively, and the equivalent
displacements of the errors can be acquired by
superposition.

4.1. Equivalent Displacements of Eccentric Errors.
Figure 6 illustrates the projection relation of manufacturing
eccentric errors for herringbone planetary gear set on the
line of action, where Es and βs, respectively, represent the
manufacturing eccentric error and its initial phase of the sun
gear. e refers to the equivalent meshing error on the meshing
line. ω denotes the angular velocity of each component. φi

means the position angle of the ith planet gear, and
φi � 2π(i − 1)/N, where N is the planet number. Here, the
subscripts s, r1, r2, pi, and c have the same meanings as those
exhibited in Figure 1. n and w refer to the internal and
external mesh, respectively. α is the pressure angle, and
αn � αw � αt.

In view of Figure 6 and the relative motion state of each
component, the equivalent meshing error of sun-gear

manufacturing eccentric error and initial phase (Es, βs) on
the external meshing line can be obtained as

eEsi � −Es sin ωs − ωc( t + βs + αt − φi( . (11)

Similarly, the equivalent meshing error of planet-gear
manufacturing eccentric error and initial phase (Epi, βpi) on
the external and internal meshing line can, respectively, be
given by

ewEpi � −Epi sin ωp − ωc t + βpi + αt ,

enEpi � Epi sin ωp − ωc t + βpi + αt .
(12)

'e equivalent meshing error of left ring-gear
manufacturing eccentric error and initial phase (Er2, βr2) on
the internal meshing line can be denoted as

eEr2i � E
L
r2 sin −ωct + βr2 − αt − φi( . (13)

'e equivalent meshing error of right ring-gear
manufacturing eccentric error and initial phase (Er1, βr1) on
the internal meshing line can be derived as

eEr1i � E
R
r1 sin −ωct + βr1 − αt − φi( . (14)

'e equivalent meshing error of carrier manufacturing
eccentric error and initial phase (Ec, βc) on the external and
internal meshing line can, respectively, be expressed as

ewEci � Ec sin βc − φi(  · cos αt,

enEci � −Ec sin βc − φi(  · cos αt.
(15)

'e equivalent cumulative meshing errors generated by
the superposition of the eccentric errors of each component
for the internal and external meshing lines on the left and
right sides of herringbone planetary gear transmission can,
respectively, be expressed as

eE
L
r2pi � E

L
r2 · sin −ωc · t + βr2 − αt − φi(  + Epi · sin ωp − ωc  · t − αt + βpi  − Ec · sin βc − φi(  · cos αt,

eE
R
r1pi � E

R
r1 · sin −ωc · t + βr1 − αt − φi(  + Epi · sin ωp − ωc  · t − αt + βpi  − Ec · sin βc − φi(  · cos αt,

eE
L
spi � −Es · sin ωs − ωc(  · t + βs + αt − φi(  − Epi · sin ωp − ωc  · t + αt + βpi  + Ec · sin βc − φi(  · cos αt,

eE
R
spi � −Es · sin ωs − ωc(  · t + βs + αt − φi(  − Epi · sin ωp − ωc  · t + αt + βpi  + Ec · sin βc − φi(  · cos αt,

(16)

where eEL
r2pi, eER

r1pi, eEL
spi, and eER

spi, respectively, refer to the
equivalent displacements of manufacturing eccentric errors
for the ith internal and external meshing pair on the left and
right sides of HPGT. Es, Epi, Ec, EL

r2, and ER
r1, respectively,

denote the amplitudes of manufacturing eccentric errors for
component g (g � s, pi, c, r2, and r1). βs, βpi, βc, βr2, and βr1,
respectively, represent the initial phases of manufacturing

eccentric errors for component g (g � s, pi, c, r2, and r1). ωs,
ωp, and ωc, respectively, mean the angular velocity for
component g (g � s, p, and c).

4.2. Equivalent Displacements of Tooth Profile Errors. 'is
paper also considers the tooth profile errors, which directly
act on the engagement surface of the gear tooth. 'e tooth

8 Shock and Vibration



engagement is a dynamic interaction between two or more
gear teeth. 'e tooth profile error on the line of action has
something to do with the tooth profile errors of the two gears
in the gear pair. 'e profile errors on the meshing tooth
surface need to be converted to the meshing line of the gear
pair, which are generally performed by using a simple
harmonic function according to the meshing frequency.
Figure 7 displays the tooth profile error sketch.

'e formulas of the tooth profile errors transformed into
the external (sun-planet) meshing line are deduced as

E
L

spi � Espi · sin ωm t + csi · Tm( ( ,

E
R

spi � Espi · sin ωm t + csi · Tm( ( .
(17)

Similarly, the computation formulas of tooth profile
errors transformed into the internal (ring-planet) meshing
line are derived as

E
L

r2pi � E
L
r2pi · sin ωm t + csi + csr(  · Tm( ( ,

E
R

r1pi � E
R
r1pi · sin ωm t + cri + csr(  · Tm( ( ,

(18)

where E
L

spi, E
R

spi, E
R

r2pi, and E
R

r1pi, respectively, indicate the
equivalent displacements of the tooth profile errors for the
ith external and internal meshing pair on the left and right
sides of the HPGT. Espi, EL

r2pi, and ER
r1pi, respectively, in-

dicate the amplitudes of tooth profile errors for the ith sun-

planet pair, ith left and right ring-planet pairs. csi, cri, and
csr, respectively, denote the ith sun-planet pair phase, ith
ring-planet pair phase, and the phase difference between the
internal and external mesh. ωm means the meshing angular
frequency. Tm is the meshing cycle in HPGT.

4.3. Multicoupling Manufacturing Errors. In herringbone
planetary gears, the excitation of the gear mesh resulting
from the gear error is mainly exhibited in the displacement
change along the direction of the line of action. 'e dis-
placement is the superposition of the equivalent displace-
ments of tooth profile error and manufacturing eccentric
error of each component.'e superpositions of tooth profile
error and manufacturing eccentric error on the internal and
external meshing lines on the left and right sides are referred
to here as multicoupling manufacturing errors, which are
denoted by eL

spi, eR
spi, eL

r2pi, and eR
r1pi. 'e computational

formulas of eL
spi, eR

spi, eL
r2pi, and eR

r1pi are given by

e
L
spi � eE

L
spi + E

L

spi, e
R
spi � eE

R
spi + E

R

spi,

e
L
r2pi � eE

L
r2pi + E

L

r2pi, e
R
r1pi � eE

R
r1pi + E

R

r1pi.

⎧⎪⎨

⎪⎩
(19)

'erefore, the HPGT system manufacturing error ex-
citations can be deduced as

e
L
spi � −Es · sin ωs − ωc(  · t + βs + αt − φi(  − Epi · sin ωp − ωc  · t + αt + βpi  + Ec · sin βc − φi(  · cos αt  + Espi · sin ωm t + csi · Tm( ( ,

e
R
spi � −Es · sin ωs − ωc(  · t + βs + αt − φi(  − Epi · sin ωp − ωc  · t + βpi + αt  + Ec · sin βc − φi(  · cos αt  + Espi · sin ωm t + csi · Tm( ( ,

e
L
r2pi � E

L
r2 · sin −ωc · t + βr2 − αt − φi(  + Epi · sin ωp − ωc  · t − αt + βpi  − Ec · sin βc − φi(  · cos αt  + E

L
r2pi · sin ωm t + csi + csr(  · Tm( ( ,

e
R
r1pi � E

R
r1 · sin −ωc · t + βr1 − αt − φi(  + Epi · sin ωp − ωc  · t + βpi − αt  − Ec · sin βc − φi(  · cos αt  + E

R
r1pi · sin ωm t + cri + csr(  · Tm( ( .

(20)

Sun gear

Internal meshing line

αn

αw

Es
Es

x

y
eEsi

ωs

ωpi

βs

φi

Ring gear

External meshing line

Planet gear i,
(i = 1, 2, …, N)

Figure 6: Equivalent meshing error on the line of action in the HPGT system.

Shock and Vibration 9



5. Calculation Approach of the HPGT Load
Sharing Coefficients

In a HPGT, due to the influence of elastic deflections and
manufacturing errors of each member, the load borne by
each planet gear is not equal. 'e load sharing coefficient is
usually utilized to represent the load distribution of the
system. 'e larger the load sharing coefficient is, the more
unbalanced the load distribution among different planet
gears is. Based on the proposed dynamic load sharing model
of HPGT, the load sharing coefficients LSCr2pikL, LSCr1pikR,
LSCspijL, and LSCspijR of the ith planet-ring and planet-sun
meshes on the left and right sides in each meshing cycle are
expressed as

LSCr2pikL �
N · Fr2pikL max


N
i�1 Fr2pikL max

,

LSCr1pikR �
N · Fr1pikR max


N
i�1 Fr1pikR max

,

LSCspijL �
N · FspijL max


N
i�1 FspijL max

,

LSCspijR �
N · FspijR max


N
i�1 FspijR max

,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(21)

where i � 1, 2, . . . , N.j and k are the meshing cycle numbers.
N is the planet number. F indicates the dynamic meshing
force in the meshing cycle which can be calculated by
equation 4.

'e load sharing coefficients LSCr2piL, LSCr1piR, LSCspiL,
and LSCspiR of the ith internal and external meshes on the
left and right sides of HPGT in a system period can be
obtained as

LSCr2piL � 1 + LSCr2pikL − 1


max
,

LSCr1piR � 1 + LSCr1pikR − 1


max
,

LSCspiL � 1 + LSCspijL − 1


max
,

LSCspiR � 1 + LSCspijR − 1


max
.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(22)

'e system load sharing coefficients LSCr2pL, LSCr1pR,
LSCspL, and LSCspR of the internal and external meshes on
the left and right sides of herringbone gear in a system cycle
are written as

LSCr2pL � max
1≤i≤N

LSCr2piL ,

LSCr1pR � max
1≤i≤N

LSCr1piR ,

LSCspL � max
1≤i≤N

LSCspiL ,

LSCspR � max
1≤i≤N

LSCspiR .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(23)

'erefore, the load sharing coefficient LSC in a system
period is denoted as

LSC � max LSCr2pL, LSCr1pR, LSCspL, LSCspR . (24)

6. Numerical Simulations

In this paper, the HPGT system with three planet gears as
demonstrated in Figure 1 is numerically simulated and
analyzed. 'e basic parameters of the set are given in Ta-
bles 1 and 2.

6.1. InfluenceofManufacturingErrorsonHPGTLoadSharing.
In order to investigate the impacts of manufacturing errors
such as the carrier eccentric error on the HPGT system load
sharing coefficient, it is assumed that only the carrier ec-
centric error Ec is variable, while the tooth profile errors and
the eccentric errors of other components are constant.

Tooth profile error

Theoretical tooth profile
Real tooth profile

Left-side gear tooth

Right-side gear tooth

Figure 7: Schematic of tooth profile error.
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Figure 8 exhibits a schematic diagram of the planet-carrier
eccentric error Ec. Figure 9 shows the variation of the system
load sharing coefficient LSC with the carrier eccentric error
Ec in different floating configurations when manufacturing
errors of the other elements are constant as 20 μm. In
Figure 8, α represents the result for the model without
floating, c is the result for the model with the sun gear float,
and△ indicates the result for the model with the floating sun
gear and carrier. From Figure 9, it can be seen that the carrier
eccentric error Ec has prominent effects on the load sharing
behavior of the HPGT system. 'at is, the load distribution
amongst different planet gears becomes worse with the
increase of error Ec. Meanwhile, it is also found that the
floating configurations of the HPGT have an appreciable
impact on the load sharing performance. For the model with
nonfloating, the load sharing coefficient LSC is larger,
meaning at this time, there exists a more serious load dis-
tribution imbalance amongst different planet gears in
HPGT. In contrast with the result for the model with the
single floating as displayed by the black solid line c in
Figure 9, the combined floating is better. In other words, the
load distribution among different planet gears is more even
and balanced under the combined floating configurations as
exhibited by the red double dot-dashed line△ in Figure 9. In
short, the planet-carrier eccentric error Ec and floating
configurations significantly affect the HPGT system load
sharing performance, and as the planet-carrier eccentric
error Ec goes up, the HPGT system load sharing coefficient
LSC becomes larger. Floating can reduce the HPGT load
sharing coefficient; that is, when the floating form is adopted,
the load distribution amongst different planet gears will
become more uniform. Moreover, the combination of
floating is better than the single floating, and this shows a
good agreement with Ren’s study [11].

Figure 10 illustrates the variation of the load sharing
coefficients of each planet gear of the external mesh with the
meshing time under multiple manufacturing errors, where

LSPspiL(R) (i� 1, 2, . . ., N) denotes the ith planet-gear load
sharing coefficient of the external mesh at the left (right) side
as described in formula (22) and N is the planet number;
here N� 3. 'e tooth profile errors and eccentric errors of
each component are assumed to be 20 μm. It can be observed
from Figure 10 that the load sharing coefficient of each
planet gear in HPGTshows a certain periodic change. 'is is
mainly because the error excitation is a simple harmonic
function. By comparing Figures 10(a) and Figure 10(b), it
can be found that the change curves of the load sharing
coefficients of the corresponding planet gear i of the left-side
and right-side external mesh are the same. It can also be seen
that, under multiple manufacturing errors, the example
HPGT system load sharing coefficient is 1.15.

In this subsection, it is assumed that only a single
manufacturing error such as the sun-gear eccentric error Es
or the planet-gear eccentric error Ep1 exists, while the other
error values are zero. Figure 11 demonstrates the variation of
the load sharing coefficient of each planet gear at the right-

Table 1: Parameters of the HPGT system.

Subject Carrier Planet Sun Left ring Right ring
Tooth number — 17 23 57 57
Helix angle (deg.) — 25 25 25 25
Tooth width (mm) — 360 360 170 170
Normal pressure angle (deg.) — 20 20 20 20
Mass (kg) 5091 525 750 450 450
Equivalent moment of inertia J/r2 (kg) 5724 420 663 546 546
Material 20CrMnMo
Input torque (kN·m) 100
Input speed (r/min) 100

Table 2: Stiffness parameters of the HPGT system.

Subject (N/m) u-direction x-direction y-direction z-direction
Carrier — 1e9 1e9 1e9
Planet — 1e9 1e9 1e9
Sun — 1e9 1e9 1e9
Left ring 1e10 1e10 1e10 1e10
Right ring 1e10 1e10 1e10 1e10

CarrierRealistic
rotational center

Theoretical geometrical center

Manufacturing 
eccentricity

Figure 8: Schematic diagram of the planet-carrier eccentric error.
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side external mesh in the HPGT system with the meshing
time, where (a) and (b) are the results from the model with
the sun-gear eccentric error Es � 20 μm and the planet-gear
eccentric error Ep1 � 20 μm, respectively. From Figure 11, it
can be observed that, in these two models with the sun-gear
eccentricity and planet-gear eccentricity, the planet-gear
load sharing coefficients of the right-side external mesh
fluctuate periodically with the meshing time. 'e system
load sharing coefficient can be obtained by the maximum
values in each planet-gear load sharing coefficient changing
curve. 'e HPGT system load sharing coefficients from the
model with the sun-gear eccentricity Es � 20 μm and the
planet-gear eccentricity Ep1 � 20 μm are 1.10 and 1.043,

respectively. 'is shows, in the HPGT system, the load
distribution situation among different planet gears under the
sun-gear eccentric error excitation Es � 20 μm is even worse
and more uneven than that under the planet-gear eccentric
error excitation Ep1 � 20 μm. 'is is possible because the
example HPGT system is more sensitive to the sun-gear
eccentric error excitation. By comparing Figures 10 and 11,
it can be found that the example HPGT system load sharing
coefficient LSC under multiple manufacturing errors shown
in Figure 10 is larger than that under a certain single error
shown in Figure 11. 'e manufacturing error impact on the
load sharing coefficient exhibits a cumulative effect, and this
has a good agreement with Ren’s investigation [12].

Carrier eccentric error Ec (µm)
30 40 50 60 70 80 90 100

α
γ

Δ

1.0

1.1

1.2

1.3

1.4

H
PG

T 
sy

ste
m

 lo
ad

 sh
ar

in
g 

co
ef

fic
ie

nt
 L

SC

α: nonfloating

γ: floating sun gear

Δ: floating sun and carrier

Figure 9: Relationships between the HPGT system load sharing coefficient (LSC) and the planet-carrier eccentric error Ec in different
floating configurations.
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Figure 10: 'e variation of the planet-gear load sharing coefficients under multiple manufacturing errors. (a) 'e left-side external mesh
LSCspiL. (b) 'e right-side external mesh LSCspiR.
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6.2. Influence of System Support Stiffness on HPGT Load
Sharing. To investigate the effects of the support stiffness of
the central member (i.e., sun gear, ring gears, and carrier) on
the HPGTsystem load sharing coefficient LSC, it is assumed
that only the support stiffness of the sun gear, ring gears, and
carrier is changed while the other parameters are fixed.
Figure 12 demonstrates the variation of system load sharing
coefficient LSC with the support stiffness of the center
member, where the blue solid line α denotes the variation of
the carrier support stiffness kc, the red double dot-dash line β
denotes the variation of ring gear support stiffness kr, and
the black dashed line c denotes the variation of sun gear
support stiffness ks. From Figure 12, it is found that the
support stiffness of the central member, such as the sun gear
support stiffness ks, the ring-gear support stiffness kr , and
the carrier support stiffness kc, significantly affects the load
sharing performance. When the supporting stiffness of the
central component ranges from 0 to 1.5×1010N/m and
gradually increases, the HPGT system load sharing coeffi-
cient LSC is very sensitive to the supporting stiffness of the
central component in the initial stage and increases rapidly
with an increase in the supporting stiffness of the central
component. When the supporting stiffness of the central
member is greater than 1.5×1010N/m and increases further,
the system load sharing coefficient increases at a slow pace.
After the support stiffness of the central member increases to
a certain extent, the system load sharing coefficient changes
insignificantly and approaches a fixed value. In addition,
when the sun gear, carrier, and ring gear have the same
support stiffness value, the system load sharing coefficient
LSC under the variation of the sun gear support stiffness ks is
the smallest and is the largest under the carrier support
stiffness kc, while it is in-between under the ring gear
support stiffness kr. In other words, when the sun gear, ring
gear, and carrier have the same support stiffness value, the

floating of the sun gear gives the best results and the floating
of the carrier is the worst.'is may be due to the fact that the
sun gear inertia is the smallest, and the floating is more
sensitive and easier to achieve.

7. Verifications of Theoretical Results

In order to verify the validity of theoretical calculation in the
present study, the approaches of comparing the obtained
research results in the paper with the existing literature are
mainly adopted to validate the correctness of the proposed
model and method. Influence curves of carrier eccentricity
Ec on the HPGT LSC shown in Figure 9 in this research have
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Figure 11:'e variation of the planet-gear load sharing coefficients LSCspiR of the right-side external mesh in the HPGT. (a)'emodel with
the sun-gear eccentric error Es � 20 μm. (b) 'e model with the planet-gear eccentric error Ep1 � 20 μm.
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a similar tendency and changing law with Mo’s investigation
in [19], and both of them show a good agreement. 'e LSC
curves of the left and right sides shown in Figure 10 are the
same, which is consistent with Mo’s study in [19]. Moreover,
all the variation curves of LSC of each planet gear in Fig-
ures 10 and 11 in the present investigation exhibit the pe-
riodically changing trend, and just these are relatively
consistent with [19, 20]. Meanwhile, from Figures 10 and 11,
it is obvious that the HPGTsystem LSC under multicoupling
errors is larger than that under single error, which is con-
sistent with [19]. As exhibited in Figure 12, the variation
tendencies and laws of the system LSC curves with the
central member (i.e., sun, ring, and carrier) are consistent
with [21].

In summary, comparing the theoretical calculation re-
sults in the study with the existing literature, both of them
are in a good agreement. In other words, the reliability and
correctness of theoretical calculation are validated.

8. Conclusions

Based on the actual structure feature of herringbone gears
and by considering multicoupling manufacturing errors,
time-dependent meshing stiffness, bearing deformation, and
gyroscopic effect, a refined bending-torsional-axial coupled
dynamic model for HPGT has been developed to study the
load sharing performance. 'e influences of manufacturing
errors and system support stiffness on dynamic load sharing
behavior were numerically investigated. 'e main conclu-
sions are summarised as follows:

(1) Manufacturing errors such as the planet-carrier
eccentric error Ec and component floating have
palpable influences on the load sharing behavior of
the HPGT system. 'e load sharing coefficient in-
creases significantly with the increase of
manufacturing errors. 'e system load sharing co-
efficient is significantly smaller when using the
component floating, and the load distribution
among planet gears tends to be more uniform under
a combined floating configuration. Hence, adopting
component floating and lessening manufacturing
errors exert a vital role in the load sharing of the
HPGT system. And the HPGT load sharing coeffi-
cient when the errors act in common is larger than
that when the error acts alone. 'e influence of the
error on the load sharing coefficient has a cumulative
effect.

(2) 'e support stiffness of the central member no-
ticeably affects the HPGT load sharing behavior.
When the support stiffness of the central member is
gradually increased, the load sharing coefficient is
also increased in the initial stage. As the support
stiffness of the central component is further in-
creased, the increase of the load sharing coefficient
becomes slower. After the support stiffness increases
to a certain extent, the system load sharing coefficient
LSC no longer changes significantly and tends to be a
fixed value.'is will provide a theoretical foundation

for reasonably selecting the support stiffness of the
central component.
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