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In recent years, the noise reduction research of the carpet tufting machine has been developing slowly. (e research gaps of the
existing work mainly focus on the noise source identification for the carpet tufting machine. MEEMD (EEMD) has been proposed
to apply to source recognition on textile machinery. Due to the uniqueness of the MEEMD/EEMD, it is difficult to set suitable
white noise control parameters. MEEMD (EEMD) has only been tested via simulation; however, it has not been mathematically
proven or evaluated. (is leads to inevitable flaws in the research conclusions, and even some conclusions are wrong. (e
contribution of this paper is twofold. First, in order to recognize the noise source of a carpet tufting machine, a method based on
complete ensemble empirical mode decomposition (CEEMDAN) and Akaike information criterion (AIC) is proposed. (e
CEEMDAN-AIC method is applied to measure the noise signal of a carpet tufting machine and analyzed every single effective
component selected. Noise source identification is realized by combining the vibration signal characteristics of the main parts of
the carpet tufting machine. CEEMDAN is used to decompose the measured noise signal of the carpet tufting machine into a finite
number of intrinsic mode functions (IMFs). (en, singular value decomposition (SVD) is performed on the covariance matrix of
the IMF matrix to obtain the eigenvalue. Next, the number of effective IMFs is estimated based on the AIC criterion, and the
effective IMFs are selected by combining the energy characteristic index and the Pearson correlation coefficient method.
Furthermore, reconstruction and comparison of the decomposed signals of MEEMD and CEEMDAN proved that CEEMDAN is
effective and accurate in source recognition. (e results show that the noise signal of the carpet tufting machine is a mixture of
multiple noise source signals. (e main noise sources of the carpet tufting machine include shock caused by the impact of the
tufted needle and looped hook and vibration of the hook-driven shaft and pressure plate. It provides theoretical support for the
noise reduction of the carpet tufting machine.

1. Introduction

ANSI [1] stipulates that, for single-level noise, continuous
noise exposure shall not exceed 80 dB when working for
more than 8 hours. In 2013, China’s newly revised GB/T
50087-2013 [2] stipulates that the noise of the workshop is
85 dB. At present, the noise of the textile workshop is
generally above 85 dB. Even with improvement of the
characteristics of the carpet tufting machine, such as making
it wide, heavy, high speed, and complex in the mechanism,
the noise generated is greater. (erefore, research on the
noise reduction of textile machinery is urgent and
significant.

Generally speaking, the structure of the carpet tufting
machine is as complex as its transmission path. (e
weaving process includes high-speed rotation, recipro-
cating, multimotion coupling, impact, friction, and other
conditions. It leads to more than one noise source. Even
the same sound source often has multiple parts that
produce sound, and the noise condition is unusual and
complex [3–5]. (erefore, it is necessary to understand the
characteristics of each sound source and the weight of its
total noise. (en, locate and identify the main noise
sources in order to formulate reasonable noise reduction
measures for a carpet tufting machine with multiple noise
sources.

Hindawi
Shock and Vibration
Volume 2021, Article ID 5513062, 13 pages
https://doi.org/10.1155/2021/5513062

mailto:1169165@mail.dhu.edu.cn
https://orcid.org/0000-0003-2067-403X
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/5513062


Noise energy is usually concentrated in the low-fre-
quency band. Noise source feature extraction is one of the
key techniques for source identification, especially for the
carpet tufting machine. (erefore, how to accurately extract
the source feature from complex noise is always a difficult
problem in the textile industry. Some research studies use
classical Fourier analysis and wavelet transform as the basis
of noise signal processing [6–8]. (e Fourier analysis cannot
express the time-frequency local performance of the signal.
(e results cannot reflect the real features for the target
signal well [9, 10]. Wavelet transform can multiscale refine
the signal by calculating flex and transition. It can solve the
problem that the size of the Fourier transform window
cannot change with frequency. However, wavelet transform
is still based on Fourier analysis and limited by the selection
of the wavelet basis function and decomposition layer. For
carpet tufting machine noise signal processing, we hope that
we can not only get the frequency information of the signal
but also get the law of the frequency changing with time. As
an empirical signal analysis method, empirical mode de-
composition (EMD) overcomes the limitation of Fourier
transform fundamentally and can theoretically decompose
any signal into IMFs [11–14]. (e major drawback of the
EMD is the frequent appearance of mode mixing. Some
experts have put forward improved EMD algorithms to solve
mode mixing of EMD. Among them, the more universal and
effective algorithms are ensemble EMD (EEMD) [15, 16].
Although EEMD reduces mode mixing, it has greater error
between the original signal and the reconstruction signal.
For textile machinery, Xu et al. [3, 4] proposed modified
ensemble empirical mode decomposition (MEEMD). Al-
though MEEMD reduces the reconstruction error to a
certain extent, it still cannot meet accuracy requirements.
Marcelo and Gastón [17] presented complete ensemble
EMD with adaptive noise (CEEMDAN). It can solve mode
mixing and reduce calculation with negligible reconstruc-
tion error [18–20].

In this paper, the decomposition results of CEEMDAN
and MEEMD are compared. CEEMDAN has higher accu-
racy, and it is more suitable for the noise source extraction
for the textile industry. (e CEEMDAN algorithm is
combined with the Akaike information criterion (AIC)
source number estimation method, and the CEEMDAN-
AIC method is for the noise source identification of the
carpet tufting machine. (en, the CEEMDAN-AIC method
is applied for the identification of the noise source of a carpet
tufting machine, and its main noise source is accurately
identified.(is can provide theoretical support for the active
noise reduction of the carpet tufting machine.

2. Noise Characteristic Analysis of a Carpet
Tufting Machine

2.1. Structure of the Carpet Tufting Machine. In this paper,
the experiment object is a four-meter tufted carpet tufting
machine. It is shown in Figure 1. (e carpet tufting machine
is mainly composed of four parts: host system, loop-forming
system, yarn feeding system, and needle bed and traverse
system.(e host system is used to make the rotary motion of

the spindle transformed into the loop/cutting motion of the
loop hook swinging left and right and the flocking motion of
the tufting needle up and down. (e loop-forming system is
used to complete the loop-forming movement of the carpet
tufting machine. (e yarn feeding system is used to send
yarn to the loop forming.(e needle bed and traverse system
is used to put yarns of different colors inserted into the tufted
pinholes at intervals. Assist the loop-forming system in
completing the fabric weaving. Under the operating con-
dition that the main shaft speed of the carpet tufting ma-
chine is 360 rpm, LV-FS01 and Quick Signal Analyzer
(Quick SA) real-time signal analysis software are used to
collect the vibration signals of the main vibration parts of the
carpet tufting machine, and the collected vibration signals
are analyzed one by one. (e main vibration frequencies of
the parts are shown in Table 1. (e sampling frequency is set
to 2048Hz, and the sampling time is 20 s.

2.2. !e Acquisition and Preprocessing of Noise Signals.
Under the same conditions, the noise signals of the carpet
tufting machine near the workers’ ears are collected.
According to GB/T 7111.6-2002 “Textile machinery—Noise
test code-Part 6: Fabric manufacturing machinery,” the
sound pressure sensor is arranged at a distance of 1m from
the machine surface and at a height of 1.6m from the table
position.

(e noise signals are collected in this experiment by
using a sound pressure sensor BK4961 combined with the
DHAS dynamic signal analysis system.

(e sampling frequency is 8192Hz, and the sampling
time is 20 s. A total of 6 experiments are carried out, and the
experimental site layout is shown in Figure 2.

All the noise signals collected are analyzed preliminarily.
In order to improve the computational efficiency, a typical
data length of 1 s is selected as the analysis object.

(e signal waveform and spectrum obtained after the
fast Fourier transform of the signal are shown in Figure 3. It
is seen in the figure that the frequency of the noise signals is
mainly distributed below 400Hz. And the frequency com-
ponent is complex, mainly composed of low-frequency noise
within 0–300Hz.

Figure 1: (e carpet tufting machine.
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An appropriate window function is used for short-time
Fourier transform of the noise signal near the workers’ ears.
It is clear from the time-frequency diagram shown in Fig-
ure 4 that the noise source is not unique. (e signal char-
acteristics of each frequency band are shown in Table 2.

3. CEEMDAN-AIC Noise
Recognition Algorithm

(e core of the CEEMDAN-AIC approach is the CEEM-
DAN algorithm and AIC guidelines. (e CEEMDAN-AIC
algorithm flowchart is shown in Figure 5.

(1) CEEMDAN decomposition of the signal: CEEM-
DAN decomposition of the single-channel obser-
vation signal yields a finite number of IMF
components.

(a) Add two sets of positive and negative white noise
signals of equal absolute value to the signal to be
decomposed x(t) to form a new signal xi(t).
Multiple first-order components IMFi

1 are ob-
tained by EMD of the new signal. (e first-order
final component IMF1

− − − − −

is obtained by averaging
several first-order components. (e first residue
can be expressed as

r1(t) � x(t) − IMF1
− − − − −

. (1)

(b) Add two sets of positive and negative white noise
signals of equal absolute value to r1(t) to form a
new signal ri

1(t). Multiple second-order com-
ponents IMFi

2 are obtained by EMD of the new
signal. (e second-order final component IMF2

− − − − −

is obtained by averaging several second-order

components. (e second residue can be
expressed as

r2(t) � r1(t) − IMF2
− − − − −

. (2)

(c) For k � 1, 2, 3,Λ, go to Step b for next k. (e kth
residue can be expressed as

rk(t) � rk− 1(t) − IMFk

− − − − −

. (3)

Finally, CEEMDAN can be expressed as

x(t)⟶ CEEMDAN
􏽘

k

i�1
IMFi

− − − − −

+ rk(t), (4)

where x(t) is the observation signal.
(2) Estimate effective IMFs:

(e IMF matrix is obtained after the signal is
decomposed by CEEMDAN. (e IMF matrix’s co-
variance matrix is decomposed by SVD. Multiple
eigenvalues corresponding to IMFs can be obtained.
(e noise background of the carpet tufting machine
is colored noise, and the accuracy of the AIC for
estimating the number of sources in the background
of colored noise is poor. (erefore, Xu et al. [3]
smoothed out the noise eigenvalues by diagonally
loading the covariance matrix in order to make it to
be applied to the background of colored noise. (e
corrected eigenvalue μi � λi + λDL, i � 1, 2,Λ, m.
λDL �

������
􏽐

m
i�1 λi

􏽱
. (e correction can be expressed as

AIC � − 2N(m − L)lg
􏽑

m
i�L+1 μ

(1/m− L)
i

(1/m − L) 􏽐
m
i�L+1 μi

􏼠 􏼡

+ 2L(2m − L),

(5)

where N is the number of samples and
L � 1, 2,Λ, m − 1. (e AIC value of L is calculated
from 1 tom − 1. L corresponding to the smallest AIC
value is the number of effective components.
Combining the energy characteristic index with the
Pearson correlation coefficient [3], the total energy of
each IMF and the correlation coefficient between
each IMF and the original signal are calculated.
According to the correlation coefficient of each IMF,
all the IMFs are reordered to find out the most
significant components.

(3) Noise source identification:
(e signal characteristics of the effective IMFs are
analyzed to complete the noise source identification.

4. Noise Source Identification of a Carpet
Tufting Machine

CEEMDAN decomposition of the noise signal is done. (e
amplitude of the added white noise is 0.3 times of the RMS of
the noise signal. (e number of added white noise is 200.

Table 1: (e main vibration frequencies of the parts.

Part Main vibration frequency (Hz)
Pressure plate 5, 52
Motor spindle 6, 47
(e hook 5
(e hook-driven shaft 5, 57
(e hook main shaft 5
Machine base 5, 26, 37

Sound pressure
sensor

Carpet tufting
machine

DHAS dynamic signal
acquisition and 
analysis system

Figure 2: Experimental arrangement.
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Seven IMFs are obtained.(e decomposition result is shown
in Figure 6.

4.1. Estimation of Effective IMFs of Carpet Tufting Machine
Noise. (e covariance matrix of the IMFs is calculated and
then decomposed by SVD. (e eigenvalues were obtained:
0.0857, 0.0551, 0.0318, 0.0198, 0.0083, 0.0015, and 0.0002.
(e AIC after correction is shown in Figure 7. (e smallest
AIC corresponds to L� 4. (en, the estimated number of
valid IMFs is 4.

Combining the energy characteristic index with the
Pearson correlation coefficient, the total energy of each IMF
and the correlation coefficient between each IMF and the
original signal are calculated. (e results are shown in
Table 3.

It can be seen from Table 3 that the energy and corre-
lation coefficients of IMF1–IMF4 are large. Because the
number of effective IMFs of the carpet tufting machine
decomposed by CEEMDAN is 4, IMF1–IMF4 are effective.
IMF5–IMF7 are not effective as their energy and correlation
coefficient are small.
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Figure 3: (e pretreatment of the noise signal. (a) Amplitude-frequency of the noise signal. (b) Amplitude-time of the noise signal.
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Figure 4: Time-frequency of the noise signal.

Table 2: (e signal characteristics of each frequency band.

Frequency band (Hz) Signal characteristics
700–900 Showing a certain periodicity
250–350 Showing a certain periodicity with the spindle rotation cycle
150 or so (e signal did not change significantly over time, time-invariant stable signal
0–60 Showing a certain periodicity
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4.2. Characteristic Analysis of EffectiveNoise andNoise Source
Identification. Each amplitude-frequency figure of each
effective IMF of carpet tufting machine noise shown in
Figure 8 is obtained through the fast Fourier transform.
Figure 9 shows the time-frequency of IMF1–IMF4.

According to Figure 6 and Figure 9(a), it can be seen that
IMF1 is a shock signal. It impacts about 6 times per second.
(is corresponds to the spindle motor speed (360 r/min).
When the spindle motor is working, it rotates once in 0.2 s.
At this time, the needle row punctures the base cloth every
0.2 s. (e peak value appears on the amplitude-time figure of
IMF1 every 0.2 s (Figure 6). (erefore, IMF1 is the shock

noise caused by the impact of the tufted needle and loop
hook.

Background noise signals in the factory are collected and
decomposed by CEEMDAN. (e time-frequency of the
background noise is shown in Figure 10.

Comparing Figure 10 with Figure 9(b), it can be seen that
the frequency distribution is similar and that all signal
frequency characteristics change with time. (erefore, IMF2
is derived from the background noise.

(e vibration time-frequency of the hook-driven shaft
and pressure plate is shown in Figure 11. (e amplitude-
frequency of IMF3 and IMF4 is extracted from Figure 8 and

Start

CEEMEDAN

SVD

AIC

Observation
signal x(t)

IMF
components (matrix D)

Covariance matrix of
matrix D

�e number of
effective components

Valid components

Noise sources End

CEEMEDAN-AIC processing

Related characteristics
index calculation

Signal characteristics
analysis

λ1≥λ2≥...≥λm

Figure 5: Flowchart of the CEEMDAN-AIC algorithm.
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amplified in the frequency axis, resulting in Figure 12.
According to Figure 12(a), an obvious peak is at 58Hz, the
frequency does not change with time, and no periodic shock
characteristics and concentrated frequency distribution were
observed. (e amplitude of 58Hz is the largest in the whole
frequency domain, and it is about 10 times of the spindle
rotation frequency. Figure 9(c) and Figure 11 show that the
phase difference between the pressure plate and the hook-

driven shaft is about 180° and alternates with each other on
the whole time axis. By measuring the main vibration of the
hook-driven shaft and pressure plate (58.3Hz, 52.7Hz), it
can be known that IMF3 is the vibration noise caused by the
vibration of the hook-driven shaft and pressure plate.

Figure 12(b) shows an obvious peak at 17Hz. (e dis-
tribution of frequency is narrow and below 20Hz. (e
audible frequency range of the human ear is from 20Hz to
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Figure 7: Calculation results of the AIC.

Table 3: (e total energy of each IMF and the correlation coefficient.

IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 IMF7
Energy (Pa2) 148.599 108.451 69.736 175.160 40.515 17.224 3.16
Correlation coefficient 0.568 0.560 0.420 0.516 0.213 0.130 0.055
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Figure 8: Amplitude-frequency of IMF1–IMF4.
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Figure 9: (a) Time-frequency of IMF1. (b) Time-frequency of IMF2. (c) Time-frequency of IMF3. (d) Time-frequency of IMF4.
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Figure 10: Time-frequency of the background noise.
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20 kHz. (erefore, IMF4 belongs to the infrasound wave,
and it cannot be recognized by the human ear. It is not
necessary for IMF4 to identify the noise source.

4.3. Comparing with the MEEMD Noise Recognition
Algorithm. In Section 4.1, CEEMDAN-AIC is directly ap-
plied to decompose and analyze the noise signal, but this is

not prudent enough to verify the accuracy of the method. It
is necessary to add one accurate calculation example to
verify the accuracy of the method, and the results of
CEEMDAN and MEEMD should be compared.

According to the features of the measured noise signal,
the simulation signal of the accurate calculation example can
be expressed (Figure 13):

m1 � 5e
− (t− 500/100)2π cos

5π
6

(t − 1000)􏼒 􏼓

m2 � cos
4π
125

(t − 1000) + 10 sin
πt

2500
􏼒 􏼓 − 86􏼒 􏼓􏼒 􏼓

m3 � 2e
− π(t− 1400/200)2 cos 7π

t − 1400
128

􏼒 􏼓􏼒 􏼓

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

, t ∈ [0, 2000]. (6)
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Figure 11: Vibration time-frequency of the pressure plate and hook-driven shaft. (a) Time-frequency of the pressure plate. (b) Time-
frequency of the hook-driven shaft.
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Simulation signal � m1 + m2 + m3.
According to Figures 13–15, it is obvious that MEEMD

presents strong mode mixing and contains the spurious
component. For MEEMD, IMF1–IMF4 have large energy,
and they do not represent real information of the simulation
signal. For CEEMDAN, the decompositions were stopped
once the IMF was satisfied for the current residue. Figures 16
and 17 show that compared with MEEMD, the recon-
structed signal error generated by CEEMDAN is negligible,
and the energy distribution is more uniform. It can well
decompose the simulation signal into three effective com-
ponents. CEEMDAN can represent real information of the
simulation signal more accurately than MEEMD.

MEEMD of the noise signal is shown in Figure 18. 10
IMFs are obtained. Comparing with Figure 6, it is obvious that
MEEMD shows frequent appearance of mode mixing [4].

Each amplitude-frequency figure of each effective IMF of
MEEMD shown in Figure 19 is obtained through the fast
Fourier transform.

(e energy error of the MEEMD algorithm is very large.
It can change the energy distribution of the modal com-
ponent. (is will seriously affect the identification of the
noise source. (e conclusions in [4] show that the noise of
the carpet tufting machine is mainly composed of friction
between the tufting needle and base cloth (IMF1), the shock
noise caused by the impact of the tufted needle and loop
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hook (IMF2), background noise (IMF3), and vibration noise
of the hook-driven shaft and pressure plate (IMF4). In fact,
IMF1 is a spurious component caused by mode mixing. It is
unable to find out the parts’ vibration signal corresponding
to IMF1. Most energy in IMF1 is provided by white noise.
(is means friction between the tufting needle and base

cloth does not contribute to the noise signal. Due to the
features of MEEMD/EEMD, it is difficult to remove the
white noise from decomposition results. Noise source
identification based on MEEMD is more relying on expe-
rience and more prone to error. CEEMDAN has high
completeness. It can remove the white noise from
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Figure 19: Amplitude-frequency of IMF1–IMF4.
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Figure 20: CEEMDAN reconstruction signal.
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Figure 21: CEEMDAN reconstruction signal error.
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decomposition results.(is can reduce the appearance of the
spurious component in decomposition results.

In order to illustrate this problem, the error of the re-
construction signal of CEEMDAN and MEEMD should be
compared.

According to Figures 20–23 and Table 4, compared with
the CEEMDN reconstruction signal, the energy error of the
MEEMD reconstruction signal is 31.1%. It is obvious that
CEEMDAN is more suitable for the noise source extraction
of the carpet tufting machine. Meanwhile, the conclusions
[4] are not accurate.

5. Conclusions

In this paper, using the CMEEMDAN-AIC algorithm
combined with the carpet tufting machine structure char-
acteristics and related experimental analysis, the noise

sources of the carpet tufting machine are identified, con-
cluded as follows:

(1) A CEEMDAN-AIC algorithmwhich is applied to the
noise source identification of the carpet tufting
machine is presented.

(2) (e CEEMDAN-AIC algorithm is used to deal with
noise measured near the ear of workers. Four ef-
fective IMFs of the noise of the carpet tufting ma-
chine are obtained. Among them, IMF2 and IMF4
are, respectively, background noise and infrasound.

(3) Based on the analysis of IMF1 and IMF3, combined
with the vibration characteristics of each machine
part of the carpet tufting machine, it can be con-
cluded that the noise is mainly composed of the
vibration of the hook-driven shaft and pressure plate
and the impact of the tufted needle and loop hook.

(4) Compared with other noise source extraction
techniques (MEEMD), CEEMDAN can remove the
white noise from decomposition results and reduce
the appearance of the spurious component in de-
composition results. CEEMDAN has better perfor-
mance for actual carpet tufting machine noise
signals. (e error can be reduced by 31.1%.
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Figure 22: MEEMD reconstruction signal.
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Figure 23: MEEMD reconstruction signal error.

Table 4: Energy of each signal.

Signal Energy (Pa2)
Original noise signal 630.1
CEEMDAN reconstruction signal 630.2
MEEMD reconstruction signal 2025
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