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A hybrid finite-discrete element method (FDEM) is proposed to model rock fracture initiation and propagation during a three-
point bending test under quasistatic and dynamic loading conditions.%ree fracture models have been implemented in the FDEM
to model the transition from continuum to discontinuum through fracture and fragmentation. %e loading rate effect on rock
behaviour has been taken into account by the implementation of the relationship between the static and dynamic rock strengths
derived from dynamic rock fracture experiments.%e Brazilian tensile strength test has beenmodelled to calibrate the FDEM.%e
FDEM can well model the stress and fracture propagation and well show the stress distribution along the vertical diameter of the
disc during the Brazilian tensile strength test. %en, FDEM is implemented to study the rock fracture process during three-point
bending tests under quasistatic and dynamic loading conditions.%e FDEM has well modelled the stress and fracture propagation
and can obtain reasonable fracture toughness. After that, the effects of the loading rate on the rock strength and rock fracture
toughness are discussed, and the mesh size and mesh orientation on the fracture patterns are also discussed. It is concluded that
the FDEM can well model the rock fracture process by the implementation of the three fracture models. %e FDEM can capture
the loading rate effect on rock strength and rock fracture toughness. %e FDEM is a valuable tool for studying the rock behaviour
on the dynamic loading although the proposed method is sensitive to the mesh size and mesh orientation.

1. Introduction

%e rock fracture mechanism plays a significant role in the
field of civil and mining engineering as well as other fields,
such as geothermal, hydraulic, and oil and gas engineering
[1]. It is imperative to study the rock fracture mechanism not
only for improving the efficiency of rock breaking and
structure demolition but also for preventing the collapse of
geo-structures and increasing their stabilities. Many test
techniques are employed to study rock fracture mechanisms,
e.g., uniaxial compressive strength test, Brazilian tensile
strength, notched Brazilian disc test, and three- and four-
point bending tests. %ose test techniques are used to obtain
the general rock properties, e.g., rock strengths and rock
toughness. Besides the experiential method, the numerical
techniques have provided a better way to understand the
rock fracture mechanics [2–7]. Based on the continuous or

discontinuous material hypothesis, the numerical tech-
niques include three main types, i.e., continuum-based
methods, discontinuum-based methods, and hybrid or
combined continuum-discontinuum-based methods. In the
case that the discontinuities of rock-like materials can be
ignored, the continuum-based method can be well used to
solve engineering problems. %ere are many continuum-
based methods available in the literature such as the finite
element method (FEM), finite difference method (FDM),
boundary element method (BEM), scaled boundary finite
element method (SBFEM), and extended finite element
method (XFEM) [8].

However, in some cases, the discontinuities of the rock-
like materials have to be taken into account since the original
existing fractures are comparable to the interest area [9].
Under this scenario, the rock mass is assumed to be the
assemblies of discrete bodies and the discontinuum-based

Hindawi
Shock and Vibration
Volume 2021, Article ID 5566992, 21 pages
https://doi.org/10.1155/2021/5566992

mailto:huaming.an@yahoo.com
https://orcid.org/0000-0003-2254-2276
https://orcid.org/0000-0002-6435-863X
https://orcid.org/0000-0002-5437-4695
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/5566992


method can well deal with the interaction of the discrete
bodies and can well model the material behaviour under
loads. At present, the representative discontinuum-based
methods include the distinct element method (DEM), the
lattice model (LM) method, molecular dynamics (MD), and
discontinuous deformation analysis (DDA). Morris et al.
and Mohammadnejad et al. gave a comprehensive review of
those methods in computational fracture mechanics of rock.
To more realistically model the rock behaviour, many
coupled methods, hybrid/combined methods, and multi-
scale coupled methods have been developed [10]. %e hybrid
methods include the hybrid boundary element method-fi-
nite element method (BEM-FEM), discrete element method-
finite element method (DEM-FEM), and discrete element
method-boundary element method (DEM-BEM) [11].

In this study, a hybrid finite-discrete element method
(FDEM) has been proposed to model the rock fracture
initiation and propagation process during a three-point
bending test under various loading rates. %ree fracture
models, i.e., pure mode-I, pure mode-II, and mixed mode
I-II, are proposed tomodel the transition from continuum to
discontinuum through fracture and fragmentation. A rela-
tionship between the static strength and the dynamic
strength obtained through experimental tests has been
implemented in the FDEM to characterize the loading rate
effect on rock behaviours. %e loading rate effect is con-
sidered through the implementation of a relationship be-
tween the static strength and the dynamic strength for
modelling the dynamic rock fracture process.%e purpose of
this study is to illustrate the abilities of the proposed method
in modelling the transition from continuum to dis-
continuum through fracture and fragmentation and to
demonstrate the capabilities of the proposed method in
capturing the effect of loading rate on rock behaviour.

2. Fundamental Principles of Hybrid Finite-
Discrete Element Method

%e hybrid finite-discrete element method was proposed by
Munjiza [12], and he also developed the Y2D library to
implement the method. Although the Y2D library is a robust
and efficient open source and capable of modelling material
continuum/discontinuum behaviour, it is very difficult for
other researchers to use due to no graphical user interface.
To overcome this shortcoming, Mahabadi et al. [13] de-
veloped the Y-GUI, which is a graphical user interface and
preprocessor for the hybrid FEM/DEM. Y-GUI can be
conveniently used to set up and check models, but it cannot
be used for graphically displaying the analyzed results.
Munjiza et al. [14] proposed the Virtual Geoscience
Workbench (VGW) to simplify the use of Y2D/3D library.
For VGW, the GID or GMESH is used to visually prepare the
numerical models while MAYAVI is employed to graphi-
cally display the calculated results. %us, the users have to
learn a few periphery software applications to prepare the
model and display the modelled results. %e authors
[5, 7, 15–17] proposed Y2D/3D IDE to simply use the Y2D/
3D library and visually display the calculated results. In this
research, the Y2D/3D IDE is used for modelling the rock

failure processes during three-point bending tests under
various loading rates. %e Y2D/3D IDE is implemented by
Liu et al. [15] based on their previous enriched finite element
codes RFPA-RT2D [18] and TunGeo3D [19] and the open-
source combined finite-discrete element libraries Y2D and
Y3D originally developed by Munjiza [12] and Xiang et al.
[20], respectively. %e Y2D/3D IDE can generate the hybrid
FDEM models and set up the initial conditions, physical
properties, contact properties, boundary conditions, fracture
criteria, and explosive charges. It is also capable of tracing
errors visually, displaying the modelled stresses, displace-
ment, velocity, force, damage, fracture, and fragmentation in
real-time graphs.

%e hybrid finite-discrete element method (FDEM) takes
advantage of the continuum-based finite element method
and discontinuum-based discrete element method. %e
FDEM not only can model the damage of the brittle ma-
terials before fractures occur but also can model the in-
teractions of the fractures and fragments. %e transition
from continuum to discontinuum is the key issue for the
proposed method. Munjiza et al. [12] proposed a combined
single and smeared crack model for modelling mode-I
fracture of concrete only. %e authors extend the model for
being able to model three fracture modes, i.e., mode-I,
mode-II, and mixed mode, which is introduced in detail. In
addition, for modelling the dynamic behaviour of rock-like
materials, the loading rate plays a significant role especially
when the rock is experiencing strong dynamic loading, e.g.,
rock blasting. %us, the effect of the loading implemented in
the hybrid finite-discrete element method is also introduced
in this section.

2.1. Governing Equation. %e hybrid finite-discrete element
model can have a single discrete body or a number of
discrete bodies with general shapes and sizes, each of which
is then represented by a single discrete element [15]. Each
discrete body is then discretized into three-node triangular
finite elements. %e central difference explicit time inte-
gration scheme is applied in the hybrid finite-discrete
method to integrate the equations of motion of either the
initially discrete body or the discrete elements formed by the
fracture and fragmentation algorithm. %e generalized
governing equation for the motion of the discrete bodies can
be expressed as follows [12, 21]:

M
z

X
X

zt
2 + C

zX

zt
� F, (1)

where M and C are the discrete body mass and damping
diagonal matrix, respectively, X is the vector of nodal dis-
placements, and F is the node force vector.

%e damping diagonal matrix C can be expressed as
follows, which accounts for the energy dissipation due to the
nonlinear material behaviour [12, 21].

C � μI, (2)

where μ is a constant viscous damping coefficient and I is the
identity matrix.
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2.2.ContactDetectionand Interaction. In the FDEMmodels,
thousands or evenmillions of discrete elements are involved,
and it is time-consuming to process contact interaction
when there is no contact. %us, it is essential to detect those
couples close to each other and eliminate couples of discrete
elements that are far from each other. Contact detection
algorithms in the FDEM are employed to detect close
couples and eliminate those discrete bodies that are im-
possible to contact. %ere are many algorithms available for
automatic contact definition and detection in literature
[12, 22], such as buffer zone, binary tree, no binary search,
space decomposition, and alternating digital tree. After the
couples of discrete bodies are detected, the contact inter-
action algorithms are then employed to enforce the contact
constraint between discrete bodies in contact. In the FDEM
used in this article, the penalty method is implemented to
calculate the contact forces in the tangential and normal
directions for the contacted bodies or elements overlapping
in space. Figure 1 illustrates two discrete bodies overlapping
each other. One is called contactor while the other is called
target. For a penetration of area dA of the contactor into a
target, the infinitesimal contact force can be given as
equation (3). %e total contact force can be obtained by
equation (4).

df � gradφc Pc( 􏼁 − gradφt Pt( 􏼁􏼂 􏼃dA, (3)

fc � 􏽚
S�Et∩ ​ Ec

gradφc Pc( 􏼁 − gradφt Pt( 􏼁( 􏼁dA, (4)

where df is the infinitesimal contact force due to the in-
finitesimal overlap dA. φc and φt are potential functions that
can be expressed as equations (5) and (6) after the target and
contact are discretized into n and m finite element as shown
in Figure 2.

φt � 􏽘
n

i�1
φti, (5)

φc � 􏽘
m

j�1
φcj. (6)

%e total contact force can be expressed as a summation
over the finite elements.

fc � 􏽘

n

i�1
􏽘

m

j�1
􏽚

Et∩ ​ Ec

gradφcj Pc( 􏼁 − gradφti Pt( 􏼁􏼐 􏼑dA. (7)

2.3. Constitutive Rock Fracture Model. A constitutive model
indicates the stress-strain behaviour of rock mass, which has
been incorporated in rock mass behaviour study by nu-
merical modelling. In FDEM modelling, the stress-strain
curve is divided into two parts, i.e., strain-hardening part
and the strain-softening part, as illustrated in Figure 2. %e
strain-hardening part of the stress-strain curve is imple-
mented through the elastoplastic constitutive law, which is
commonly used in continuum methods, such as the finite
element method. %e strain-softening part of the stress-

strain curve indicates the localization of strain, loss of
elasticity of the governing equation, and ill-posed problems.
To deal with this problem, a fracturemodel that describes the
relationship between stress and displacement is imple-
mented in the hybrid finite-discrete element method. %is
enables the hybrid finite-discrete element to model the
transition from continuum to discontinuum through frac-
ture and fragmentation.

2.4. Transition from Continuum to Discontinuum. %e hy-
brid finite-discrete element model can have a single discrete
body or a number of discrete bodies with general shapes and
sizes, each of which is then represented by a single discrete
element [15]. Figure 3 illustrates the numerical models under
various stress conditions, i.e., tensile, shear, and mixed
tensile and shear stress conditions. %e numerical models
are meshed using the three-node finite elements, while four-
node joint elements are embedded among the boundaries of
the finite elements, as illustrated in Figure 3. %ree-node
finite elements are used to analyze the deformation of the
numerical models, while the four-node joint elements are
employed to model the fracture initiation and propagation,
i.e., the transition from continuum to discontinuum.

According to the stress conditions, a fracture could occur
in three modes, i.e., pure mode-I, pure mode-II, and mixed
mode I-II fractures. %e crack initiation and propagation
process, i.e., separating the finite elements, is implemented
through distortion of the four-node joint elements, which
involves bonding stresses. Figure 4 illustrates the relation-
ship between the bonding stress and the opening or sliding
displacement of adjacent finite elements for pure mode-I or
pure mode-II fracture. As illustrated in Figure 3(d), stress at
any point of the finite element edge can be divided into the
normal direction and tangential direction, which results in
the separation of the adjacent finite element surface or the
distortion of the joint element in the normal and tangential
directions which can be expressed as follows:

δ � δnn + δst, (8)

where n and t are the unit vectors in the normal and tan-
gential directions, respectively, of the surface at such a point
and δn and δs are the magnitudes of the components of δ.

%e right part of Figure 4 illustrates the relationship
between the bonding stresses and the displacement of the
adjacent finite elements in the normal direction for tensile
failure, i.e., pure mode-I fracture. As the separation of the
finite element surface δn reaches a critical value δnp deter-
mined by the tensile strength, σt, the tensile failure occurs.
During this period, i.e., 0≤ δn ≤ δnp, the bonding stress in the
normal direction can be given by the following equations:

σn � 2
δn

δnp

−
δn

δnp

􏼠 􏼡

2
⎡⎣ ⎤⎦σt. (9)

As the separation of the finite element surface δn con-
tinue increase, i.e., δnp ≤ δn ≤ δnu, the bonding stress grad-
ually decreases and can be expressed by the following
equation:
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Figure 1: Contact force due to penetration of contactor into target (after Munjiza [12]). (a) Contact force due to penetration. (b) %e target
and contactor discretized into finite elements.
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Figure 2: Typical stress-strain of geomaterials under loading (after Liu et al. [15]). fp is the peak stress, εp is the strain at peak stress, and εu is
the ultimate strain.
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Figure 3: FDEM models under different stress conditions (red line represents edges of joint element). (a) No stress. (b) Under tension
condition. (c) Under shear condition. (d) Under both tension and shear conditions.
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σn � f(D)σt, (10)

where D is a damage variable between 0 and 1 and f(D) is
the damage function described in the mechanical damage
model [18].

At the separation, δn ≥ δnu, the bending stress becomes
zero and the fracture is assumed to propagate. %e mode-I
fracture process is governed by the mode-I fracture energy
release rate GfI, which is equal to the area under the curve of
the bonding stress and opening displacement as shown on
the right side of Figure 4, and can be expressed by the
following equation:

GfI � 􏽚
δnu

δnp

σn δn( 􏼁dδn. (11)

In summary, during the model fracture and propagation
process, the bonding stress in the normal direction can be
expressed using the following equation:

σn �

2
δn

δnp

−
δn

δnp

􏼠 􏼡

2
⎡⎣ ⎤⎦σt, if 0≤ δn ≤ δnp,

f(D)σt, if δnp ≤ δn ≤ δnu,

0, if δn ≥ δnu,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(12)

where all other parameters have the same meaning as those
introduced above.

%e left part of Figure 4 shows the relationship of the
bonding stress and sliding separation of the adjacent finite
elements for the shear failure process, i.e., pure mode-II
fracture. As can be seen in Figure 4, the bonding stress in the
tangential direction, i.e., shear stress, increases with the
increase of the sliding displacement δs. Before the sliding
displacement reaches a critical value δsp described by the

shear strength σc, the shear stress can be calculated
according to the following equation:

τ � 2
δs

δsp
σc. (13)

When the critical value δsp is reached, the fracture occurs.
After that, the bonding stress in the tangential direction de-
creases with the increase of the sliding displacement till a
residual stress δsr according to a mechanical damage model.
%e value can be calculated as follows:

τ � g(D). (14)

After that, bonding stress becomes a pure frictional
resistance defined by Columb’s model and can be expressed
as follows:

τ � σntan ∅f􏼐 􏼑. (15)

%e shear failure process is governed by pure mode-II
fracture energy release rate GfII which can be described by
the area under the curve of the bonding stress and the sliding
displacement and can be expressed as follows:

GfII � 􏽚
δsr

δsp

τ δs( 􏼁 − τr􏼂 􏼃dδs. (16)

In summary, the bonding stress for pure mode-II
fracture can be calculated using the following equation:

τ �

2
δs

δsp
σc, if 0≤ δs ≤ δsp,

g(D), if δsp ≤ δs ≤ δsr,

σntan ∅f􏼐 􏼑, if δs ≥ δsr,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(17)

τ σ

σt

τsr

δsp δnp δnuδsrδsu

τc

Shear

Tension

Compression

GfII
GfI

Figure 4: Relationship between the bonding stress and opening/sliding displacement under tension and shear conditions (failure criteria for
mode-I and mode-II).
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where D is a damage variable between 0 and 1, g(D) denotes
damage functions described in the mechanical damage
model [18], and ∅f is the joint residual friction angle.

Pure mode-I and pure mode-II fractures are rarely
produced. In most cases, a fracture is produced due to the
combination of both the shear and tensile stresses, which
results in mixed mode I-II fracture. For this situation, if
equation (18) is satisfied, the mixed mode I-II fracture oc-
curs. %e fracture energy release rate GfI− II for the mixed
mode I-II equates to the shadow in Figure 5.

δn − δnp

δnu − δnp

􏼠 􏼡

2

+
δs − δsp

δsr − δsp

􏼠 􏼡

2

≥ 1. (18)

2.5. Effect of the Loading Rate on the Dynamic Behaviour of
Rock . %e effect of the loading rate significantly influences
the dynamic rock behaviour.%e dynamic rock strength and
rock fracture toughness are quite different from those under
static loading. In the hybrid finite element method, the-
fracture propagation process is governed by the fracture
energy release rateinstead of rock strength as mentioned in
Section 2.1. However, the relationship between rock fracture
energy release rate and the loading rate is not easy to be
obtained directly. Many experiments have been carried out
to obtain the influence of the loading rate on rock strength
[23–25]. Zhao conducted the uniaxial and triaxial com-
pression, uniaxial tension, and unconfined shear tests on
Bukit Timah granite of Singapore and proposed a semilog
formula:

σcd � Alog
_σcd

_σc

􏼠 􏼡 + σc, (19)

where σcd is the dynamic uniaxial compressive strength
(MPa), _σcd is the dynamic loading rate (MPa/s), _σc is the
quasistatic loading rate (approximately 5 × 10− 2 MPa/s), σc

is the uniaxial compressive strength at the quasistatic
loading rate (MPa), and A is a material parameter, which is
11.9 for the Bukit Timah granite [23].

In the hybrid finite-discrete element method, the dy-
namic fracture energy release rate is assumed to increase
with the increase of loading rate according to equation (19).
%us, the hybrid finite-discrete element method’s modelled
results can reflect the effect of loading rate on dynamic
tensile strength, shear strength, and mode-I and mode-II
fracture energy release rates.

3. Calibration of the FDEM

In this section, the FDEM is employed tomodel the Brazilian
tensile strength (BTS) test. %e modelled results are then
compared with the experiential result to calibrate the pro-
posed method.

Figure 6 illustrates the geometrical model and the nu-
merical model for the BTS test. %e model is built following

the ISRM suggested method [26], i.e., the diameter is 50m.
%e BTS test is simplified as a plane strain problem, and only
the vertical direction is taken into account. As can be seen in
Figure 6(a), the rock sample is placed between two loading
plates, which will move at a constant displacement increment
during the BTS test. Figure 6(b) shows the numerical model
for the BTS test. As can be seen in Figure 6(b), the numerical
model is discretized by triangle finite elements. %e material
properties used for the modelling can be found in Table 1.

Figure 7(a) shows the stress propagation, while
Figure 7(b) illustrates the rock fracture initiation and
propagation. Figure 8 depicts the force-displacement curves
during the test. As the top and bottom loading plates contact
the specimen, the stresses from the top and bottom of the
specimen are produced and propagate towards the center of
the disc as illustrated in (A) in Figure 7(a). As the stresses
from the two loading areas propagate, a relatively uniform
stress distribution along the vertical diameter is formed.
Meanwhile, a tensile crack at the center of the specimen
along the loading diameter is produced, as demonstrated in
(C) in Figure 7(b). During this period, the forces initiated
from the loading plates increase almost linearly and reach
their peaks ((A)–(D) in Figures 8(a) and 8(b)). As the
loading plates continue to move, the crack propagates along
the loading diameter and reaches the two contacts between
the plates and the specimen ((E) in Figure 7(b)). Due to the
strong compressive stress at the contacts, shear cracks are
produced at the top and bottom loading vicinities ((F) and
(G) in Figure 7(b)). During this period, the forces from the
two loading plates drop dramatically as the specimen lost its
bearing loads (D–F in Figures 8(a) and 8(b)).

%e force-displacement curves in Figure 8 indicate a
typical behaviour of brittle rock under compression. %e
curves include a compressive deformation region (AB), a
linear-elastic deformation region (BC), a nonlinear defor-
mation region (CD), a strain-softening deformation region
(DEF), and a residual deformation region (FG). On the basis
of the maximum load PMax at point D, the tensile strength of
the rock specimen can be calculated as follows:

+
2 2

= 1
δn

δn − δnp δs − δsp
δsr − δspδnu − δnp

δnu

δnp
δsp δsu δs

GfI−II

Figure 5: Failure criteria for mixed I-II fracture mode.
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σt1 �
2PMax

πDt
�

2 × 2.8698
3.14 × 0.054 × 1

� 34MPa.

(20)

It can be seen that the modelled dynamic tensile strength
(34MPa) is much higher than the input static tensile
strength (20MPa) due to the effects of loading rate.

To better calibrate the hybrid finite-discrete element
method, the modelled BTS result (Figure 9(a)) is compared
with the experimental result (Figure 9(b)) and the typical
rock failure pattern in literature (Figure 9(c)) [27, 28]. As can
be seen in Figures 9(a) and 9(b), the modelled fracture

pattern is quite similar to the experimental result, as they
both have a long fracture along the loading diameter and
small fragments in the top and bottom loading areas.
Figure 9(c) gives the typical fracture pattern of the BTS test
under static loading. It has a long fracture along the vertical
diameter and two main damage areas on the top and bottom
loading vicinities. %us, the modelled results well agree with
the typical fracture patterns of BTS tests in the literature.

Figure 10 compares the fracture propagation process in
the BTS test with those well documented in the literature
[29]. As shown in Figure 10(a), a typical fracture propa-
gation in the BTS test includes primary tensile cracking
along the loading diameter, secondary cracking from the
sides parallel to the primary cracks, and tertiary cracking due
to shear failure at the contact areas between the loading
plates and disc. As can be seen in Figure 10(b), the FDEM
well reproduces primary cracks ((A) in Figure 10(b)) and
secondary cracks ((B) in Figure 10(b)). In addition, the
FDEM also can well model the tertiary cracks ((C) in
Figure 10(b)). If the smaller mesh size is adopted in this BTS
model, the tertiary cracks might be clearer.

%e BTS test is developed to obtain the tensile strength
since the stress along the loading diameter is almost uniform
and mainly distributed in the horizontal direction. %e
complete stress distribution along the loading diameter for
the BTS test is given by Hondros [30] as follows:

D

P

P

y

x

2α

r

σxx

σyy

(a) (b)

Figure 6: Geometrical and numerical models for the Brazilian tensile strength test: P is the applied load, R is the disc radius, r is the distance
from the center of the disc, t is the disc thickness, 2α is the angular distance of load arc, and σxx and σyy are stresses along the horizontal and
vertical directions, respectively. (a) Geometrical model. (b) Numerical model.

Table 1: Input parameters of the rock samples for the hybrid finite-
discrete element model.

Symbols Properties Values Units
E Young’s modulus 60 GPa
v Poisson’s ratio 0.26 N/A
ρ Density 2600 kgm− 3

σt Tensile strength 20 MPa
σc Compressive strength 200 MPa
θ Internal friction coefficient 30 °C
u Surface friction coefficient 0.1 N/A
GfI Mode-I fracture energy release 50 Nm− 1

GfI Mode-II fracture energy release 250 Nm− 1
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σx �
P

πRtα
1 − (r/R)

2
􏽨 􏽩Sin2α

1 − 2(r/R)
2Cos2α +(r/R)

4 − tan− 1 1 +(r/R)
2

1 − (r/R)
2 tan(α)􏼢 􏼣

⎧⎨

⎩

⎫⎬

⎭,

σy � −
P

πRtα
1 − (r/R)

2
􏽨 􏽩Sin2α

1 − 2(r/R)
2Cos2α +(r/R)

4 + tan− 1 1 +(r/R)
2

1 − (r/R)
2 tan α􏼢 􏼣

⎧⎨

⎩

⎫⎬

⎭.

(21)

(A)

(B)

(C)

(D)

(E)

(F)

(G)

(a) (b)

1.40e7Pa 

–1.28e8Pa 

Figure 7: FDEM modelling of Brazilian tensile strength test under the loading rate of 1m/s: (a) evolution of minor principal stress; (b)
fracture initiation and propagation; (A) d� 1 μm; (B) d� 20 μm; (C) d� 33.5 μm; (D) d� 39 μm; (E) d� 41 μm; (F) d� 58 μm; (G) d� 166 µm.
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As illustrated in Figure 11, the theoretical and numerical
stress distributions along the loading diameter are com-
pared. For better comparison, the stresses are normalized by
2P/πDt for both the numerical and theoretical results.
Figure 11 indicates that the stress in the horizontal direction

is almost a constant value, except the stress at the top and
bottom of the specimen due to stress concentration. For the
stress in the vertical direction, it increases from the center of
the specimen to the ends of the loading diameter. By
comparison, the modelled stress distribution shows a good
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Figure 8: Force loading-displacement curves obtained during hybrid modelling of the BTS test for a constant displacement increment of
1m/s on plates: (a) top plate force loading-displacement curve; (b) bottom plate force loading-displacement curve.
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Figure 9: Comparison of the modelled result with the experimental fracture pattern and typical failure pattern for BTS test: (a) modelled
result; (b) experimental result from An et al. [17]; (c) typical rock failure pattern of BTS after Li and Wong [27] and Hobbs [28].
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Figure 10: Comparison of the crack propagation at different stages between hybrid modelling results and the typical fracture propagation
for BTS test. (a) Typical fracture propagation in BTS test [29]. (b) Hybrid modelling results for BTS test at different stages. (A) Primary
tensile cracking. (B) Secondary cracking. (C) Tertiary cracking.
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agreement with the theoretical result.%us, the hybrid finite-
discrete method element can well model the rock failure
process in the BTS test and capture the main characters of
rock-like material under loading.

4. FDEM Modelling of Stress and Fracture
Propagation during Three-Point
Bending Test

In this section, the hybrid finite element method is used to
model the rock fracture process during the three-point

bending (3PB) test. Figure 12(a) depicts the geometrical
modes for the symmetrical three-point bending test. As
shown in Figure 12(a), a notch is prefabricated at the center
of the low part. %e lower two rolls are fixed in both hor-
izontal and vertical directions. During the test, the top-
loading roll is moving downward at a constant displacement
increment.

3PB test is a standard procedure for the determination of
the mode-I (tensile) fracture toughness KIC, which can be
calculated according to Brown and Srawley [31] as follows:

KIC �
PMax L

��
a

√

BD
2 2.9 − 4.6

a

D
􏼒 􏼓 + 21.8

a

D
􏼒 􏼓

2
− 37.6

a

D
􏼒 􏼓

3
+ 38.7

a

D
􏼒 􏼓

4
􏼢 􏼣, (22)

where KIC is the mode-I fracture toughness, PMax is the peak
load, L is the distance between the supporting points, a is the
length of the prefabricated notch, B is the thickness of the
rectangular beam, and D is the width. All those parameters
are shown in Figure 12(a).

Figure 12(b) illustrates the numerical model, which is
discretized using finite elements. It can be seen from
Figure 12(a) that the rectangular beam used for hybrid finite-
discrete modelling is simplified as plane strain problems and
only the vertical sections are considered.

4.1. Under Quasistatic Loading Rate Condition. For model-
ling the pure mode-I fracture during the 3PB test under
quasistatic loading, the constant displacement of 0.1m/s for
the top-loading roll is adopted. Figure 13 illustrates the stress

propagation during the 3PB test, while Figure 14 depicts the
crack initiation and propagation for the 3PBT under the
quasistatic loading condition. %e corresponding force-
loading displacement curve, force-loading crack mount
opening displacement (CMOD) curve, and CMOD time
curve are recorded in Figure 15. %e alphabets in Figure 15
correspond to those in Figure 14.

As the top-loading roll contacts the beam, the com-
pressive stress at the loading vicinity is produced immedi-
ately (Figure 13 (at 2.5 µs)). %en, it propagates downwards
(Figure 13 (at 27.5 µs)). %e compressive stress can be ob-
served at the loading vicinity due to the stress concentration,
while tensile stresses can be found at the tip of the pre-
fabricated notch (Figure 13 (at 27.5 µs)). As the top-loading
roll continues to move downwards, stresses from the two
bottom contact points are produced (Figure 13 (at 35 µs and
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Figure 11: Comparison of normalized stresses along the vertical diameter between the theoretical (Hondros’ solution) and numerical
results.
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27.5 µs 160 µs

35 µs 360 µs

100 µs 440 µs

120 µs 500 µs

2.5 µs 150 µs

Figure 13: Stress propagation during FDEM modelling three-point bending test under quasistatic loading.

L = 4D

L = 3.33D

D

a

(a) (b)

Figure 12: Geometrical and numerical models for 3PB test. (a) Geometrical model. (b) Numerical model.
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100 µs)). %en, stresses are mainly produced from the three
contact points.%e tensile stress concentrates at the tip of the
prefabricated notch (Figure 13 (from 120 µs to 500 µs)).

As the rigid roll on the top of the beam moves down-
wards, the stress is increasing (A and B in Figure 15(a)) while
the prefabricated notch starts to open (A and B in
Figures 15(b) and 15(c)). It should be noted that the pre-
fabricated cracks in the hybrid finite-discrete model are set

by deleting corresponding joint elements. %erefore, there is
no opening for a prefabricated crack initially. %at is the
reason why the force loading-CMOD curve and CMOD-
time curve initiate from zero. Before reaching the peak force,
no new crack is induced and the increasing rate of the
CMOD-time curve is relatively low (A and B in
Figure 15(c)), which means the CMOD is gradually in-
creasing although no crack occurs at the tips of the

(A) (B)

(C) (D)

Figure 14: FDEM modelling rock fracture process in 3PB test under quasistatic loading.
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Figure 15: Force-related curves for 3PB test under quasistatic loading condition: (a) force-loading displacement curve; (b) force loading-
CMOD curve; (c) CMOD-time curve.
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prefabricated notch. A tensile crack first initiates from the tip
of the prefabricated crack ((B) in Figure 14) when the force
reaches its peak (B in Figure 15(a)). While the rigid roll
continues to move downwards, the force drops dramatically
(B and C in Figure 15(a)) and the crack continues to
propagate upwards ((C) in Figure 14). Meanwhile, although
the force drops rapidly, the CMOD continues to increase (B
and C in Figures 15(b) and 15(c)) and the increasing rate of
CMOD becomes much higher compared with the increasing
rate of CMOD before crack occurs. Finally, the crack reaches
the top surface of the beam ((D) in Figure 14) while the force
drops from the peak force (B in Figure 15(b)) to the bottom
(D in Figure 15(b)) and the CMOD achieves its maximum
(D in Figure 15(c)).

%e modelled crack initiation and propagation for the
3PB test agree with the literature that the cracks initiate at
the tip of the prefabricated crack and propagate forward to
the top central loading supporting points [32]. Additionally,
the recorded force loading-CMOD curve agrees with Zhou
et al. [33] who did the 3PB test using limestone with range
loading rates from 0.0001mm/s to 0.1m/s. In their test [33],
the prefabricated crack started to open as the loading force
increased and a crack firstly was induced at the tip of the
prefabricated crack when the loading force increased to its
maximum .

According to the peak force at point B in Figures 15(a)
and 15(b), the pure mode-I fracture toughness can be cal-
culated as follows:

KIC �
PMaxL

��
a

√

BD
2 2.9 − 4.6

a

D
􏼒 􏼓 + 21.8

a

D
􏼒 􏼓

2
− 37.6

a

D
􏼒 􏼓

3
+ 38.7

a

D
􏼒 􏼓

4
􏼢 􏼣

�
0.134 × 106 × 3.33D ×

����
0.4D

√

BD
2 × 3.13

� 3.8Pa
��
m

√
.

(23)

Liu et al. [32] modelled the notched Brazilian disc test
and the three-point bending test to determine the fracture
toughness of the granite using RT2D. %e obtained results
for mode-I fracture toughness are 1.74MPa

��
m

√
and 3.74 Pa��

m
√

for notched Brazilian disc test and three-point bending
test, respectively. %e obtained mode-I fracture toughness is
significantly influenced by the test techniques. %e rela-
tionship of the mode-I fracture toughness and the energy
release rate can be expressed as follows:

GfI �
K

2
Ic

E
. (24)

According to equation (18), the mode-I fracture
toughness can be obtained.

KIc �
�������
GfI × E

􏽱

�

������������
50N

m
× 60GPa

􏽲

� 1.732MPa
��
m

√
.

(25)

%e calculated result (1.732) is comparable to modelled
result (1.74) by Liu et al. using the Brazilian disc test method,
while the hybrid modelled result (3.78) is comparable to
RT2D modelled result (3.74) by the same test technique, i.e.,
3PB test. Additionally, the hybrid finite-discrete element
method is used to model the notched Brazilian disc test to
obtain the mode-I fracture toughness for granite in our
previous research [5]. %e obtained result is 1.857MPa

��
m

√
,

which is comparable to Liu et al.’s obtained result, i.e.,
1.732MPa

��
m

√
.

%us, the hybrid finite-discrete element method not
only can model the fracture initiation and propagation
process but also can capture the reasonable fracture
toughness and reflect the influence of the test techniques.

4.2. Under Dynamic Loading Rate Condition

4.2.1. Under the Loading Rate of 1m/s and 5m/s.
Figure 16 visually illustrates the crack initiation and prop-
agation of the 3PB test under the loading rates of 1m/s and
5m/s, respectively. It can be seen that the failure processes
for the 3PB test under the loading rates of 0.1m/s, 1m/s, and
5m/s are much similar. As indicated by Zhang, the rock
properties are not significantly changed until a certain
threshold of loading rate is achieved. %e alphabets in
Figure 17 correspond to those in Figure 16 which records the
force loading-displacement curves, the force loading-
CMOD curves, and the force loading-time curves.

(A) in Figures 16(a) and 16(b) depicts the 3PB test with
the prefabricated crack in the bottom center of the beam. As
for the 3PB test under the loading rate of 1m/s, with the rigid
roll on the top of the beam moving downwards, the force
increases rapidly and peaks at point B (A and B in (i) in
Figure 17(a)) which corresponds to the initiation of the crack
((B) in Figure 16(a)).%e force increases linearly (A and B in
(i) in Figure 17(b)) which corresponds to elastically opening
process of the prefabricated crack, and the CMOD has a
slight increment (A and B in (i) in Figure 17(c)) before the
force reaches its maximum. As the loading roll continues to
move downwards, the crack propagates upwards ((C) and
(D) in Figure 16(a)) while the force drops dramatically (B–D
in (i) in Figure 17(b)) from its maximum. Meanwhile, the
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CMOD-time curve climbs up considerably (B–D in (i) in
Figure 17(c)). Finally, the crack reaches the top surface of the
beam and the beam is split into two parts ((E) in
Figure 16(a)). Correspondingly, the force drops to its
minimum (E in (i) in Figure 17(b)) while the CMOD grows
to its maximum (E in (i) in Figure 17(c)).

%e modelled crack initiation and propagation for the 3PB
test agree with the literature that the cracks initiate at the tip of
the prefabricated crack and propagate to the top central loading
supporting points [32]. Additionally, the recorded force load-
ing-CMOD curve agrees with Zhou et al. [33] who did the 3PB
test using limestone with loading rates ranging from
0.0001mm/s to 0.1m/s. In their test [33], the prefabricated crack
was opening with the force increasing and a crack firstly was
induced from the tip of the prefabricated crack when the force
reached its maximum. Figure 13 indicates the same conclusion.

In terms of the rock failure process of the 3PB test under the
loading rate of 5m/s, the crack initiation and propagation are
almost the same as those under the loading rates of 1m/s and
0.1m/s. Initially, while the loading roll contacts the beam, the
force is induced and almost increases linearly ((A) and (B) in (ii)
in Figures 17(a) and 17(b)). Correspondingly, the prefabricated

crack is elastically opened while the force loading is increasing
((A) and (B) in (ii) in Figure 17(a). However, the CMOD opens
slowly before a newly formed crack is produced ((A) and (B) in
(ii) in Figures 17(b) and 17(c)). %en, a crack initiates at the tip
of the prefabricated crack ((B) in Figure 16(b)) when the force
reaches point B (B in (ii) in Figure 17(a)) rather than at the
maximum force (C in (ii) in Figure 17(a)). While the loading
roll further moves downwards, the force achieves its peak (C in
(ii) in Figures 17(a) and 17(b)) and the crack continues to
propagate forwards ((C) in Figure 16(b)). It can be seen from (ii)
in Figure 17(c) that the CMOD rises considerably after passing
point Bwhich is considered as a turning point for expressing the
material properties objectively [34]. After force achieves its
maximum, it began to drop considerably (C and D in (ii) in
Figures 17(a) and 17(b)) and the crack further propagates
upwards ((D) in Figure 16(b)). Finally, while the crack reaches
the top surface, the force drops to the bottom and the CMOD
achieves its maximum.

%e model rock failure processes in the 3PB test under
the loading rates of 0.1m/s, 1m/s, and 5m/s are similar in
terms of crack initiation and propagation and agree with the
literature [32]. %e three curves for the 3PB test under the
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Figure 16: Hybrid finite-discrete element method modelled results of 3PBT under the loading rate of (a) 1m/s and (b) 5m/s.
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loading rates of 1m/s and 5m/s show good agreements with
those well documented in the literature [33, 34]. It should be
noted that when force loading increases, the crack initiates

before the force reaches its peak.%erefore, the hybrid finite-
discrete element method shows its ability to model the rock
failure process in the 3PB test in terms of crack initiation and
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Figure 17: (a) Force loading-displacement curve, (b) force loading-CMOD curve, and (c) CMOD-time curve for 3PB test under the loading
rates of (i) 1m/s (figures in the left) and (ii) 5m/s (figures in the right), respectively.
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propagation. %e modelled failure processes under the three
loading rates, i.e., 0.1m/s, 1m/s, and 5m/s, show good
agreements with those well documented in the literature.
%e corresponding curves, i.e., force-loading displacement
curve, force-loading CMOD curve, and the CMOD time
curve, also agree well with those in literature.

As when the forces reach Point B (B in (i) in Figure 17(a), B
in (ii) in Figure 17(a)), the cracks start to open at the tips of the

prefabricated notches for the 3PB test under the loading rate of 1
m/s and 5 m/s, respectively; the forces at Point B (B in (i) in
Figure 17(a), B in (ii) in Figure 17(a)) can be used to calculate
the fracture toughness for 3PB test under the loading rate of 1
m/s and 5 m/s, respectively.%e fracture toughness for 3PB test
under the loading rates of 1m/s and 5m/s can be calculated as
follows:

KIC1 �
0.697 × 106 × 3.33 × D

������
0.4 × D

√

1 × D2 × 2.9 − 4.6 × 0.4 + 21.8 × 0.42 − 37.6 × 0.43 + 38.70.44􏽨 􏽩

� 19.76MPa
��
m

√
,

KIC5 �
4.563 × 106 × 3.33 × 54

�������������

0.4 × 54 × 10− 3
􏽱

1 × 542
× 2.9 − 4.6 × 0.4 + 21.8 × 0.42 − 37.6 × 0.43 + 38.7 × 0.44􏽨 􏽩

� 129.32MPa
��
m

√
.

(26)

4.3. Under the Loading Rate of 10m/s. Figure 18 visually
depicts the fracture initiation and propagation process of the
3PB test under the loading rate of 10m/s while the alphabets
correspond to those in the force loading-displacement curve,
the force loading-CMOD curve, and the CMOD-time curve. As
the loading rigid roll moves downwards, it can be seen in
Figure 18 that a tensile crack at the tip of the prefabricated notch
and a shear crack at the vicinity of the loading area occur at the
same time instead of only a tensile crack initiated at the tip of the
preexisting crack, while the force loading increases dramatically
and peaks at point B as shown in Figure 19(a). Due to the much
higher loading rate (10m/s), strong compressive stress con-
centrates at the loading vicinity which causes shear cracksat the
loading area. %en, the force drops rapidly which indicates that
the beam loses its bearing compatibility. During the postfailure
process (B–D in Figure 19(a)), the tensile crack initiated from
the tip of the prefabricated notch continues to propagate up-
wards while more shear cracks and tensile cracks are produced
at the vicinity of the loading area, which propagates downwards.
During the residual deformation process (D and H in
Figure 19(a)), more shear cracks and tensile cracks are produced
and some tensile cracks initiate from the tips of the shear cracks
and propagate towards the lower rigid rolls as shown in (E) in
Figure 18 (the two long red cracks). Meanwhile, some tensile
cracks initiate from the tips of the shear cracks and propagate
towards the top surface of the beam as shown in (E) and (F) in
Figure 18 (the red cracks at the loading vicinity). Finally, the

tensile cracks initiated from the tip of the prefabricated notch
connect with the cracks induced around the loading vicinity
while the loading area is crushed into fragments due to the
strong stress concentration as shown in (H) in Figure 18.

Figures 19(b) and 19(c) depict the prefabricated crack
opening process and the corresponding relationship and time,
respectively. %e prefabricated notch is elastically opened
before the crack initiates at the tip of the prefabricated crack
(A and B in Figure 19(b)) while the CMOD increases slowly
(A and B in Figure 19(c)). %en, the force peaks at point B
when a crack is induced at the tip of the prefabricated crack.
After that, the force drops dramatically (B, C, and D in
Figure 19(b)) and finally, the force fluctuates at a very low
range (E–H in Figure 19(b)). However, for the CMOD, it
increased rapidly after passing point B (B in Figure 19(c)) and
finally it reaches its maximum (H in Figure 19(c)).

For the 3PB test under the loading rate of 10m/s, al-
though many shear cracks occur at the loading vicinity due
to the stress concentration, the mode-I rock failure process
agrees with the literature [34] in terms of crack initiation and
propagation, the relationship of crack opening and the
loading, and the crack propagation speed.

According to the peak force on the force-loading dis-
placement curve at point B (Figure 19(a)), the mode-I
fracture toughness under the loading of 10m/s can be
calculated as follows:

KIC10 �
9.5 × 106 × 3.33 × 54

�������������

0.4 × 54 × 10− 3
􏽱

1 × 542
× 2.9 − 4.6 × 0.4 + 21.8 × 0.42 − 37.6 × 0.43 + 38.7 × 0.44􏽨 􏽩 � 269.30MP

��
m

√
.

(27)

4.4. Under the Loading Rate of 50m/s. Figure 20 depicts the
fracture initiation and propagation of the 3PB test under the
constant increment displacement of 50m/s, while Figure 21
recorded the force loading-displacement curve in which the
alphabets correspond to those in Figure 20.

(A) in Figure 20 shows the initial beam with the pre-
fabricated notch at the low center of the beam. As the rigid
roll contacts the beam, shear cracks initiate immediately due
to the stress concentration at the contact area ((B) in Fig-
ure 20). %en, the induced cracks propagate down while
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more cracks are produced including both shear cracks and
tensile cracks ((C) in Figure 20). While more produced
cracks propagate towards the lower surface of the beam, a
crack initiates from the tips of the prefabricated notch ((D)
in Figure 20). It seems that the induced crack from the tip of
the prefabricated notch plays little role in the rock failure
process of the beam. %e induced cracks due to the strong
stress concentration reach the prefabricated notch and
continue to propagate downwards ((E) in Figure 20). With
the rigid roll moving downwards, more tensile cracks are
produced, which are mainly distributed at the left and right
sides of the beam ((F) and (G) in Figure 20). Finally, the
loading area is crushed into fragments while more cracks are
produced which are distributed along the loading area.

Figure 21 demonstrates that the force increases rapidly (A
and B in Figure 21) as the rigid roll contacts the beam due to
the high loading rate (50m/s).%en, the force drops gradually
(B–F in Figure 21) and finally the beam completely loses its
ability to carry loads (G and H in Figure 21). %erefore, al-
though the beam is under dynamic loads, it demonstrates the
typical brittle material failure process. Since the prefabricated
notch does not play a significant role in the rock failure
process under the loading rate of 50m/s, the peak force on the
force-loading displacement curve is not used to calculate the
fracture toughness under the dynamic load, i.e., 50m/s.

5. Discussion

5.1. Influence of the Loading Rate on Rock Behaviour. In our
previous research, the loading rate on the rock strength has
been studied [5]. In this section, the effects of the loading rate

on the rock strength and rock fracture toughness are studied.
Figure 22 depicts the influence of the loading rate on the
tensile strength. %e vertical axis indicates the tensile
strength while the horizontal axis shows the logarithm value
of the strain rate. As illustrated in Figure 22, the tensile
strength increases slightly with the strain rate when the
loading rate is lower than a threshold level, i.e., logarithm
value equates to 1. After that, the tensile strength increases
dramatically with the strain rate. %e FDEM modelled re-
sults show a good agreement with those well documented in
the literature [35, 36]. In those research studies, there is a
threshold separating the loading rate into static and dynamic
conditions. In the static loading condition, the strength
increases slowly with the increase of loading rate, while in
the dynamic condition, the strength increases dramatically
with the increase of loading rate.

Figure 23 illustrates the effect of loading rate on rock
fracture toughness. It can be seen that the fracture toughness
remains almost constant before 1 for the logarithm value of
the strain rate. After that, it increases dramatically with the
increase of the strain rate. %is shows the same character for
the loading effect on rock strength as shown in Figure 22.
Additionally, the effect of the loading rate on fracture
toughness shows a good agreement with Zhang et al. [25],
who did a series of fracture toughness experimental tests by
means of wedge loading applied to short-rock fracture
specimens. %e experimental results show that fracture
toughness nearly remains constant before the loading rate
reaches a certain value, and after the certain value, it in-
creases with the loading rate.

5.2. Influence of the Mesh Size and Mesh Orientation. For
modelling the rock fracture using the hybrid finite-discrete
element method, the modelling results are sensitive to the
mesh size and mesh orientation. As mentioned before, the
strain-hardening part of the typical stress-strain curve is
implemented in the hybrid method through the constitutive
laws [12], while the strain-softening part is implemented
through the separation of the crack elements or joint ele-
ments which are placed among the finite elements. %us, the
fractures can only occur along the mesh boundaries and the
mesh size and orientation can significantly influence the
modelling results. In addition, the central difference explicit
integration scheme is implemented in the hybrid method to
obtain the solutions for forces, stresses, and displacements.
%e time steps can be obtained by the following equation:

tcr ≈
lmin���������

(λ + 2μ)/ρ
􏽰 , (28)

where lmin is the smallest elemental length, λ and μ are Lamé
constants, and ρ is the density of geomaterials.

%us, the mesh size can greatly influence the time steps
and can further influence the computational time. For saving
the computational resources, relatively bigger mesh size is
adopted in this research.

To illustrate the influence of mesh orientation on the rock
behaviour, the free mesh and the structural mesh are adopted
for the uniaxial compressive test model as shown in Figure 24.

(A) 0mm (0ms) (B) 0.15mm (0.015ms)

(C) 0.175mm (0.0175ms) (D) 0.2mm (0.02ms)

(E) 0.2 5mm (0.025ms) (F) 0.35mm (0.035ms)

(G) 0.5mm (0.05ms) (H) 0.95mm (0.095ms)

Figure 18: Crack initiation and propagation of 3PB test under the
constant displacement increment of 10m/s.
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%e top-loading plate moves at the constant displacement of
1m/s, while the bottom plate is fixed in both horizontal and
vertical directions. %e modelled results for the two types of
meshed models generally agree with the experimental results
as they both have included tensile cracks. However, the
fracture propagation paths in the twomodelled results are
both limited by the mesh orientations as the fracturesonly can
occur along the element boundaries. %us, the mesh orien-
tation significantly affects the rock fracture patterns.
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Figure 19: Force loading-displacement curve for 3PB test constant displacement of 10m/s. (a) Force loading-displacement curve. (b) Force
loading-CMOD curve. (c) CMOD-time curve.

(A) 0mm (0ms) (B) 0.25mm (0.005ms)

(C) 0.5mm (0 .01ms (D) 0.625mm (0 .0125ms)

(E) 1mm (0.02ms) (F) 1.375mm (0 .0275ms)

(G) 3mm (0 .06ms) (H) 6.25mm (0 .125ms)

Figure 20: Crack initiation and propagation of 3PB test under the
constant displacement increment of 50m/s.
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Figure 21: Force loading-displacement curve for 3PB test constant
displacement of 50m/s.
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Figure 22: Effect of loading rate on the rock strength (the data are taken from Huaming et al. [5]).
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Figure 23: Loading effect on the rock fracture toughness.

(a) (b)

Figure 24: Influence of the mesh orientation on the failure patterns. (a) Free mesh model and the corresponding failure pattern. (b)
Structural mesh model and the corresponding failure pattern.
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6. Conclusion

%e hybrid finite-discrete element method (FDEM) is
proposed to model the rock fracture initiation and propa-
gation process during a three-point bending test under
quasistatic and dynamic loading conditions. %ree fracture
modes are implemented in the FDEM to model the tran-
sition from continuum to discontinuum through fracture
and fragmentation, which make the FDEM superior to the
traditional continuum-based finite element method and
discontinuum-based discrete element method. %e FDEM
takes advantage of finite element method in describing
elastic deformations and the capabilities of the discrete el-
ement method in capturing interactions and fracturing
processes of solids. Additionally, the loading rate effect on
the rock behaviour has been taken into account by the
implementation of an empirical relationship between the
static strengths and the dynamic strengths derived from the
dynamic rock fracture experiments. %e FDEM is calibrated
by modelling the Brazilian tensile strength test and com-
paring the modelled results with those well documented in
the literature. %en, the FDEM is implemented to model the
three-point bending test under quasistatic and dynamic
loading conditions. %e FDEM has well modelled the stress
and fracture propagation and can well capture the loading
effect on the rock behaviours. Finally, the effect of loading
rate and mesh size and mesh orientation are discussed. It is
concluded that

(1) %e FDEM has well modelled the rock fracture
process during the three-point bending test, and this
indicates that the FDEM can well model the tran-
sition of rock from continuum to discontinuum
through fracture and fragmentation by imple-
mentation of three fracture modes.

(2) %e FDEM has well captured the effect of the loading
rate on the rock strength, rock fracture toughness,
and rock fracture behaviour by implementing an
empirical relationship between the static strengths
and the dynamic strengths derived from the dynamic
rock fracture experiments.

(3) %e FDEM is a valuable tool to study the rock be-
haviour since the FDEM takes advantage of the finite
element method in describing elastic deformations
and the capabilities of the discrete element method in
capturing interactions and fracturing processes of
solids.
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