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Abstract. 
The paper focuses on the failure process and mechanism of the concrete gravity dam considering different nonlinear models under strong earthquakes. By taking a typical monolith of a concrete gravity dam as a case study, a comparative analysis of the failure process and mechanism of the dam considering the plastic damage model and the dynamic contact model, respectively, is performed using the seismic overload method. Moreover, the ultimate seismic capacity of the dam is evaluated for both of the nonlinear models. It is found that the ultimate seismic capacity of the dam is slightly different, but the failure process has significant distinctions in each model. And, the damage model is recommended when the conditions permit.

1. Introduction
Seismic safety of high concrete dams is extremely important. Once a reservoir dam holding hundreds of millions of tons of lake water fails, it will cause unimaginable catastrophic consequences [1]. To ensure the seismic safety of dams, it is necessary to study the seismic response analysis and failure mechanism of high dams in the strong earthquake area further.
The damage, cracking, or even collapse of dams could happen leading to the stress redistribution when the stress exceeds the allowable strength under strong earthquakes. Therefore, the assumption of linear behavior is no longer applicable, and the nonlinear situation of the material should be considered to conform to the actual situation better [2]. The Standard for Seismic Design of Hydraulic Structures [3] also stipulates that, for gravity dams of a seismic fortification of class A with complex structures or complex geological conditions, the nonlinear influence of materials should be considered in the finite element analysis. In view that the concrete material is a kind of quasi-brittle material, the tensile damage occurs before the compressive damage generally. Therefore, the tensile damage of dam concrete is the major concern ignoring the impact of compression damage in the nonlinear seismic analysis [4]. However, for high concrete dams in the strong earthquake area, the upstream water pressure is already huge. Once subjected to strong earthquakes, the static and dynamic comprehensive compressive stress of the dam at the dam toe often exceed the compressive strength of the dam concrete causing compression damage. Thus, it is necessary to study and demonstrate the influence of concrete compression damage on the damage process, mechanism, and ultimate seismic capacity of the dams.
Besides, the tensile strength and shear strength of the RCC gravity dam with the rolled surface are usually lower than that of normal concrete, which may lead to the decrease of stability and safety of the dam [5]. The Code for Seismic Design of Hydraulic Structures [6] also stipulates that the stability of the rolled layer should be checked for RCC gravity dams. Moreover, according to the existing research studies, such as Koyna gravity dam [7], Xinfengjiang dam [8], and Sefid Rud dam [9], the static and dynamic synthesis maximum principal stress of the dam head are relatively large [10]. It can be concluded that the dam head is a weak part of gravity dams, and it is easy to form macrocracks in the upstream and downstream under the strong earthquakes [11]. Although no overall instability occurs under strong earthquakes, penetrating cracks in the upstream and downstream at the head of the dam appear [12]. Therefore, the influence of weak layers and parts of the dams should be considered in the seismic analysis.
At present, a more commonly used model for simulating material nonlinearity is the plastic damage model proposed by Lubliner et al. [13] and improved and developed by Lee and Fenves [14, 15]. The contact model can be used for gravity dams with deep sliding problems and weak parts with a local cracking inside the dam and the dam-foundation interface that may crack and slip during strong earthquakes [16]. Based on the existing research studies, the concrete plastic damage model [17, 18] and the dynamic contact model [19, 20] are used for seismic analysis of a typical nonoverflow monolith of a gravity dam in this paper, respectively. The impact of tensile and compressive damage on the seismic damage process and failure mechanism of the dam under strong earthquakes is analysed and discussed in detail. Moreover, the ultimate seismic capacity of the concrete dam for two models is compared and analyzed, which provides a reference for the engineering application.
2. Plastic Damage Model and Dynamic Contact Model
2.1. Plastic Damage Model
The concrete plastic damage model [21, 22] and both the compression and tensile damage are considered in this paper. The model uses the yield criterion in plastic mechanics to judge whether the concrete is in the plastic state. If it enters the damaged state, the flow rule is used to evaluate the plastic strain (residual deformation), and the stiffness degradation of the material is calculated according to the damage evolution curve.
2.1.1. Yield Function
When the stress is inside the yield surface, the concrete material is in an elastic state. When the stress is on the yield surface, the concrete material begins to enter the plastic state. The yield function can be expressed as follows:withwhere  is the effective stress tensor,  and  are dimensionless material constants,  is the effective stress deviator, defined as ,  is the second-order tensor,  is the effective hydrostatic pressure,  is the Mises equivalent effective stress,  is the maximum principal effective stress,  is the effective compressive cohesion stress,  is the effective tensile cohesion stress, and  and  are the tensile and compressive equivalent plastic strain; the typical experimental values of the ratio  for concrete are in the range from 1.10 to 1.16; yielding values of  are between 0.08 and 0.12, where  and .
2.1.2. Flow Rule
The plastic damage model assumes the nonassociated potential flow:where  is the plastic strain and  is the plastic flow factor.
The flow potential  is chosen for the Drucker–Prager hyperbolic function:where  is the dilation angle measured in the  plane at high confining pressure,  is a parameter, referred to as the eccentricity, and  is the uniaxial tensile stress at failure. This paper refers to the value of parameters in the concrete gravity dam calculation example given in Reference [23], taking  and .
2.1.3. Damage and Stiffness Degradation
When the concrete is subjected to the uniaxial tension and uniaxial compression, the plastic strain can be expressed aswhere  and  are the tensile damage factor and compression damage factor,  is the initial (undamaged) modulus of the material,  and  are the tensile stress and compressive stress corresponding to the total strain,  is the cracking strain, and  is the inelastic strain.
The stress-strain relations under uniaxial tension and compression loading are, respectively,
Under the uniaxial cyclic loading conditions, the stiffness degradation mechanisms of the material can be expressed aswhere  is the elastic modulus of the material,  is the stiffness degradation variable,  and  are functions of the stress state that are introduced to model stiffness recovery effects associated with stress reversals, and the weight factors  and , which are assumed to be material properties, control the recovery of the tensile and compressive stiffness upon load reversal; in this paper,  and .
Under the action of multiaxial cyclic loading, the elastic stiffness degradation is assumed to be isotropic, which can be expressed by a single scalar variable . The stress-strain relation of the viscoplastic model is given aswhere  is the initial (undamaged) elastic stiffness of the material,  is the total strain, and  is the plastic part of the strain.
The equivalent plastic strain rates are evaluated according to the expressions:where  and  are, respectively, the maximum and minimum eigenvalues of the plastic strain rate tensor  and  is a stress weight factor that is equal to one if all principal stress  and are positive and equal to zero if they are negative. The Macauley bracket  is defined by . Under uniaxial conditions, since  in tension,  in compression.
2.2. Dynamic Contact Model
In the dynamic contact model, the contact problem established by adding a supplementary equation constructed by the contact constraints to the dynamic equation is solved in the form of point-to-point contact. The explicit integration method of the central differential method combined with the Newmark constant average acceleration method is adopted, and the detailed procedures are shown in Reference [24, 25]. The displacement expression of th DOF of node  can be expressed as follows:where  and  are the components of  and  in the j direction at time t, respectively,  and  are the stiffness matrix and damping matrix of the structure, , , and  are the external load, displacement, and velocity column vectors, the subscript  represents the component of the vector in the -DOF direction of node ,  is the concentrated mass on the node , and  is the time step.
For the convenience of derivation, formula (13) is simplified into three parts:
To get the normal contact force, taking the contact point pairs  and  for instance, the normal contact condition including the initial tensile strength should meet the geometric condition of normal mutual inviolability:where  is the normal vector of the contact surface at point ; let  by formulas (16) and (19), and  can be obtained:
When the normal contact between  and  occurs, the tangential friction force should be calculated; let , and the tangential contact force can be obtained as follows:
When the static friction force exceeds  ( is the static friction coefficient), it means that  and  are in the dynamic friction state:
From the above calculation, , , and  can be obtained, and finally,  can be obtained.
3. Model Establishment
3.1. Finite Element Model
Taking a typical nonoverflow monolith of a concrete dam as a case study, the dam bottom and crest elevation are 1970 m and 2155 m, respectively. The elevation of the upstream breakpoint is 2040 m, the width of the dam crest is 16 m, and the width of the dam bottom is 165.5 m. The geometric dam section and concrete partition are shown in Figure 1. The finite element model of the dam is shown in Figure 2. The dam foundation system is discretized into 14592 nodes and 14320 elements. The element size for the dam body is about 2 m. Material properties of the dam concrete and foundation rock are described in Table 1 [26].


	
		
	
	
		
		
		
		
		
		
		
		
	
	
		
		
		
		
		
		
		
		
	
	
		
		
		
		
		
		
		
		
	
	
		
		
		
		
		
		
		
		
	
	
		
		
		
		
		
		
		
		
	
	
		
		
		
		
		
		
		
		
	
	
		
		
		
		
		
		
		
		
	
	
		
		
	
	
		
		
		
	
	
		
		
		
	
	
		
		
	
	
		
	
	
		
	
	
		
		
		
	
	
		
		
		
	
	
		
		
		
		
		
	
	
		
		
		
		
		
		
	
	
		
		
		
		
	
	
		
		
	
	
		
	
	
		
		
	
	
		
		
		
		
		
		
		
		
	
	
		
		
		
		
		
	

Figure 1: The geometric dam section and concrete partition (unit: m).




	
		
	

Figure 2: Finite element model of the dam.


Table 1: Material properties of dam concrete and foundation rock.
	

	Number	Concrete strength grade	The standard value of dynamic tensile strength (MPa)	Dynamic elastic modulus (GPa)	Poisson’s ratio	Density 
	

			2.00	42.00	0.167	2448.98
			2.00	42.00	0.167	2448.98
			2.00	42.00	0.167	2448.98
			1.60	38.25	0.167	2448.98
			2.00	42.00	0.167	2448.98
			1.60	38.25	0.167	2448.98
	Rock	—	—	10.50	0.230	2777.00
	



3.2. Static and Dynamic Loads
The static loads mainly include the self-weight, upstream and downstream hydrostatic pressure, and silting pressure. Westergaard’s added mass without considering the compressibility of the reservoir water is used to consider the hydrodynamic interaction between the dam and the reservoir. The normal upstream water level is 2150 m, and the corresponding downstream water level is 2019.25 m. The elevation of silt is 2023.7 m, and its floating bulk density is 8  with the friction angle of 12°. The horizontal and vertical peak ground accelerations of the design earthquake are both 0.4005 g, and the time histories of normalized acceleration are shown in Figure 3.
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(b)
Figure 3: Time histories of normalized acceleration. (a) Vertical. (b) Along the river.


4. Seismic Damage Analysis considering Tension and Compression Damage
4.1. Plastic Damage Model
Figures 4–7 show the damage evolution curve used in this paper, which is obtained by the concrete material tests. According to the CDP model parameters in Reference [27], the compression damage evolution is converted and adjusted appropriately by formula (6).
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(b)
Figure 4: Dynamic tensile damage evolution curve of  concrete. (a) Tension stiffening. (b) Tension damage.
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(b)
Figure 5: Dynamic tensile damage evolution curve of  concrete. (a) Tension stiffening. (b) Tension damage.
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(b)
Figure 6: Dynamic compressive damage evolution curve of  concrete. (a) Compression hardening. (b) Compression damage.
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(b)
Figure 7: Dynamic compressive damage evolution curve of  concrete. (a) Compression hardening. (b) Compression damage.


4.2. Discussion of the Results
The damage evolution process of the concrete gravity dam is discussed in detail through the earthquake overload analysis [28]. The influence of the compression damage on the ultimate seismic capacity and damage mechanism of the gravity dam is mainly studied.
4.2.1. Damage Rupture Process Only considering the Tension Damage Model
Only the tension damage of the dam concrete is considered, and the earthquake overload analysis is performed with increasing overload coefficients of 1.2, 1.4, 1.52, 1.53, and 2.0. The results are shown in Figure 8. The damage occurs at the dam heel first, and the macrocrack depth with a damage coefficient greater than 0.8 is about 18.5 m under the design earthquake. In view that the bedrock material is considered as linear elasticity, the damage at the dam heel is caused by stress concentration and the strong restraint of the foundation. Therefore, the dam heel damage is not discussed in this study. The damage occurs at the downstream face of the dam head for the overload coefficient of 1.2 and gradually expands to the upstream face with the increasing of the overload coefficient. Penetrating cracks (i.e., when a crack extends completely between the upstream and the downstream faces) appear on the upstream and downstream surfaces for the overload coefficient of 1.53. If the penetrating crack of the dam body is taken as the failure criteria, it is suggested that the ultimate seismic capacity of the concrete dam is 1.52 times the design earthquake.
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(f)
Figure 8: Damage rupture process only considering the tension damage under different earthquake overload coefficients. (a) 1.0. (b) 1.2. (c) 1.4. (d) 1.52. (e) 1.53. (f) 2.0.


Figure 9 shows the number of damaged elements of the dam head under different overload coefficients, and Figures 10–14 show the time histories of tensile damage variables and relative displacements of point pairs i.e., upper and lower relative nodes of an element under different earthquake overload coefficients. According to these results, the damage begins to appear at the time of 6.47 s for the earthquake overload coefficient of 1.2. Meanwhile, relative displacements of the node pairs change rapidly, and the damage gradually increases. For the earthquake overload coefficient of 1.53, the damage of the dam head slope first appears at the time of 6.43 s. Then, the cracking gradually spreads across the upstream surface, and the relative displacements of the node pairs gradually increase simultaneously with the deformation of the new damage element accumulating to the downstream element. The damage of the upstream surface begins to appear at the time of 16.10 s. The maximum tensile strain of the Gauss point of element 3400 is  at the time of 16.11 s, which exceeds the tensile strain corresponding to the ultimate stress. Afterward, the damage expands rapidly with the material entering the softening stage. At the time of 16.16 s, the penetrated cracking through the upstream and downstream is formed. Meanwhile, the relative displacement of the upstream node pairs at the dam head changes rapidly. Moreover, the crack has residual displacement after the earthquake. The damage process will accelerate with the increase of the overload coefficients, and the damage appears and has penetrated the dam head at the time of 3.91 s and 8.18 s, respectively, for the earthquake overload coefficients of 2.0. The relative displacement of the node pairs also has some increase with the expansion of the damage domain.
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(c)
Figure 9: Number of damage elements of the dam head under different overload coefficients. (a) 1.2. (b) 1.53. (c) 2.0.
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(c)
Figure 10: Time histories of relevant variables at the element 3143 for the earthquake overload coefficient of 1.2. (a) Time history of tensile damage variables. (b) The relative horizontal displacement is 0.39 mm after the earthquake. (c) The relative vertical displacement is 0.34 mm after the earthquake.
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(c)
Figure 11: Time histories of relevant variables at the element 3143 for the earthquake overload coefficient of 1.53. (a) Time history of tensile damage variables. (b) The relative horizontal displacement is 3.20 mm after the earthquake. (c) The relative vertical displacement is 4.15 mm after the earthquake.




	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
	
		
	
	
		
		
	
	
		
		
	
	
		
		
	
	
		
		
	
	
		
		
	
	
		
		
		
		
		
		
		
	
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
		
		
	
	
		
		
		
	
	
		
		
		
	
	
		
		
		
	
	
		
		
		
	
	
		
		
		
	
	
		
		
		
	
	
		
		
		
	
	
		
		
		
		
		
		
		
		
		
		
		
		
		
	
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
	
		
	
	
		
		
		
		
		
		
		
		
		
		
		
		
		
	
	
		
		
		
		
		
		
		
		
		
	













(a)


	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
	
		
	
	
		
		
	
	
		
		
	
	
		
		
	
	
		
		
	
	
		
		
	
	
		
		
		
		
		
		
		
	
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
		
		
		
		
		
		
	
	
		
		
		
		
		
		
		
	
	
		
		
		
		
		
		
	
	
		
		
		
		
		
		
	
	
		
		
		
		
		
		
	
	
		
		
		
		
		
		
	
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
	













(b)


	
		
	
	
		
	
	
		
		
	
	
		
		
	
	
		
		
	
	
		
		
	
	
		
		
	
	
		
		
		
		
		
		
		
	
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
		
		
		
		
		
		
	
	
		
		
		
		
		
		
		
	
	
		
		
		
		
		
		
	
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
	
	
		
	
		
	
		
	
		
	
		
	
		













(c)
Figure 12: Time histories of relevant variables at the element 3400 for the earthquake overload coefficient of 1.53. (a) Time history of tensile damage variables. (b) The relative horizontal displacement is 0.28 mm after the earthquake. (c) The relative vertical displacement is 0.14 mm after the earthquake.




	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
	
		
	
	
		
		
	
	
		
		
	
	
		
		
	
	
		
		
	
	
		
		
	
	
		
		
		
		
		
		
		
	
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
		
		
	
	
		
		
		
	