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In this paper, a model is established for the calculation of the vibrations of a composite laminated plate with elastic boundary
conditions subjected to local thermal loading..e model is based on first-order shear deformation theory using the finite element
method. .e influence of boundary conditions, heating area, and heating location on buckling and vibrations of a composite
laminated plate was investigated, and there were two stages in which the critical temperature increased sharply during the
transition from free boundary to simply supported and rigid fixed boundaries. .e thermal buckling of locally heated laminated
plates is generally not checked in practical applications unless the heated area exceeds approximately 10% of the total area of the
plates. .e stronger the boundary constraint is, the greater the influence of the heated area is on the vibrational frequencies of the
composite laminated plate.

1. Introduction

Because of their excellent strength, stiffness, light weight,
and malleability, plates made of composite materials have
received increasing consideration for structural applications
in aerospace, shipbuilding, and other areas of industrial
engineering. However, composite material plates are often
compromised by exposure to thermal loads. For example,
temperature changes cause stresses on ship structures that
cannot be ignored when at sea. .ere can be very large
temperature changes in the work environment, and tem-
perature stresses can be particularly large on main engines,
auxiliary engine compartments, pipelines, LNG facilities,
and so on [1].

Many paper results have been published about vibration,
buckling, and static performance analyses of composite
structures. Vangipuram and Ganesan [2] studied the
buckling and vibration of a rectangular composite visco-
elastic sandwich plate with different boundary conditions
subjected to thermal loading. Jeyaraj et al. [3] investigated
the vibration and acoustic radiation properties of composite
laminated plates with different combinations of boundary
conditions subjected to various thermal loads based on the

finite-boundary element method. Shiau et al. [4] applied the
finite element method to study the thermal buckling be-
haviour of composite laminated plates with different
boundary condition combinations of simply supported and
clamped edges, and the results indicated that the thermal
buckling mode is mainly dependent on the E1/E2 ratio, fibre
orientation, and aspect ratio of the plate. Biswal et al. [5]
performed numerical and experimental investigations on
the free vibration behaviour of woven fibreglass/epoxy
laminated composite shells for C-C-C-C and S-S-S-S
boundary conditions subjected to hygrothermal environ-
ments. .e results showed that there was a reduction in the
natural frequency of laminated composite shells with in-
creasing temperature and moisture concentrations. Zhao
et al. [6] utilised the first-order shear deformation theory to
study the effects of temperature and humidity on vibration
performance of orthogonal anisotropic laminated plates
with four simply supported edges, and the influence of
temperature on the vibration frequencies of single-layer
plates was more obvious than that of humidity.

According to a review of the literature, most previous
studies on composite laminated plates are confined to
classical boundary conditions, such as free, simply
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supported, clamped, and their combinations. However, a
variety of possible boundary supports encountered in
practical engineering applications may not always be clas-
sical in nature, and they will always be elastic along the
supports. Unfortunately, studies of the effects of elastic
boundaries have mostly focused on the dynamic perfor-
mance of structures, and to the best of the author’s
knowledge, to date, no paper has dealt with the buckling
performance of structures with elastic boundaries. More-
over, the temperature distribution on the composite lami-
nated plate is usually uneven. For example, as a hypersonic
structure accelerates in the atmosphere, the plate boundary
acts as a radiator when connected to the cooler substructure,
resulting in the generation of aerodynamic heat on its
surface [7]. Few studies have dealt with how local heating
affects the vibration properties of composite structures. Over
the last several years, rapid growth in the design of structures
and industrial processes has required development of
computational models that reflect practical engineering
problems; therefore, it has great significance to study the
buckling and vibration performance of composite laminated
plates with arbitrary elastic edge supports subjected to local
thermal loads. .e motivation of this study is to solve these
two problems.

It is commonly believed that the finite element method
(FEM) is a powerful tool for solving complex problems
because of its strong adaptability. Recently, Alimirzaei et al.
[8] considered the nonlinear static, buckling, and vibration
of viscoelastic microcomposite beams reinforced by various
distributions of boron nitride nanotubes (BNNTs) with
initial geometrical imperfection by modified strain gradient
theory using FEM. Hirane et al. [9] employed a novel higher-
order layer-wise finite element model for static and free
vibration analyses of functionally graded material (FGM)
sandwich plates. In this paper, the buckling and vibration
behaviour of a composite laminated plate subjected to elastic
boundaries was studied by the finite element method. .e
paper is arranged in four sections. Following this intro-
duction, Section 2 provides the theoretical background of
the composite laminated plate and elastic boundary, and the
corresponding matrix representation is given. In Section 3,
the effects of boundary conditions, heating position, and
heated area on the buckling and vibration performance of
composite laminated plates subjected to local thermal
loading are discussed..e final section summarizes the main
results of the paper.

2. Theory

2.1. Governing Equations. As shown in Figure 1, based on
first-order shear deformation theory, the deformation
field of the composite laminated plate can be expressed as
follows [6]:

u(x, y, z) � u0(x, y) + zϕx(x, y),

v(x, y, z) � v0(x, y) + zϕy(x, y),

w(x, y, z) � w0(x, y),

(1)

where u0, v0, and w0 are the displacements of a generic point
at the middle surface in the x, y, and z directions, re-
spectively. .e bending rotations of a vector normal to the
midsurface are denoted by ϕx and ϕy when measured in the
x − z and y − z planes, respectively. Consequently, the
strain-displacement equations can be expressed as follows
[10]:
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where εx and εy represent bending strains and cxy, cyz, and
cxz represent transverse shear strains.

.e composite laminated plate is designed to be com-
posed of N layers. .e thickness of each layer is tk so that
t � 

N
k�1 tk is the total thickness of the composite laminated

plate. When the laminated plate is subjected to a constant
temperature, the stress-strain relations of the k th layer are
of the form as follows [11]:
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where σx and σy and τxy, τyz, and τxz represent the stress
components and Qij are transformed reduced stiffnesses,
which can be expressed in terms of the orientation angle and
engineering constant of the material. For an in-depth dis-
cussion of the meaning of the laminate, see reference [12].
ΔT is the thermal load. αx and αy are coefficients of thermal
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Figure 1: Schematic diagram of a composite laminated plate.
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expansion along the x and y axes, respectively, and αxy is the
apparent coefficient of thermal shear.

.e stress resultants are as follows [11]:
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and the moment resultants are as follows:
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where t is the thickness of the composite laminated plate.
.e total potential energy is the sum of the bending

strain energy of the laminated plate and the potential energy
of the laminated plate under the action of in-plane forces due
to the thermal load, which can be expressed as follows [13]:

Π � π + V, (5)

where π is the bending strain energy of the laminated plate
andV is the potential energy of the laminated plate..ey can
be written as follows [13]:
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where [Ks] is the stiffness matrix and [Kσ] is the thermal
stress stiffness matrix. .e superscript e denotes that these
variables are defined on the element. n is number of finite
elements. q  is the nodal displacement vector.

2.2. Elastic Boundary. As demonstrated in Figure 2, the
strain energy U of the elastic boundary in the plate element
can be represented by the following [14]:
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where ktx0, ktx1, kty0, and kty1 are the corresponding
boundary support stiffnesses and Krx0 Krx1, Kry0, and Kry1
are the corresponding boundary rotational stiffnesses of the
composite laminated plate.

.e stiffness matrix representation of the elastic
boundary is obtained from the above equation as follows:

U �
1
2
δ{ }

T
e Kb e δ{ }e, (8)

where δ{ }e is the displacement vector of the element node,
and the elastic boundary stiffness matrix Kb e can be
expressed as follows:
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Figure 2: Locally heated laminated plate with elastic boundary
subjected to local thermal load.
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where [Nw] is the element shape function.
.e elastic boundary matrix of the composite laminated

plate can be expressed as follows:
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2.3. Vibration Eigenvalue Problem. When the composite
laminated plate is in the critical buckling state corresponding
to the neutral equilibrium condition, the second derivative
of the total potential energy is set to zero; that is, the fol-
lowing buckling eigenvalue problem is obtained [2]:

[K] + λ Kσ ( [U] � 0, (11)

where [K] is the global stiffness matrix, namely, [K] � [Ks] +

[Kb] and [Ks] is the structural stiffness matrix. For thermal
buckling, the product of λ and the initial estimate ΔT are the
critical buckling temperature. at which the plate buckles due
to thermal stresses. [U] represents the generalized displace-
ment vector of the composite laminated plate.

.e vibration eigenvalue problem of the laminated plate
subjected to local thermal loading and the thermal load can
be expressed as follows [15]:

[K] + λKσ  − ω2
[M] [U] � 0, (12)

where [M] is the mass matrix of the composite laminated
plate and ω represents the vibration frequency.

3. Numerical Results and Discussion

A schematic diagram of the composite laminated plate
subjected to local thermal loading and the coordinate system
is shown in Figure 2. .e composite laminated plate is made
of carbon/epoxy with the following material and geometric
properties (unless otherwise stated): the physical material
parameters and structural dimensions of the laminated plate
are as follows: density ρ � 1520 kg/m3, E1 � 133.86Gpa,
E2 � 7.706Gpa, G12 � 4.302Gpa, ]12 � 0.301, α1 � 0.32E

− 6 °C− 1, α2 � 25.89E − 6 °C− 1, and α3 � 0K− 1, the layer of
alternately composite laminated plate is [0/90/0
/90/90/0/90/0], the length, width, and thickness of the
laminated plate are represented by a, b, and t, the size of the
heated area is in the form of a0 and b0, and the distance
between the centre of heated area and the border of the
laminated plates is, respectively, denoted by d1 and d2. .e
boundary support stiffness and boundary rotational stiffness
are unchanged along the boundary of the composite

laminated plate in the paper; in other words, all the
boundary support stiffnesses are denoted by kt, and the
boundary rotational stiffness can be denoted as Kr.

3.1. Model Validation. To verify the accuracy of the model,
the natural frequencies of the orthotropic plate subjected to
thermal loading are calculated and compared with the lit-
erature. .e geometric dimensions and physical parameters
are as follows: a � 1m, b � 1.5m, ρ � 2100 kg/m3,
t � 0.001m, E1 � 120Gpa, E2 � 120Gpa, G12 � 44.4Gpa,
]12 � 0.25, α1 � 4E − 8K− 1, α2 � 4e − 8K− 1, and α3 � 0K− 1;
the initial temperature is T0 � 293.15K− 1; the grid is
48 × 48; and the natural frequencies of orthotropic plates
with three groups of boundary conditions are shown in
Tables 1 and 2 (s represents simply supported and c rep-
resents rigidly fixed). .e computed result is in good
agreement with results in the literature.

Next, the critical temperature of the composite lami-
nated plate is verified. .e geometrical dimensions and the
physical parameters of the composite laminated plate are
shown as follows: a � 0.6m, b � 0.4m, ρ � 1570 kg/m3,
t � 0.005m, E1 � 132Gpa, E2 � 10.3Gpa, G12 � 6.5Gpa,
G13 � 6.5Gpa, G23 � 3.91Gpa, ]12 � 0.3, α1 � 1.2e − 6/°C,
α2 � 2.4e − 5/°C, and α3 � 0K− 1, and the layer of alternately
laminate is [0/90/90/0]. .e critical temperature of the
laminated plate with rigid fixed boundary condition is
shown in Table 3, and the numerical results are in good
agreement with the results in the literature.

.e next step is to calculate the natural frequencies of
the laminated plate. .e geometrical size of the plate is a �

0.15m and b � 0.15m, and the boundary condition is
CFFF; that is, one side is rigidly fixed and the other side is a
free boundary. Material I is glass/epoxy resin, the density of
the laminated plate is ρ � 1420.05 kg/m3, the thickness of
the laminated plate is t � 0.002m, and the layer of the
composite laminated plate is [0/90/0/90/0/90]. .e physical
parameters of the composite laminated plate are as follows:
E1 � 7.205Gpa, E2 � 6.327Gpa, G12 � 2.8Gpa, G13 �

2.8Gpa, G23 � 1.4Gpa, and ]12 � 0.17. Material II is car-
bon/epoxy resin, the density of the composite laminated
plate is ρ � 1388 kg/m3, the thickness of the composite
laminated plate is t � 0.00375m, the layer of the composite
laminated plate is [45/ − 45/ − 45/45], and its physical
parameters are as follows: E1 � 6.469Gpa, E2 � 5.626Gpa,
G12 � 2.05Gpa, G13 � 2.05Gpa, G23 � 1.025Gpa, and
]12 � 0.3. .e natural frequencies of the composite lami-
nated plate are consistent with the results in references, as
shown in Table 4. .e slight difference between the nu-
merical and experimental results is caused by the limita-
tions of the ideal boundary conditions of the laminated
plate.
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3.2. Factors 6at Influence Critical Temperatures and
Vibration Frequencies. It is necessary to investigate the
determining factor for the buckling failure of composite
laminated plates with elastic boundaries subjected to local
thermal loads..e numerical results of nonuniform in-plane
resultant forces due to thermal load were presented. .e
following values were taken: a � 0.5m, b � 0.5m,
t � 0.00625m, a0 � 0.2m, and b0 � 0.2m. Figure 3 shows
typical cases of the in-plane resultant force distribution for a
composite laminated plate at the buckling temperature. .e
compressive forces in both the x and y directions over the
heated region dominate the occurrence of thermal buckling.
In addition, comparatively small values of in-plane shear
resultant forces Nxy can be found at four corners of the
heated region.

3.2.1. Boundary Conditions. .e size of the composite
laminated plate is a � 1m, b � 1m, and t � a/50, the layer of
composite laminated plate is [0/90/90/0], and the sur-
rounding boundary adopts the same constraint. .e curve
showing the change in critical temperature of the composite
laminated plate with boundary support stiffness and
boundary rotation stiffness varies (free boundary-simply
supported boundary-rigid fixed boundary) and is shown in
Figure 4. .ere are two first-order critical temperatures in
Figure 4. .e figure shows that there are two stages in which
the critical temperature increases sharply, and the influence
of the boundary support stiffness is greater for the second-
order critical temperature than the first-order critical
temperature, i.e., the boundary support stiffness changes
from kt � 1e5 Pa to kt � 1e7 Pa. In the second stage, i.e., the

Table 1: Natural frequencies of the heated orthotropic plate (Hz; T � 303.15K− 1).

Order modal
S − S − C − C S − C − C − C C − C − C − C

Present solution Kai et al. [16] Present solution Kai et al. [16] Present solution Kai et al. [16]
1 6.151 6.100 6.726 6.604 8.915 8.719
2 11.081 11.027 12.594 12.493 13.993 13.776
3 18.469 18.441 18.733 18.683 22.820 22.646
4 19.475 19.421 21.886 21.797 22.825 22.743
5 23.087 23.039 24.023 23.929 27.524 27.352
6 31.047 30.990 32.847 32.730 35.127 34.949
7 31.184 31.087 34.447 34.321 35.704 35.486
8 37.951 37.885 38.120 38.044 44.048 43.938

Table 2: Natural frequencies of the heated orthotropic plate (Hz; T � 313.15K− 1).

Order modal
S − S − C − C S − C − C − C C − C − C − C

Present solution Kai et al. [16] Present solution Kai et al. [16] Present solution Kai et al. [16]
1 5.014 4.933 5.680 5.493 8.118 7.589
2 9.977 9.908 11.592 11.469 13.076 12.801
3 17.445 17.415 17.718 17.662 21.861 21.669
4 18.402 18.343 20.899 20.802 21.945 21.856
5 22.038 21.984 23.000 22.896 26.596 26.408
6 29.986 29.925 31.824 31.700 34.151 33.964
7 30.127 30.026 33.458 33.328 34.738 34.505
8 36.934 36.866 37.104 37.027 43.129 43.016

Table 3: Critical temperature of the heated laminated plate (°C).

Order modal 1 2 3 4 5 6 7 8
Present solution 89.67 156.20 168.41 193.73 287.23 295.45 301.82 314.79
Li et al. [17] 89.88 156.32 168.88 194.04 290.52 297.99 304.77 318.54
Error (%) 0.2 0.08 0.28 0.16 1.13 0.85 0.97 1.17

Table 4: Experimental validations of the natural frequencies of the laminated plate.

Order modal
Materials I Materials II

Numerical solution [18] Trial [18] Present solution Numerical solution [18] Trial [18] Present solution
1 29.431 28 28.892 56.038 62.5 56.223
2 79.319 68 76.345 140.29 152 142.542
3 183.400 164 183.214 340.2 378 343.786
4 236.26 234 235.995 441.53 485 443.468
5 278.97 267 277.567 503.23 561 508.335
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boundary rotational stiffness changes from kr � 1e4N/rad
to kr � 1e8N/rad, the two first-order critical temperatures of
the composite laminated plate increase significantly, and the
increased temperature range of the second stage is larger
than that of the first stage, which indicates that the boundary
rotational stiffness ratio has a greater influence on the critical
temperature of the composite laminated plate.

3.2.2. Heating Position. .e geometric size and physical
parameters of the composite laminated plate are taken as
a � 1m, b � 1m, t � a/100, a0 � 0.4m, and b0 � 0.4m. .e
distance d2 � 0.5b remains unchanged, i.e., only d1 changes
from 0.2a to 0.5a when the heating position is changed. .e
curve of critical temperature vs. heating position varies as
shown in Figure 5. .e critical temperature of the composite
laminated plate increases gradually when the boundary
support stiffness is small (5e4 Pa)..e critical temperature of
the composite laminated plate decreases gradually mainly
because the boundary stiffness of composite laminated plates
is smaller than the stiffness of the laminated plates, and the
boundary of the composite laminated plates is basically
unrestricted. However, the composite laminated plate is not
prone to buckling when there is thermal load near the

boundary, and the stiffness of the boundary support is
greater than 2e5 Pa, as shown in Figure 5..e variation trend
is basically unchanged when the stiffness of the boundary
support reaches a certain value. As the stiffness of the
boundary support is infinite and the rotational stiffness of
the boundary increases gradually, the difference in
the critical temperature of the composite laminated
plate increases when the heating position is at the boundary
(d1 � 0.2a) and the heating position is in the middle of the
composite laminated plate (d1 � 0.5a), as shown in Figure 6.
.e boundary stiffness has an important influence on the
position of the minimum temperature required for buckling
locally heated composite laminates; that is, the position of
the minimum critical temperature is closer to the boundary
when the boundary stiffness is small, while the position of
the minimum critical temperature is at the midpoint, the
boundary stiffness is large. In other words, the influence of
boundary stiffness on the minimum critical temperature of
laminates mainly depends on the relative stiffness of the
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Figure 3: .e variation over the plate of the in-plane resultant forces (N/m).
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Figure 4: Effects of elastic boundary stiffnesses on the critical
temperatures of composite laminated plates.
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boundary and the plates. For example, when the boundary
support stiffness is small, that is, the relative stiffness be-
tween the boundary and the laminate is small, the laminate is
more prone to buckling when the local thermal load is near
the boundary.

3.2.3. Heated Area. .e curve of critical temperature vs.
heating area of the laminated plate structure is shown in
Figure 7 where d1 � 0.5a, d2 � 0.5b, kt � 1e7 Pa, and
Kr � 1e6N/rad. .e critical temperature of the composite
laminated plate is large when the heated area is small, and it
decreases rapidly when the critical area gradually increases.
.e critical temperature decreases slowly when the heated
area exceeds approximately 10% of the total area of the
composite laminated plate. .erefore, the thermal buckling
of locally heated composite laminated plates is generally not
checked in practical applications, and thermal buckling
calculations are necessary only when the heated area is large
and the thermal load is high.

3.3. Vibration Frequencies of a Composite Laminated Plate
Subjected to Local 6ermal Loading. Assuming size of the
laminated plate is a � 1m, b � 1m, and t � a/100m, the
thermal load is set as the critical temperature when the
heating area is the whole laminated plate, so the fundamental
frequency of the composite laminated plate is equal to 0Hz
when the heated area is equal to the laminated plate area..e
curve of the fundamental frequency of the composite
laminated plate vs. heating area for boundary conditions is
shown in Figure 8. .e fundamental frequency of the
laminated plate decreases with increase in heated area. .e
effect of the heating area on the fundamental frequency of
the composite laminated plate becomes greater when the

boundary constraint is strengthened. For example, when
kt � 1e5 Pa and Kr � 0N/rad and the heating area increases
from 10% to 25%, the fundamental frequency of the com-
posite laminated plate decreases by 8%. When kt � 1e12 Pa
and Kr � 1e12N/rad and the heating area increases from
10% to 25%, the fundamental frequency of the composite
laminated plate decreases by 15%. In addition, the two stages
of the sharp increase in fundamental frequency have nothing
to do with the heated area but are related to the boundary
conditions.

Assuming size of the laminated plate is a � 0.5m, b �

0.5m and t � a/80m. When a0 � 0.4a and b0 � 0.4b, the
heating area is 16% of the entire area of the composite
laminated plate, and the thermal load is the minimum
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Figure 6: Critical temperatures of composite laminated plates with
different heating positions.
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Figure 7: Critical temperatures of composite laminated plates with
different heating areas.
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Figure 8: Fundamental frequencies of composite laminated plates
with different heating areas.
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critical temperature of the laminated plate structure when
the heating position changes. .e curves of the frequency
change of the composite laminated plate at different heating
positions are shown in Figure 9. As shown in the figure, the
first-order frequency of the composite laminated plate is
large when the boundary supports stiffness kt � 1e5 Pa and
Kr � 0N/rad, and the heating position is close to the centre
of the laminated plates. .e first-order frequency of the
composite laminated plate is the smallest when the heating
position is the centre of the composite laminated plate, and it
is the largest when the stiffness of the boundary support
increases to k � 4e5 Pa and Kr � 0N/rad, and the heating
position is approximately d1 � 0.3a..e thermal stress of the
composite laminated plate caused by the thermal load is
larger due to the enhancement of the boundary stiffness
when the boundary support stiffness continues to increase to
k � 1e15 Pa and Kr � 0N/rad; in this instance, the first-
order frequency of the composite laminated plate is the
smallest when the heating position is at the centre of the
laminated plate. When the boundary support stiffness
continues to increase to k � 1e15 Pa and Kr � 0N/rad, the

boundary condition is equivalent to rigid fixation, and the
difference between the first-order frequencies of the com-
posite laminated plate increases when the heating area is at
the boundary and central position because the boundary
constraint is strengthened and the thermal stress difference
of the composite laminated plate increases.

4. Conclusions

.ere are two stages in which the critical temperature in-
creases sharply during the transition from a free boundary to
a simply supported boundary and a rigid fixed boundary.
.e effect of the boundary rotational stiffness on the critical
temperature of the composite laminated plate is greater than
that of the boundary support stiffness. When the stiffness of
the boundary support is small, the composite laminated
plate is prone to buckling if the local temperature load is near
the boundary. However, buckling easily occurs when the
local temperature load is located at the centre of the laminate
if the boundary support stiffness reaches a certain value. .e
thermal buckling of locally heated laminated plates is
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Figure 9: Vibration frequencies of composite laminated plates with different heating positions: (a) kt � 1e5 Pa and Kr � 0N/rad; (b)
kt � 4e5 Pa and Kr � 0N/rad; (c) kt � 1e15 Pa and Kr � 0N/rad; (d) kt � 1e15 Pa and Kr � 1e15N/rad.
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generally not checked in practical applications. It is nec-
essary to carry out thermal buckling calculations only when
the heated area exceeds approximately 10% of the total
laminate area.

When the stiffness of the boundary support is small, the
frequency of the composite laminated plate increases as the
heating position approaches the centre of the laminated
plate. When the stiffness of the boundary support reaches a
certain value, the fundamental frequency of the laminated
plate decreases as the heating position approaches the centre
of the composite laminated plate. .e stronger the boundary
constraint is, the greater the influence of the heating area is
on the vibration frequencies of the composite laminated
plate.
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