
Research Article
Rolling Bearing Fault Vibration Signal Denoising Based on
Adaptive Morphological Wavelet Perona–Malik Filter Algorithm

Hao Li ,1,2 Yifan Tan ,1 and Yun Pu 1

1Southwest Jiaotong University School of Transportation and Logistics, Chengdu 610031, China
2Officers College of PAP, Chengdu 610213, China

Correspondence should be addressed to Yifan Tan; yftan@my.swjtu.edu.cn and Yun Pu; ypu@swjtu.edu.cn

Received 22 January 2021; Revised 29 June 2021; Accepted 19 November 2021; Published 13 December 2021

Academic Editor: Gang Tang

Copyright © 2021 Hao Li et al. ,is is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

,is paper proposes an adaptive Perona–Malik filtering algorithm based on the morphological Haar wavelet, which is used for
vibration signal denoising in rolling bearing fault diagnosis with strong noise. First, the morphological Haar wavelet operator is
utilized to presmooth the noisy signal, and the gradient of the presmooth signal is estimated. Second, considering the uncertainty of
gradient at the strong noise point, a strong noise point recognition operator is constructed to adaptively identify the strong noise
point. ,ird, the two-step gradient average value of the strong noise point in the same direction is used to substitute, and the second
derivative is introduced into the diffusion coefficient. Finally, diffusion filtering is performed based on the improved Perona–Malik
model. ,e simulation experiment result indicated that not only the algorithm can denoise effectively, but also the average gradient
and second derivative in the same direction can effectively suppress the back diffusion of strong noise points to improve the denoising
signal-to-noise ratio. ,e experimental results of rolling bearing show that the algorithm can adaptively filter out strong noise points
and keep the information of peak in the signal well, which can improve the accuracy of rolling bearing fault diagnosis.

1. Introduction

In the mechanical fault diagnosis based on the vibration
signal, in order to extract fault features more accurately, it is
a crucial step to denoise the vibration signal and reduce
noise interference. Since the running state of mechanical
equipment is time-varying, speed and load are unstable due
to the working demand, especially when a fault occurs. ,e
stiffness, damping, and elastic force of the system would
change; hence, the vibration signal shows the characteristics
of nonlinear and nonstationary. In addition, measured
signal is disturbed by all kinds of noise on the scene, which
makes it more difficult to achieve the ideal effect by using the
traditional signal processing method.

Currently, the denoising methods for mechanical vi-
bration signals are varied [1], including time domain, fre-
quency domain, time-frequency domain, linear, and
nonlinear. ,ese methods are different in principle and have
their own characteristics. STFT is based on the assumption
of piecewise signal stationarity, which is suitable for the

analysis of varying signals slowly; however, it is difficult to
achieve good results for the drastic varying signals. Wavelet
transform plays a very important role in mechanical fault
diagnosis, but the selection of wavelet basis is a difficult issue.
,emorphological filteringmethod is closely to the selection
of structural elements; once the structural elements are not
selected properly, it would be counterproductive and cannot
play a good denoising effect and even lose the details of the
signal. Generally, these methods all have a common prob-
lem, that is, some useful feature information may be re-
moved while denoising; furthermore, signal denoising and
feature extraction cannot be achieved simultaneously [2–5].
How to denoise effectively and retain feature information
has always been a hot topic.

Partial differential equation (PDE) denoising theory and
method is an image/signal processing method proposed in
recent years, which are extensively utilized in image
denoising, image enhancement, and other image processing
fields. ,e biggest feature of the PDE method is that both
image denoising and edge feature information preservation
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are considered [6–11]. Among the PDE denoising methods
[6], the Perona–Malik model, the focus of present scientific
research, is one of the most classic nonlinear anisotropic
diffusion filtering models, in which the principle and cal-
culation are relatively simple. At present, some scholars have
created a lot of algorithms based on the Perona–Malikmodel
[12–19]. And the application of these algorithms in image
processing and other fields has achieved incomparable ef-
fects with classical algorithms. But there are few relevant
studies about the research and application of the PDE
denoising method in the field of mechanical vibration signal
processing. ,e Perona–Malik model was applied in
Grinding Machine and Numerical Control Machine for
vibration signal denoising by Wu et al. and had great results.
,e superiority of PDE was magnified when compared with
the traditional denoising method [20, 21]. Moreover, PDE
can be used for purification of the shaft centerline orbit [22].
Xu et al. [23] proposed an adaptive denoising method for
vehicle’s acceleration signal based on PDE. Lan et al. [24]
provided a new denoising method to suppress white noise
interference in GIS PD signals based on PDE. It showed the
effectiveness of PDE. Among them, the proposed model [18]
discussed the vibration signal denoising approach based on
the Perona–Malik model and investigated the feasibility and
effectiveness of the proposed method. However, due to the
reverse diffusion issue of strong noise points, it has affected
its wide use to some extent and needs to be further
improved.

In this paper, the Perona–Malik model is improved
and introduced into rolling bearing fault vibration signal
denoising, which makes a contribution in the field of
mechanical rolling bearing fault diagnosis. First, the
morphological Haar wavelet is used to presmooth the
noisy vibration signal, and the strong noise recognition
operator is designed to identify the strong noise points.
Second, the same direction average gradient is used to
adaptively remove the strong noise points, and the second
derivative is further introduced into the diffusion coef-
ficient. Finally, the improved Perona–Malik model is
utilized to complement the diffusion filtering and
denoising on simulated signals and measured rolling
bearing vibration signals.

,e main contributions of this paper are as follows:

(1) ,e Perona–Malik filter model of the morphological
Haar wavelet is proposed, and the second derivative
is introduced into the diffusion coefficient function
of the morphological Haar wavelet.

(2) A strong noise recognition operator is constructed
for adaptive recognition of strong noise points, and a
codirectional mean gradient is introduced for
adaptive removal of strong noise points

(3) Based on the denoising results of rolling bearing fault
simulation signals, the wavelet threshold denoising
method, morphological Haar wavelet method, Per-
ona–Malik model, Catté model, and the denoising

performance of the improved algorithm are com-
pared, and the effectiveness of the improved algo-
rithm is demonstrated

(4) Denoising and spectrum analysis were performed on
the fault vibration data of drive motor bearing inner
ring from the Electrical Engineering Laboratory of
Case Western Reserve University to verify the fea-
sibility of applying the improved algorithm to en-
gineering practice

2. Perona–Malik Model

PDE denoising processes the signals based on the motion
point of view, which originates from the initial value
problem of the heat conduction equation. Perona and Malik
first proposed a nonlinear anisotropic diffusion model, i.e.,
the Perona–Malik model [6].
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where g(·) indicates the diffusion coefficient and is a
monotone nonincreasing function with the conditions of
g(0) � 1 and lim

s⟶∞
g(s) � 0. ,e diffusion coefficient

g(|zu/zx|) is a nonnegative function of the gradient mode
|zu/zx|, which is the core of the Perona–Malik model to
control the amount and direction of diffusion.

,e classic diffusion coefficient is presented as follows:

g(s) � exp −
s
2

k
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1 + s
2/k2􏼐 􏼑􏼐 􏼑
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where k is the gradient threshold parameter. If the threshold
k is given, then the area of |zu/zx|< k is considered to be the
flat area of the signal, and the diffusion is positive and faster,
which is beneficial to denoise; the area of |zu/zx|≥ k is
considered to be the detail feature area of the signal, and the
diffusion is reverse and slower; thus, the signal is sharpened,
which is conducive to the preservation of signal charac-
teristics and can even be enhanced. ,ese results bring great
limitations to the application of the Perona–Malik model in
filtering: the noise level is relatively large, especially when the
signal is interfered by impulsive noise, a large gradient often
exists at the noise point, and then the noise cannot be re-
moved but may be enhanced, which is contrary to the idea of
filtering. In order to avoid these characteristics of the Per-
ona–Malik model, it is necessary to construct a new diffusion
coefficient function and improve the Perona–Malik filter
model.
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3. Morphological Wavelet Perona–Malik
Filter Model

3.1. Diffusion Coefficient Function of the Catté Operator.
Catté et al. modified the diffusion coefficient function of the
Perona–Malik model and proposed the Catté operator
[25, 26] as

g(s) � exp
− z Gσ ∗ s( 􏼁/zx
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2

􏽮 􏽯

K
2 , (3)

where Gσ is the Gaussian weighted low-pass filter with a
standard deviation of σ. ,en, the satisfiability of the so-
lution was proved. ,e main idea of the Catté operator can
be summarized as follows: considering that the signal itself
contains noise, the signal is pre-Gaussian-smoothed before
calculating the diffusion amplitude, which allows the dif-
fusion process to remove small features in the high-contrast
area. Essentially, the Catté operator is a linear low-pass
Gaussian filter, in which the signal may be excessively
smoothed. In order to solve this limitation, a nonlinear filter
operator must be used to replace the linear low-pass
Gaussian filter.

3.2. Diffusion Coefficient Function of Morphological Haar
Wavelet. ,is paper utilizes themorphological Haar wavelet
operator (nonlinear filter operator) to replace the linear
Gaussian filter of the Catté operator. ,e morphological
Haar wavelet diffusion coefficient function is

g(s) � exp
|z(Ms)/zx|

2
􏽮 􏽯

K
2 , (4)

where Ms represents the morphology Haar wavelet filtering
of the signal s.

Morphological Haar wavelet is a nonlinear wavelet
transform based on mathematical morphology. It is a
nonlinear extension of the morphological operator to the
linear Haar wavelet [27], which can retain edge information
more effectively than linear wavelets. Meanwhile, the
morphological Haar wavelet has the nonlinear analysis
characteristics of mathematical morphology and the mul-
tiresolution characteristics of wavelets [28, 29].

,e analysis and composition operator of the mor-
phological Haar wavelet is presented as follows:

ψ↑(x)(n) � x(2n)∧x(2n + 1),

ω↑(x)(n) � x(2n) − x(2n + 1),

ψ↓(x)(2n) � ψ↓(x)(2n + 1) � x(n),

ω↓(y)(2n) � y(n)∨0,ω↓(y)(2n + 1) � − [y(n)∧0].
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(5)

,e operation of the morphological Haar wavelet
analysis operator is minimal, and the operation process of
the morphological Haar wavelet only includes extreme
value and addition and subtraction operations, which also
simplifies the calculation and improves the processing
speed.

In order to better preserve the meaningful and strong
spike and boundary details in the signal, the second de-
rivative can be further introduced into the morphological
Haar wavelet diffusion coefficient as

g(s) � exp
|z(Ms)/zx|
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􏼚 􏼛

K
2 .

(6)

At the peak, the gradient modulus is zero, while the
second derivative is always a local maximum. ,erefore, the
diffusion coefficient at the peak is relatively small and the
diffusion is slower, which is conducive to maintaining details
such as peaks and boundaries.

To sum up, the essence of the morphological Haar
wavelet Perona–Malik filter model is that the morphological
Haar wavelet is utilized to presmooth the noisy signal firstly
before calculating the diffusion coefficient; then, the gradient
and the second derivative on the presmoothed signal can be
computed to obtain the diffusion coefficient, which makes
the diffusion process not only denoise effectively but also
retain the meaningful details as much as possible.

4. Adaptive Morphological Wavelet
Perona–Malik Filtering Algorithm

,e simulation analysis shows that the morphological
wavelet Perona–Malik filter model still has the limitations of
identifying strong noise points and boundaries in the signal.
At the strong noise point, even if the morphological wavelet
is used for prefiltering, the signal gradient is still relatively
large. Subsequently, the diffusion coefficient at the strong
noise point is relatively small, the diffusion is relatively weak,
and even reverse diffusion exists; thus, the noise will be
enlarged instead of being removed. ,erefore, a strong noise
point recognition operator is designed to adaptively rec-
ognize strong noise points, and the same direction average
gradient is used to adaptively remove strong noise points.

4.1. Strong Noise Point Recognition Operator. In order to
identify whether a point is a strong noise point, a strong
noise point recognition operator is constructed. Firstly, the
mean and variance of the strong noise points are calculated
as
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1
2
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1
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􏼌􏼌􏼌􏼌􏼌􏼌􏼌
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,

(7)

where ui is the amplitude at the data point i.
Secondly, a strong noise point recognition operator is

constructed as

λi �
ui − mi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

σ2i
. (8)

If λi < 1 and the noise energy is less than the signal
energy, the data point is a normal signal and should be
retained; if λi ≥ 1 and the noise energy is greater than the
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signal energy, the data point is a strong noise point and
should be diffused.

4.2.AverageGradient in theSameDirection. In order to solve
the problem of large gradient value at the strong noise point,
the gradient value of the strong noise point can be replaced
by the two-step average gradient value at the left and right
directions of the strong noise point. Consequently, the
gradient value of the strong noise point can be reduced to
achieve the purpose of effectively removing strong noise
points.

Suppose the amplitude at the noise point i is ui; then, the
average gradient values ∇Lave

i and ∇Rave
i of the noise point i

in the left and right directions in the same direction are,
respectively, as follows:
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2
.

(9)

,e average of the two gradients in the same direction is
used to replace the gradients in the left and right directions
of noise points i, which ensures that the diffusion of noise
points i is opposite and can better maintain the peaks and
boundaries. Generally, the probability that the left and right
points i − 2, i − 1, i + 1, and i + 2 are noise points is relatively
low while the data point i is a noise point. ,erefore, the
average of the two gradients in the left and right directions of
the data point i can reduce the gradient value of the isolated
strong noise point, which facilitates forward diffusion
denoising.

,en,
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Generally, the gradient value of strong Gaussian noise
is relatively large; then, the adaptive Perona–Malik model
based on the average gradient in the same direction can
reduce the gradient value of the strong noise point rel-
atively, which is beneficial to the subsequent forward
diffusion.

4.3.5eDiscrete Format of the ImprovedModel. ,e discrete
calculation format of the improved adaptive morphological
wavelet Perona–Malik filtering algorithm is presented as
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If λ≥ 1,
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􏽥g(s) � g(s1/2), k is the number of iterations, andΔt is the
time step that satisfies 0≤Δt≤ 1/4. ,is is the condition for
calculating the stability of the format. It can be proven easily
that m≤ uk+1

i ≤M, where m � min uk
i− 1, uk

i , uk
i+1􏼈 􏼉 and

M � max uk
i− 1, uk

i , uk
i+1􏼈 􏼉, that is, the signal after denoising

will not generate new extreme points.

4.4. Steps of the Improved Algorithm. According to the
aforementioned improved algorithm and its discrete cal-
culation format, the steps of the improved algorithm for
denoising rolling bearing fault vibration signals can be
presented as follows.

Step 1. Set the parameters such as the gradient threshold
parameter K, time step Δt, and the number of iterations I.

Step 2. Let the number of iterations k � 1 and the signal to
be diffused uk− 1 be the noisy signal u0.

Step 3. According to equation (12), calculate the left and
right gradients DLuk− 1 and DRuk− 1 of the signal to be
diffused uk− 1.

Step 4. Use the morphological Haar wavelet to presmooth
the signal to be diffused uk− 1, and calculate the left gradient
DLuk− 1, the right gradientDRuk− 1, and the second derivative
ak− 1 of the presmoothed signal uk− 1 based on equations
(13)∼(15).

Step 5. According to equation (9), calculate the value of the
strong noise point identification operator λi at each point of
the presmoothed signal uk− 1. Combined with equation (10),
calculate the two-step average gradient in the left and right
directions ∇Lave and ∇Rave of the presmoothed signal uk− 1.

Step 6. If λ≥ 1, calculate the left-right diffusion coefficient
CL and CR using equation (16); otherwise, calculate the left-
right diffusion coefficient CL and CR using equation (17).

Step 7. Combined with equation (11), calculate the diffusion
signal uk of the iteration k.
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Step 8. If k � I, return to Step 9; if k< I, then let k � k + 1,
return to Step 3.

Step 9. Output the denoising signal uk.

5. Rolling Bearing Experiment

5.1. Simulation Signal Analysis. ,e simulation signals of
rolling bearings are used to compare the denoising per-
formance of the wavelet threshold denoising method,
morphological wavelet method, Perona–Malik model, Catté
model, and the proposed algorithm to demonstrate the
effectiveness of the proposed algorithm.

Assume that the vibration simulation signal of a single-
point damage fault on the outer ring of rolling bearing is
presented as

y(t) � y0e
− ξωnt sin ωn

�����

1 − ξ2
􏽱

t, (18)

where the natural frequency of the attenuated vibration
fn � 3000Hz, the natural angular frequency of the vibration
ωn � 2πfn, the displacement constant y0 � 10, the damping
coefficient ξ � 0.1, the sampling frequency fs � 12000Hz,
and the number of sampling points is 4096, as shown in
Figure 1(a) (Figure a1 represents the time-domain waveform
and Figure a2 represents the frequency spectrum).

,e rolling bearing fault signal plus Gaussian white noise
with the standard deviation σ � 1 is the noisy signal to be
analyzed, as shown in Figure 1(b). In order to simulate the
isolated strong noise points, the intensity (amplitude) of
some noise points is enhanced, as shown in Figure 1(c).

,e simulation experiment can be divided into three parts,
i.e., (1) comparing the denoising performance difference be-
tween the Perona–Malik model and the classic methods (such
as wavelet soft threshold denoising method and morphological
Haar wavelet method) to indicate the superiority of the
nonlinear anisotropic diffusion filtering method, as shown in
Figure 2, (2) comparing the denoising performance of the
Perona–Malik model, the Catté model, and the morphological
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Figure 1: Simulation signal of rolling bearing. (a) Noisy-free bearing signal. (b) Noisy bearing signal. (c) Strong speckle noisy bearing signal.
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Haar wavelet Perona–Malik model (using its own gradient) to
illustrate the necessity of introducing the morphological Haar
wavelet and the second derivative, as shown in Figure 3, and (3)
checking whether the same direction average gradient
denoising performance should be utilized to indicate that the
same direction average gradient can effectively filter out strong
noise points adaptively, as shown in Figure 4.

Figure 2 shows that the classic denoising method filters out
useful fault characteristic information at the same time while
denoising. Although the wavelet soft threshold denoising and
morphological Haar wavelet methods filter out noise, a lot of
useful information is also filtered out (as shown in Figures 2(a)
and 2(b)). It is because their denoising effect is closely related to
the selection of threshold value. As some isolated strong noise
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Figure 2: Comparison between PDEmodel and other denoising algorithms. (a) Denoised signal with Haar wavelet. (b) Denoised signal with
morphology Haar wavelet. (c) Denoised signal with the Perona–Malik model.
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points are added to the signal, the wavelet decomposition
coefficient of the high-frequency part is too large, which affects
the selection of global threshold value.,erefore, a lot of useful
high-frequency information is filtered out as noise.

Figure 2 also shows that the classical denoising methods
also filter out useful fault characteristic information. Although

the wavelet soft threshold denoising and morphological Haar
wavelet denoising methods filter out noise, a large amount of
useful information is also filtered out (as shown in a2 and b2).
,is is because their denoising effect is closely related to the
selection of threshold value. As some isolated strong noise
points are added to the signal, the wavelet decomposition
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Figure 3: Comparison between PDE model and its improved models. (a) Denoised signal with Perona–Malik model. (b) Denoised signal
with Catté operator. (c) Denoised signal with new operator.

Shock and Vibration 7



coefficient of the high-frequency part is too large, which affects
the selection of global threshold value.,erefore, a lot of useful
high-frequency information is filtered out as noise.

,e Perona–Malik nonlinear anisotropic diffusion filter
model not only effectively filters out noise but also maintains
the fault characteristic information, which is different from
the above methods (as shown in Figure 2(c)).

As shown in Figure 3, the Perona–Malik model, the Catté
model, and the improved morphological Haar wavelet Per-
ona–Malik model (with its own gradient) all take into account

denoising and feature retention, indicating that the PDE
method has strong local adaptability, edge preservation, and
noise reduction and high flexibility.

As shown in Figure 3, the Perona–Malik model, Catté
model, and the improved morphological Haar wavelet Per-
ona–Malik model (with its own gradient) all give good con-
sideration to denoising and feature retention, indicating that
the PDE method has strong local adaptability, edge preser-
vation, and noise reduction and high flexibility. At the same
time, due to the nonlinearity of the morphological Haar
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Figure 4: Comparison between original gradient and its average gradient. (a) Denoised signal with new operator. (b) Denoised signal with
adaptive operator.

Table 1: SNR of several denoising algorithms.

Gaussian white noise standard deviation σ Perona–Malik
model

Catté
model ,e improved model (own gradient) ,e improved model

(average gradient)
0.2 1.64 1.65 1.71 3.05
0.5 0.86 1.09 1.18 2.39
1 − 1.14 − 0.43 − 0.23 0.71
2.5 − 6.60 − 5.98 − 4.85 − 4.25
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wavelet, the improved model has better denoising perfor-
mance, so the ability to maintain fault features is better, and the
peak information in the signal is well preserved.

At the same time, due to the nonlinearity of the mor-
phological Haar wavelet, the denoising performance and the
fault feature retention ability of the improved model are
better, and the peak information in the signal can be
maintained effectively. ,e conclusion can be confirmed by
the SNR of each algorithm, as presented in Table 1. ,e SNR
of the improved model is higher under different standard
deviations of Gaussian white noise, which indicates that the
introduction of the morphological Haar wavelet and the
second derivative into the Perona–Malik model is necessary,
and its filtering performance has been effectively improved.

Figures 4(a) and 4(b) show that the gradient of the strong
noise point itself and the same direction average gradient of
the strong noise point are utilized to improve the diffusion
coefficient of the denoising results, respectively. From the
signal-to-noise ratio (SNR), as presented in Table 1, we can
see that the same direction average gradient of the strong
noise makes the strong noise point value less, which can
effectively suppress the reverse diffusion of strong noise
points. ,e signal-to-noise ratio of the improved model was
improved (signal-to-noise ratio increased by about 1 dB),
and strong noise adaptive filtering was realized.

As shown in Figures 4(a) and 4(b), respectively, with
gradient and high noise point itself with strong noise point
average gradient direction to improve the diffusion
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Figure 5: CWRU measured data. (a) Noisy bearing signal. (b) Denoised signal with adaptive operator. (c) Denoised signal with wavelet.
(d) Denoised signal with morphology Haar wavelet. (e) Denoised signal with Perona–Malik model.
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coefficient of the denoising results, for its signal-to-noise
ratio (SNR) as presented in Table 1, the experimental results
show that a higher average gradient algorithm with strong
noise makes the strong noise gradient value less, which can
effectively suppress strong noise point reverse diffusion. ,e
signal-to-noise ratio (SNR) of the improved model was
improved by about 1 dB, and strong noise adaptive filtering
was realized.

5.2. Measured Signal Analysis. ,e experimental data of the
Electrical Engineering Laboratory of Case Western Reserve
University (CWRU) in the United States are used to be the

measured vibration signal of rolling bearing. Figure 5
(Figure a1 indicates the time-domain waveform and Fig-
ure a2 indicates the frequency spectrum) shows the signal
derived from the fault vibration data of the inner ring of the
motor end bearing, the sampling frequency is 12 kHz, the
shaft speed is 1772 rpm, the fault diameter is 0.1778mm, and
the fault characteristic frequency can be calculated as
159.9289Hz according to the empirical formula. Due to the
excellent experimental conditions and environment, it is
easy to obtain the fault characteristic frequency by analyzing
the data directly. In order to increase the difficulty of the
experiment and simulate a more real mechanical operating
environment, noise signals are added to the experimental
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Figure 6: CWRU measured data. (a) Noisy bearing signal. (b) Denoised signal with adaptive operator. (c) Denoised signal with wavelet.
(d) Denoised signal with morphology Haar wavelet. (e) Denoised signal with Perona–Malik model.
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data and then denoised in this paper’s experiment. In the
first part, the analog white noise signal with the amplitude of
0.6 is directly added, and in the second part, the analog white
noise signal with the amplitude of 0.5 and several pulse
signals are added. ,en, the method proposed in this paper
and other methods are used for denoising before comparing
the spectrum analysis results, as shown in Figures 5 and6,
respectively.

,e improved model is used to remove the noise in the
signal, as shown in Figures 5(a) and 6(a), and the denoised
signal is shown in Figures 5(b) and 6(b) (Figure b1 represents
the time-domain waveform and Figure b2 represents the
frequency spectrum). In order to further compare the
denoising performance of the proposed method with that of
the classical wavelet method,the morphological wavelet Per-
ona–Malik model, the wavelet soft threshold denoising
method, the morphological wavelet method, and the Per-
ona–Malik model are introduced to remove the noise in the
signal, as shown in Figures 5(a) and 6(a), respectively, and the
denoising signal is presented as shown in Figures 5(c)–5(e) and
6(c)–6(e) (c1, d1, and e1 represent the time-domain wave-
forms, and c2, d2, and e2 represent the frequency spectrum).

,e measured signal experiments in Figures 5 and 6
show that although the Perona–Malik model retains the
details of the signal, it does not effectively remove the noise
in the signal. ,e effect of the soft threshold wavelet
denoising method and the morphological wavelet denoising
method is not ideal; the addition of an isolated strong noise
point affects the selection of threshold value, these two
methods will not only denoise the signal at the same time but
also remove the useful details of the signal and evenmake the
signal after denoising distortion.

In contrast, the proposed model can preserve the details
of the signal and remove the noise in the signal effectively
and highlight its characteristic frequency (the characteristic
frequency of the inner ring fault is 159Hz), which creates
conditions for the extraction of weak fault characteristics
with a strong noise background. Further experiments also
show that the improved model is also very effective for
denoising the fault signals of bearing outer rings, rolling
elements, and other mechanical parts such as gears.
,erefore, the improved model can be used for denoising
mechanical vibration signals, which can denoise and pre-
serve signal characteristics.

6. Conclusions

,e traditional Perona–Malik model has a relatively large-
noise level, and the denoising effect is not ideal, especially
when the signal is interfered by impulsive noise. In order to
deal with these problems, the morphological Haar wavelet
transform is introduced to preprocess the noisy signal; then,
the first and second derivatives are utilized to construct a
novel high-order diffusion coefficient function to suppress.
A strong noise point recognition operator is designed, and
the same two-step average gradient of the strong noise point
is used to replace the gradient of the noise point itself, which
can suppress the back diffusion of the strong noise point and

denoise adaptively better. ,e denoising results of the
simulation signal and the vibration signal of the rolling
bearing fault experiment verify the feasibility and effec-
tiveness of the algorithm in this paper.

In the practice of denoising, the two parameters of the
gradient threshold and the iteration number of the improved
model are obtained through repeated experiments, which
makes the two parameters may not be optimal. ,erefore,
the adaptive values of gradient threshold and the iteration
number of the improved model need to be further studied,
which is one of the research directions in the future.
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