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Received 12 February 2021; Accepted 16 September 2021; Published 14 October 2021

Academic Editor: Miguel de Matos Neves
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Interblade contacts and damping evaluation of the turbine bladed wheel with prestressed dry friction contacts are solved by the 3D
finite element method with the surface-to-surface dry friction contact model. *is makes it possible to model the space relative
motions of contact pairs that occur during blade vibrations. To experimentally validate the model, a physical model of the bladed
wheel with tie-boss couplings was built and tested. HPC computation with a proposed strategy was used to lower the com-
putational time of the nonlinear solution of the wheel resonant attenuation used for damping estimation. Comparison of
experimental and numerical results of damping estimation yields a very good agreement.

1. Introduction

*e trend in the development of power turbines and jet
engines is to continuously improve performance and energy
efficiency. Modern turbines are designed for higher oper-
ating temperatures and flow rates. *e rotating turbine
blades are, apart from the considerable centrifugal forces,
subjects to aerodynamic forces from the flowing medium.
However, the trend of producing ever-longer and ever-
thinner blades leads to lower dynamic stiffness. *erefore,
dynamic stiffness and structural damping must be increased
by additional structural elements, e.g., tie-bosses and shroud
connections, with minimal impact on blade weight and
aerodynamic loss.

Although the turbines and their bladings can be carefully
designed, it is not possible to omit resonant vibration leading
to a high-cycle fatigue risk. *e bladed wheel with sufficient
dissipation of mechanical energy is the protection against
this case. Since the material damping of the metal blades is
very low, it is necessary to increase the damping by addi-
tional construction damping.

*erefore, dry friction damping contacts in tie-bosses,
shrouds, or platforms are introduced into the turbine design.
In literature, study cases either on blade-to-blade contacts in
shrouds or tie-bosses, e.g., Pešek et al. [1], Bachschmid et al.

[2], Gu et al. [3], and Santhosh et al. [4], or on blade-to-disk
contacts in platforms, e.g., in works of Petrov and Evins
[5, 6], Botto et al. [7], Gola and Liu [8], Zucca and Firrone,
[9], and Pesaresi et al. [10], can be found.

In general, the contact problems of elastic bodies, Herz’s
theory is the basis for analytical solutions of contact
problems till today. Initial studies on finite element methods
regarding contact problems appeared in the 1970s (e.g.,
Francavilla [11]). Since then, abundant literature on linear
and nonlinear contact scenarios within the FEM has
appeared (e.g., Wriggers et al. [12] and Simo Laursen [13]).

*e effect of the friction damping on the dynamic be-
havior of the blading is a complex problem of continuum
mechanics as to the dynamic behavior of spatial distorted
blades coupled by disk and time-variant boundary condi-
tions at contacts with friction (Sextro [14]). It leads to
multipoint contacts influenced by production accuracy and
roughness of the contact surfaces and thermomechanical
coupling (Awrejcewicz and Pyr’yev [15]).

To get the time effective solution of bladed wheels with
dynamical dry friction contact, the model can be simplified
by (a) reducing a number of DOFs of the blades and disk or
(b) linearization or another approximation of the contact. To
the group (a) belonged semianalytical solutions with few
degrees of freedom, e.g., Bachschmid et al. [2], Pešek et al.
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[16], Pennacchi et al. [17], and Pešek and Půst [18]. Fur-
thermore, in models, where a number of DOFs are reduced
by model reduction methods, e.g., modal condensation
method, the nonlinearity remains only in contacts (Pešek
et al. [19] and Zeman et al. [20]).

*e methods of the group (b) are represented mainly by
the harmonic balance method (HBM) (Magnus and
Schwingungen [21]) used for the stationary harmonic vi-
bration analysis. *e HBM is very well theoretically de-
veloped and widely used in the bladed disc dynamics with
friction contacts (e.g., Zmitrowicz [22], Pierre et al. [23],
Ferri and Dowell [24], Petrov and Ewins [25, 26], Santliturk
et al. [27], Sanliturk et al. [27], and Suss et al. [28]).

*e simplified approaches of solution are computational
efficient, but they have their drawbacks and limitations due
to the simplifications. Namely, for the HBM method, it is
necessary to know in advance the contact areas and stiffness
used to calculate the contact forces, which requires further
demanding experiments (Schwingshackl [29]) or numerical
simulations (Voldřich et al. [30]).

*e works based on computational contact mechanics
using the 3D finite element technology, e.g., Bachschmidt
et al. [31], Yamashita et al. [32], Pešek et al. [33–35], and
Drozdowski et al. [36], solve this problem as a fully coupled
mechanical system with nonholonomic constrains. Friction
is herein described by the general Coulomb law, where
friction coefficient is a function of a relative velocity and
quality of surfaces. *e contact forces are here computed by,
e.g., penalty, Lagrangian, or augmented Lagrangian
methods. *ese methods are usable for general dynamic
excitation with smooth and nonsmooth contact surfaces.

*is solution is time consuming leading to high per-
formance computations (HPC), but it is straightforward in
the contact description for 3D body motions considering
variable contact states in space and time. And with the fast
increasing performance of computers, i.e., number of cores
and speed of processors, it becomes more and more feasible
to everyone. Due to possible space and time discretization
inaccuracies and numerical errors, an experimental vali-
dation is still needed. Nevertheless, it brings new promising
possibilities for solving the dynamics of bladed wheels in
addition to the simplified models.

*e study deals with our latest research aimed at dry
friction damping in the tie-boss contacts (Pešek et al.
[37–39]), where bladed wheel systems are numerically de-
scribed by the 3D finite element method with dynamical
contact problem. *e works [37–39] present the results of
this solution at its early stage. *is study brings newly
achieved numerical and experimental results of the wheel
dynamics for larger amplitudes. It provides new information
about the method accuracy when blades reach more dan-
gerous amplitudes of vibration.

Smooth surfaces with high contact stiffness are assumed.
Due to the spatially different deformations of the blades
during oscillations, there are spatial, relative movements of
the contact surfaces creating time-varying contact states in
terms of contact area location and contact normal force.

*e decisive factor for the suppression of dangerous
vibrations is the frictional damping after the transition from

microslip contact (stick-slip) motions to macroslips when
slip states prevail. As proven experimentally, with macro-
slips in contacts, the dynamic behavior of the blades ap-
proaches the behavior of the blades with open contacts, and
conversely under microslips, their behavior approaches the
state of blades with bonded contacts. In the second case,
accuracy of results is due to precise computations of elastic
deformations in contacts very sensitive to the contact
modelling (Segalman et al. [40]) and is not herein
considered.

For experimental study of the topic and validation of
the numerical results, the physical model of the bladed disk
with interblade tie-boss contacts has been designed and
manufactured. For numerical analysis, the corresponding
three-dimensional FE model with friction contacts has
been developed in the program ANSYS. *e numerical
model is built from hexahedral structural finite elements.
As for the contacts, the “surface-to-surface” dry friction
contact model is applied, and the augmented Lagrangian
method is used to compute contact normal pressures and
friction stresses. *e friction coupling is modelled by the
isotropic Coulomb’s law.

*is solution leads, however, to high performance
computations (HPC).*erefore, we used the supercomputer
Salomon in the Centre IT4Innovation with 2PFLOPS Rpeak
using 24 processors per 5 nodes. *e long computational
time is caused especially by number of iterations in each
integration time step in a large number of nonlinear cou-
plings (30 contact pairs in our case) between discretized
contact surfaces. Due to nonlinear solution of the dynamics
and therefore long computation time, a computational
strategy for more effective damping evaluation was
proposed.

In the study, first, the physical model of the bladed wheel
and its numerical discretization is described. Second, the
numerical linear model of the bladed wheel is validated by
modal analysis. Furthermore, the description and results of
experimental rotary tests used for comparison with nu-
merical results are presented. We focused on two critical
wheel speeds with different modes of vibration, i.e., modes
with 2 and 6 nodal diameters (ND). Following is the nu-
merical modelling of the contacts and the computational
strategy, and finally, the results of the calculation and
comparison with the rotation experiment are discussed.

1.1. Blade Model Design and FE Discretization. *e model
disk is equipped with 30 prismatic blades. Figure 1 shows the
design of bladed wheel with “tie-boss” couplings and ad-
ditional weights. Each blade is fixed to the disk by the system
of two small finger consoles. *e bottom console is bolted to
the disk, and upper console is bolted to the blade. *e
consoles are bolted together, and their mutual position is set
at 45° angle before they are bolted together. At the tip of the
blades, an additional mass is bolted. Each blade flexurally
oscillates in the plane α0 perpendicular to the plane of the
blade. *e tie-bosses are shoulders, and their ends are in
contact at neighboring blades. *e shoulders of tie-bosses
have the same length, and their placement is at a radius
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0.44m of the wheel. To allow the blade to move freely during
flexural vibrations, the ends of the tie-boss shoulders were
designed to be at a certain angle.

*e definition of cutting planes βA and βB of two contacts
A and B is schematically shown in Figure 2. *e axis ζA and
ζB, respectively, are radials laying in the middle plane of the
wheel, starting from the centre of the wheel and passing
through the middle between the blades. *erefore, they are
12° apart. If we consider the auxiliary planes αA and αB
perpendicular to the plane of the wheel and passing through
the radials ζA and ζB, then by rotating them by an angle of 45°
around the axes ζA and ζB, we obtain the cutting planes βA
and βB. Because of setting up the contact surfaces between
the tie-bosses of the neighboring blades, the tie-bosses
consist of extensible shoulders screwed with left (right side)
and right (left side shoulder) winding into the suspension
bolt that was fixed to the blade by two nuts. By screwing the
bolt onto the nuts, the shoulders extend simultaneously on
both sides.

*e three-dimensional FE model of the bladed wheel
with tie-bosses (Figure 3(a)) was developed in the program
ANSYS 19.3. In total, 89,000 hexahedral eight-node
SOLID85 elements were applied for blade and disk dis-
cretization. *e detail of the mesh at tips of blades BA, BB,
and BC is depicted in Figure 3(b). For evaluation of the
relative motions of the contact surfaces, two contact pairs A
and Bwere chosen having two nodes N167179, N166940 and
N165136, N32610, respectively, that lie in the midst of each
contact surface (Figure 3). To validate linear dynamic be-
havior of the bladed wheel, the contact surfaces of neigh-
boring tie-bosses were in state OPEN. *e wheel was
clamped in the hub for the dynamic calculations. *e global
reference system x, y, z of the model coordinates is shown in
Figure 3(a).

2. Rotary Tests and Results

2.1. Test Rig Set-Up. Experimental tests under rotation were
performed on the rotary test stand of the Institute of
*ermomechanics (Figure 4). *e model wheel is driven by
the three-phase synchronous engine ABB (10 kW) supplied
by a current from the frequency converter ACSM1. *e

scheme of the rig with denotation of components of the
wheel, excitation, and measurement is graphically shown in
Figure 5.

*e rotating bladed wheel is excited by eight electro-
magnets EM1÷EM8 distributed along the circumference of
the wheel. Strain gauge (SG_1) was glued on the blade L1 for
measurement of the blade vibration. *e absolute encoder
ECN1313 (512 lines) was used for the blade position and
angular speed detections. Electromagnets were grouped into
pairs (EM1, EM5), (EM2, EM6), (EM3, EM7), and (EM4,
EM8) formore uniform distribution of the excitations on the
wheel. Algorithms for synchronized electromagnetic exci-
tation with revolution were developed in a Simulink pro-
gram for the real-time control system dSPACE. *e normal
contact force was realized by prestressed rubber band
springs with magnitude 2N.

2.2. Modal Analysis of Full Bladed Disk. To attune the ma-
terial parameters of the numerical model, the experimental
modal analysis of the full bladed disk was performed for
open contacts in a steady nonrotational state. *e system
Pulse, B&K, and MeScope and Vibrant Technology (Table 1)
were used for measurement and analysis. *e experimental
SIMOmodal analysis was evaluated from the axial responses
of all blades on the swept sine excitation of the wheel. *e
eigenfrequencies were classified according to a number of
nodal diameters (ND) of the associated eigenmodes.

As it can be seen from the table, the pairs of very close
eigenfrequencies for each ND eigenmode appear. It corre-
sponds to the split double eigenfrequencies of the eigen-
modes of the rotational bodies with lightly disturbed
symmetry. *e numerical model with open contacts (Fig-
ure 3) was tuned to the experimental results of modal
analysis. *e eigenfrequencies of modes from 2ND up to
6ND of both numerical and experimental modal analyses are
presented in Table 1 and show good agreement. *e
eigenfrequencies of the numerical open contact model
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Figure 2: Scheme of the cutting planes of contact surfaces.
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Figure 1: Bladed wheel model with interblade tie-boss couplings.
Figure 1 is reproduced from [37].
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monotonously increase with a number of ND, and its value
converges to a limit eigenfrequency 50.3Hz for 15ND mode
that is close to the first flexural mode of a clamped blade.

Since the open contact model approximates the
“eigenfrequency” of the wheel at macroslips, the valida-
tion of the numerical modal model is a necessary step
before transient nonlinear calculations with dry friction
contacts.

2.3. Tests under Revolution. To determine the resonant states
of the wheel model under revolution, the Campbell diagrams
were evaluated from the strain gauge signal of one blade
(L1). *e diagram of Figure 6 was ascertained for the bladed
wheel with prestressed contacts in tie-bosses. *is colored
map of amplitude-frequency dependences on revolutions

was performed in the automatized data acquisition system
PULSE, B & K at a slow run-up (60 up to 450 rpm in 250 s) of
the driving engine. *e excitation was realized by eight
electromagnets as mentioned above. *e sloping lines of the
vibration with a revolution frequency and its order, i.e.,
engine order lines, are visible in the diagram. *e engine
order lines were mainly generated by revolution-dependent
excitation by electromagnets and deflections of blades from
imbalances and gravitation forces.

*e highest amplitudes along these lines (red spots) are
achieved at so-called critical speeds when these lines cross
vertical branch of the flexural vibration of the wheel. *e
critical speeds (rpm) can be easily calculated for number of
electromagnetic pulses p � 4x2 � 8 (twice of number of
electromagnet pairs), o order number of pulses, and the
resonant frequency (Hz) of the wheel

(a)

(b) detail
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N32610

BA
BB BC
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x

Figure 3: (a) FE mesh of the bladed model with excitation forces FE. (b) Tip detail of three blades with contact pairs A, B and node numbers
in the midst of the surfaces.

Tie-boss detail 

(a)

(b)

Figure 4: Test rig views. (a) *e bladed wheel with tie-boss interconnections. (b) Tie-boss view (detail) with prestress strings. Figure 4 is
reproduced from [37].
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For evaluation of dry friction damping from a free at-
tenuation, we identified three critical speeds, i.e., 123 (o = 3),

192 (o = 2), and 334 (o) rpm in the Campbell diagram, so
when we know the resonant critical speed, we can calculate
back the resonant frequency by equation (1). For evaluation
of dry friction damping on the vibration amplitude level, we
chose critical speeds at 123 and 334 rpm (Table 2). Since the
eigenfrequencies of the wheel change very slightly (up to
1.5Hz) with the revolution speed, we can identify the mode
of vibration, i.e., number of ND, at this critical speed by
association with the eigenfrequencies of Table 1.

In the rotary test, the electromagnetic excitation pulled
the rotating wheel into the resonance. *en, the excitation
was switched off, and the frequencies and damping were
evaluated from the amplitude envelope of a free attenuation.
*e displacement courses of the blade L1 and excitation
forces of all pairs of electromagnet pulses were recorded.*e
records are plotted for the wheel with open contacts, mode
2ND and 331 rpm, as shown in Figure 7.

*e displacement of the blade L1 is at the top and the
electromagnetic forces FemIJ (see legend) at the bottom.
Indexes I and J designate electromagnets that are inter-
connected in the pairs, and the first index I determines when
the electromagnetic excitation is triggered, e.g., both 15 and
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Figure 5: Schematic of the test rig of the bladed wheel.

Table 1: Results of modal analysis of the bladed wheel for open contacts (FEM, experiment).

Eigenfrequency of flexural vibration of the wheel (Hz)
ND 2 3 4 5 6
FEM 44.32 44.39 46.14 46.20 47.37 47.42 48.10 48.22 48.54 48.58
Experiment 43.51 — 45.43 45.65 46.59 — 47.08 47.67 48.21 48.66
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Figure 6: Campbell diagram: 4 pairs of EMs, 2N prestressed
contacts. Figure 6 is reproduced from [37].
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51 belong to the same pair (EM1 and EM5), but the exci-
tation comes when blade L1 passes EM1 in case 15 and L1
passes EM5 in case 51. It can be seen that electromagnetic
pulses are activated during the resonant vibration period and
are switched off during attenuation period. *e green line
denotes the envelopes of the vibration in the time responses
of blade L1.*e blade response is almost constant during the
resonant period and slowly decreasing during the attenua-
tion period, which proves the low material and aerodynamic
damping at this evolution. *e cases with prestressed
contacts (normal contact force 2N) and different levels of
resonant excitation amplitudes are drawn both for speeds
334 rpm (tests 1–3, Table 2) and 123 rpm (tests 4–6, Table 2)
in Figures 8 and 9, respectively, in the same way as in
Figure 7.

*e fast decrease of the envelope after the resonant
period shows the strong effect of dry friction damping on the
vibration attenuation. *ese results were used for evaluation
of the dry friction damping effect on different excitation
amplitudes and for comparison with numerical results too.

2.4. 3D FE Model with Surface-to-Surface Contacts.
Topology of 3D FE model discretization of the wheel is
described in the previous chapter. Contacts between the
blade were modelled by a “surface-to-surface” method using

a pair of contact surface elements TARGET170 and
CONTACT174 placed against each other on contact lateral
ends of the tie-boss shoulders making 30 contact pairs in the
wheel. To detect contact points, the “pinball” search algo-
rithm was used. *e augmented Lagrangian method was
used to compute contact normal pressures and frictional
stresses. Contact surface behavior is modelled as standard
unilateral contact, i.e., the normal pressure equals to zero if
separation occurs.*e friction coupling was modelled by the
isotropic Coulomb’s law. If the friction stress τ does not
exceed the limit friction stress τ < τlim in the contact surface,
where τlim � μsp (μs is a static friction coefficient and p is the
normal pressure), then the contact is in a state of “sticking.”
In this state, there is zero sliding between the contact sur-
faces, and only elastic deformations xt occur. *e contact
stiffness kt is automatically calculated according to the local
stiffness of the contact areas by the program. *is stiffness
estimation was a good fit for our study case, i.e., macroslip
movements and smooth surfaces of contacts, since it was not
necessary to update its value to improve agreement with
experiments.

After the friction stress exceeds the limit by the
equivalent friction stress, “sliding” of contact surfaces
appears. *e size and direction of this sliding are evaluated
by the sliding rule using a so-called potential of friction
flow.

Table 2: Parameters of rotary tests for dry friction damping.

No. p pairs of EM Max. displacement (mm) n (rpm) o order no. fR (Hz) ND
1

8

0.6
334 1 44.53 22 0.9

3 1.2
4 0.5

123 3 49.20 65 0.7
6 1

1

0

-1di
sp

la
ce

m
en

t [
m

m
]

30

20

10

0

-10

fo
rc

e [
N

]

11 11.5 12 12.5 13 13.5 14 14.5 15
time [s]

11 11.5 12 12.5 13 13.5 14 14.5 15
time [s]

resonant period attenuation period

Fem15,Fem51

Fem37,Fem73
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Figure 8: Continued.
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Figure 8: Vibration attenuation: mode 2ND, 334 rpm contact prestress 2N. (a) Test no. 3. (b) Test no. 2. (c) Test no. 1.
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Figure 9: Continued.
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For a description of the friction coefficient μ, the fol-
lowing dependence on relative velocity vrel is considered:

μ � μd 1 + FACT − 1)e
−DC]rel( )  , (2)

where FACT� μs/μd, μd represent the dynamic friction coef-
ficients, andDC represents the decay coefficient. Values μs � 0.4,
μd � 0.2, and DC�4 were used for the computation of the
dynamics of the wheel, as shown in Figure 10.

*e prestress in contacts was modelled by contact sur-
face offset 1e – 5m with a resulting normal contact force of
2.4N. Setting of the boundary and initial condition for
transient analysis of the wheel is described in the next
chapter.

A full solver for the unsymmetrical task solved the
transient responses with the Newmark integration method
and time step 5e− 6 s. *e Newmark parameter c � 0.5 was
set for numeric stabilization reasons. *e damping ratio
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Figure 9: Vibration attenuation: mode 6ND, 123 rpm contact prestress 2N. (a) Test no. 6. (b) Test no. 5. (c) Test no. 4.
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0.1% was imposed as the steel material and other con-
struction damping.

3. HPC Computational Strategy

Due to long computation time of nonlinear transient solution
of wheel response, we had to deal with a computational strategy
for damping evaluation. To eliminate the long resonant run-up
to steady state before a free attenuation as performed at ex-
periments, the resonant state was defined directly by the input
initial conditions, i.e., the displacements of wheel were set as a
chosen eigenmode with zero velocities. *e term “free” means
that the dynamic response for damping evaluation deals with
an unforced vibration attenuation.

*e applied computational strategy can be divided into
three steps.

(1) Modal analysis of the wheel with open contacts for
identification of modal vectors. Creation of the exci-
tation force vector from the chosen modal vector
according to required number of nodal diameters (ND).
*e forces act in preselected nodes. It provides affinity
of the excitation vector to the chosen eigenmode.

(2) Before the transient solution of free attenuation from
the prescribed initial displacements, we have to
achieve a static solution of the wheel deformation
under the excitation vector ascertained in step 1.

(3) Transient solution of vibration attenuation from
initial displacements achieved in step 2. External
forces and velocities are set to zero.

*e integration period 0.1 s (corresponds to 20000 in-
tegration steps) of the vibration attenuation by ANSYS
parallel computing required about 40000 core hours of
computational resources of the supercomputer Salomon. If
the resonant run-up was included, the task requirement
would be multiple.

3.1. Numerical Results. Due to HPC time demanding
computations of the transient responses of the wheel, we
aimed at study cases for which experimental data were

available and could be directly compared with the experi-
ment. Namely, we dealt with the two resonant attenuations
for 2ND and 6ND modes of vibration.

*e 2ND and 6ND modes with open contacts were
precomputed for creation of the excitation vector. From the
distribution of displacements of the modal vector, the af-
finity force vectors Fx, Fy, and Fz denoted by red vectors in
Figures 11(a) and 12(a), respectively, in selected nodes of the
wheel were added. For our case, the force vectors were
specified at two nodes of the tie-boss prism of each blade
around the circumference.*e total static displacements (m)
of the wheel computed for the 2ND, 6ND, and their modal
force distributions are shown in Figures 11(b) and 12(b),
respectively. *e ascertained deformation modes were used
as initial displacement conditions for the next transient
analysis.

Since the attenuation is monotonic and the mode of
vibration holds on during all calculation periods, the re-
sponse of the wheel is presented here as time characteristics
of displacements of selected nodes of target-contact pairs of
the contact A (Figures 13(a), 13(b), 14(a), and 14(b)) and the
contact B (Figures 13(c), 13(d), 14(c), and 14(d)) denoted in
Figure 3(b). Amplitude envelopes are plotted in red (upper
envelope) and green (bottom envelope) for displacements of
node N165136. One can see almost linear decrease of the
amplitudes typical for dry friction damping modelled by
Coulomb’s law. To show the complex relative motion of the
contact surfaces during vibration by 2ND and 6ND modes,
trajectories of blade motions at the same contact-target pair
nodes as before are shown in Figures 15 and 16, respectively.
*e trajectories correspond to one vibration period defined
by blue frames in Figures 13 and 14. *e graph shows that
there is nonparallel relative motion of the contact surfaces
that causes variable contact states as to the localization of
contact areas and value of contact normal stresses during
vibration. As to the localization of contact areas, very often
edge contacts arise as shown in a detail of three blades for
one selected integration time, i.e., 0.096745 s for 2ND mode
(Figure 17) and 0.035995 s for 6ND mode (Figure 18). *e
contact state picture shows which areas are in a sliding
contact (sliding) and which are contact open (near contact
state).

3.2. Comparison with Experiment. To compare the numer-
ical results with the experimental data, we inserted all results
into the aggregate graph of amplitude attenuations (Fig-
ure 19). *e envelopes corresponding to resonant attenu-
ation of the 2ND mode evaluated from experiment is
denoted by light blue and 6ND by violet.*ere are three tests
(tests 1–3) distinguished by the amplitude level of the res-
onant attenuation for each mode. *e numerical FE enve-
lopes are denoted by blue and red lines for 2ND and 6ND
modes (upper envelope from Figure 14(c)), respectively. In
case of 2 ND, there were two separate tasks with (A) higher
(upper envelope from Figure 13(c)) and (B) lower initial
amplitudes (Pešek et al. [39]), and therefore, the black line is
interrupted. For a better comparison with the experimental
data, they were shifted in time and pinned to experimental
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Figure 10: Dependence of friction coefficient on the relative ve-
locity. Figure 10 is reproduced from [37].
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Figure 11: (a) Distribution of modal forces around the wheel (red vector). (b) Contourmaps of initial displacements (m) of the wheel—2ND
mode.
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Figure 12: (a) Distribution of modal forces around the wheel (red vector). (b) Contourmaps of initial displacements (m) of the wheel—6ND
mode.
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Figure 13: Continued.
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Figure 13: Time characteristics of displacements of blades BA, BB, and BC in nodes of target-contact pairs: (a)-(b) contact (A); (c)-(d)
contact (B). Amplitude envelopes are denoted by red and green lines—2 ND mode.
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Figure 14: Time characteristics of displacements of blades BA, BB, and BC in nodes of target-contact pairs: (a)-(b) contact (A); (c)-(d)
contact (B). Amplitude envelopes are denoted by red and green lines—6ND mode.
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data and do not start from time zero. Marks on the lines
denote the peaks of the amplitude of harmonic attenuation.

*e graph shows that the numerical results match very
well to the experimental data in the range of computed
displacements (up to 0.5mm) of the blades. *e higher
slope of 6ND than 2D envelopes indicates that a higher
damping effect can be expected on the mode with a higher
number of ND at comparable absolute displacements due
to higher relative motions in contacts. *e damping ratios

evaluated from logarithmic decrement of the FEM enve-
lopes yields 1.2% for 2ND and 2.2% for 6ND. Experimental
data show more pronounced dependence of amplitude
decay on higher absolute amplitudes (above 0.5mm). It
shows a slightly higher nonlinear effect at friction contacts.
It may be caused by, e.g., different characters of friction
coefficient at higher relative velocities or more nonlinear
behavior in contact of the experimental model due to
production inaccuracies.
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Figure 15: Trajectories of blade motions at contact-target pair nodes in the middle of contact surfaces—2ND mode.
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Figure 16: Trajectories of blade motions at contact-target pair nodes in the middle of contact surfaces—6ND mode.
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4. Conclusion

In the study, dry friction interblade damping of the bladed
disk was solved by the three-dimensional FE model with the
surface-to-surface dry friction contact model. It enabled to
model time and space (spot and edge contacts) variant

contact states and analyze the dry friction effect in such
geometrically complex structures as the bladed disk with
interblade contacts. *e damping study aimed at the case
when sliding states prevail in the contact (macroslip motion)
which can occur at larger blade displacements.*is solution,
however, due to nonlinear solution of the dynamics, leads to
time-consuming computations.*anks to high performance
computation (HPC) facilities; these tasks are, nowadays,
computationally more feasible. Our computations were
performed using 24 processors per 5 nodes on the super-
computer Salomon in the Centre IT4Innovation with
2PFLOPS Rpeak. Due to nonlinear solution of the dynamics
and therefore long computation times, a computational
strategy for more effective damping evaluation was pro-
posed. Using our computational strategy for damping
evaluation, i.e., the damping effect is evaluated from the
solution of free attenuation at predefined initial conditions;
the net computational time of the 6ND mode case was
lowered to 7 days.

To compare and validate numerical results experimen-
tally, the physical model of the disk with interblade tie-boss’s
contacts was built and tested on the rig under revolution. It
was shown that the numerical results match very well to the
experimental data in the range of computed displacements
and modes of vibration of the blades.

*e study yields very valuable results and shows that the
proposed numerical 3D modelling of the bladed disk with
dynamical surface to surface contacts is perspective for
assessment of damping behavior of the bladed wheels when
adhesion in contacts is exceeded and contacts get into
macroslip relative motion. It could help to design more
effective interblade damping couplings, such as their
placement, mass and stiffness distribution, and tilting of
contact areas, with respect to the danger excitation of the
wheel vibration modes.

Data Availability

*e data or information used for the study were generated
from the cited literature or our own resources. It is described
herein how data were obtained. More information can be
gained directly upon request to the authors. As to appli-
cability, the study yields very valuable results and shows that
proposed numerical 3D modelling of the bladed disk with
dynamical surface-to-surface contacts is perspective for
assessment of damping behavior of the bladed wheels. It
could help to design more effective interblade damping
couplings with respect to the danger excitation of the wheel
vibration mode.
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Figure 17: Detail of contact statuses (near contact and sliding) at
tie-boss couplings (detail) at 0.096745 s—2ND mode.

Figure 18: Detail of contact statuses (near contact and sliding) at
tie-boss couplings 0.035995 s—6ND mode.
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effect and dry-friction damping of bladed wheel model with
“tie-boss” couplings - numerical and experimental investi-
gation,” Book chapter of Mechanisms and Machine Science,
vol. 62, pp. 148–162, 2019.
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