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)e great threat and destructiveness brought by a rock burst make its prediction and prevention crucial in engineering. )e rock
burst hazard evaluation at project locations is an effective way of preventing rock burst since currently real-time prediction is not
available. Since different control factors and discrimination conditions of rock burst were accepted by conventional risk de-
termination methods, the rock burst risk determination in the same area may produce conflicting results. In this study, Naive
Bayes statistical learning models based on different model prior distributions representing highly complicated nonlinear re-
lationship between rock burst hazard and impact factors were built to evaluate the rock burst hazards. )e results suggested that
the Bayes statistical learning model based on a Gaussian prior has the strongest performance over four preset prior distributions.
Combining the rock mechanics parameters measured in the laboratory and the stress data collected on the project sites, the
proposed model was successfully employed to evaluate the kimberlite rock burst risk of a diamond mine in Canada. )e Bayes
statistical learning model exhibits its robustness and generalization in rock burst hazard evaluation, which can be generalized for
similar engineering cases with enough supported data.

1. Introduction

A rock burst is a kind of sudden and severe rock instability,
referring to a dynamic geological disaster caused by the
sudden release of elastic strain energy accumulated in the
rock mass of the underground excavations [1, 2]. Rock burst
ejects a large amount of rocks in a short time, which seri-
ously endangers the safety of construction equipment and
personnel. With the increase of the mining depth and the
tunnel construction, the initial ground stress has seen a
drastic increase, which is more likely to induce rock burst
[3]. Since the first recorded rock burst that occurred in the
United Kingdom in 1738, all mining countries over the
world have recorded rock bursts, including China, Canada,
the United States, and Australia [4].)e Brunswick lead-zinc

mine in Canada, the Macassa gold mine, the Kalgoorlie gold
mine in Australia, and the Idaho lead-zinc-silver mine in the
United States have all experienced rock bursts that caused
serious fatalities [5–7]. In 2018, 21 workers were killed and 4
were injured in a rock burst that occurred in the connecting
lane at 1303 face of Long Yun Coal Mine, He Ze, Shandong
Province, China. In addition to mining, rock bursts are also
likely to occur in other underground excavations. For ex-
ample, More than 1000 rock bursts of different levels oc-
curred during the excavation of the No. 2 diversion tunnel in
Jinping II Hydropower Station on the Ya Long River, which
seriously affected the progress of the project.

)e hazard of the rock burst makes the research on it a
hot topic in the field of rock mechanics and engineering.
Researchers have been committed to predicting the exact
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time and location of rock burst based on the mechanism, so
as to completely eliminate the threat of rock burst. However,
the mechanism of rock burst is complicated, and its control
factors are numerous including the mechanical properties of
the rock, the field stress environment, construction support
parameters, etc. Furthermore, the coupling relationships and
interactions among those various influencing factors are
complicated. Currently, there is no universal and reliable
method for predicting rock burst in real time [8, 9]. Hence,
before the construction of a project, the assessment for the
rock burst risk in certain high-risk areas has become a major
preventive method when rock burst cannot be accurately
predicted in real time and space. Adjusting on-site exca-
vation methods and support parameters with reference to
the results of rock burst risk assessment is also an important
prevention and control measure for rock burst. )e eval-
uation of the rock burst risk is mainly to use the control
factors of rock burst to comprehensively evaluate the pos-
sibility of the rock burst and the potential rock burst in-
tensity. Conventional rock burst risk assessment methods
can be divided into two categories, single index methods and
comprehensive index methods. )e single index methods
use the selected control factors of rock burst to calculate a
result value through the preset formula and then compare it
with threshold value to determine the risk of a rock burst.
)e comprehensive index methods mainly use mathematical
and statistical models to carry out a weighted mapping of the
control factors of rock burst and calculate a comprehensive
value to judge the risk of rock burst. )e common synthetic
index methods to evaluate rock burst risk include principal
component analysis [10], fuzzy mathematics [11], and an-
alytic hierarchy process [12]. Researchers have made
achievements in evaluating rock burst hazards using single
index methods and comprehensive index methods. How-
ever, due to some inherent defects of these two approaches,
the universality is difficult to meet engineering needs, which
is difficult to extend a successful risk assessment case to more
engineering sites. For example, for single index methods, the
calculated index is not only difficult to comprehensively
reflect the mechanical behavior of the rock mass and the
instability characteristics under extreme conditions but also
requires presetting artificial threshold values for the risk
assessment. However, in different rock burst cases, the
threshold is determined by the constructor mainly based on
experience. For example, both Kidybinski and Singh pro-
posed to use strain energy storage index to judge the risk of
coal rock burst. For coal mines in Silesia, Poland, Kidy-
binski’s judgment criteria are that the strain energy storage
index less than 2.5 refers to no rock burst hazard; the strain
energy storage index greater than 2.5 and less than 3.5 refers
to medium rock burst hazard; the energy index greater than
3.5 and less than 5 is regarded as a strong rock burst hazard;
the strain energy storage index greater than 5 refers to the
violent rock burst hazard [13]. By contrast, Singh puts
forward the rock burst hazard criteria for hard rock as
follows: value less than 10 is regarded as no rock burst
hazard; value greater than 10 and less than 15 is regarded as
medium rock burst hazard; and value greater than 15 is
regarded as strong rock burst hazard [14]. In terms of the

comprehensive index method, it has to set a threshold value
for risk judgment, as well as to assign weights to the selected
control factors of rock burst. )e aforementioned traditional
rock burst risk assessment methods are greatly affected by
the subjective judgment of researchers, which is difficult to
accurately and objectively judge the risk of rock burst.
Hence, the methods accepted in some cases are difficult to
generalize to other rock burst cases.

In view of the shortcomings of traditional risk eval-
uation approaches, it raises a new possibility to use the
statistical learning method to judge the risk of rock burst
only from case data. Statistical learning is a way of
obtaining knowledge from existing data and predicting
using new data. Commonly used statistical learning
models include support vector machines, feedforward
neural networks, logistic regression, and Bayesian
methods. Rock burst risk assessment can be regarded as a
multiclass supervised-learning task, which means to use
the collected rock burst case data (including the values of
the control factors of rock bursts and the corresponding
intensity level) to train a statistical learning model and
then feed new input data control factors for prediction. As
an end-to-end data-driven method, statistical learning
does not need any prior information about the data as well
as considering the complex mapping relationship for the
intermediate process in the process of model training and
prediction. According to universal approximation theo-
rem, a feedforward neural network with only one hidden
layer, which embeds enough neurons, can approximate
any continuous function on a compact subset of Rn with
arbitrary precision [15]. )erefore, the statistical learning
model is suitable for multiclassification tasks such as rock
burst hazard evaluation which is not clear enough, in-
volving many variables and complex mapping
relationships.

)is study collected rock burst case data to train Naive
Bayes classifiers under various prior distributions. By
comparing the classification accuracy, the Bayesian classifier
based on Gaussian distribution is selected as the rock burst
risk assessment model. )is model is used to evaluate the
rock burst risk of kimberlite in a diamond mine in Canada.
Compared with other statistical learning models, the Naive
Bayes classifier does not significantly reduce the model
accuracy when the training sample size has been reduced,
which has strong adaptability to small sample tasks [16].
Rock burst cases are all over the world, and most of them are
difficult to access case reports. Due to the lack of control
factor data of some cases, the complete and high-quality data
that can be collected are limited, which means that the rock
burst hazard evaluation task is a small sample training task.
)erefore, it is reasonable to use the Naive Bayes classifier to
evaluate the rock burst hazard. )e remainder of this article
is organized as follows: Section 2 discusses the background
theory of the Naive Bayes model; Section 3 gives the
complete process of model construction, including data
collection, model training, and validation; Section 4 uses the
trained model to conduct rock burst hazard evaluation in a
diamond mine; and finally, the conclusion and discussion
are given in Section 5.
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2. Bayesian Statistical Learning Model

)e Naive Bayesian statistical classification method has
excellent performance in many practical applications, such
as file classification and spam filtering.

Compared with most random processes, the Naive
Bayes classification method can extract data features of
each dimension more quickly, reducing the difficulty of
high-dimensional data calculation. However, the proba-
bility calculation of Naive Bayes in practice is significantly
different from the true probability, but the impact of this
difference on the classification task can be ignored, and the
classification effect is well represented. )is method as-
sumes that all attributes independently affect the results,
given the sample attributes X� {x1, x2, . . ., xn}, and the
Bayesian class conditional probability corresponding to the
class label y is

P(y|X) � P y|x1, · · · , xn( 􏼁 �
P(y)P x1, · · · , xn|y( 􏼁

P x1, · · · , xn( 􏼁
. (1)

According to the independence hypothesis of Naive
Bayes:

P xi|y, x1, · · · , xi−1, xi+1, · · · , xn( 􏼁 � P xi|y( 􏼁. (2)

For attribute X, the probability of class Y is simplified as

P y|x1, · · · , xn( 􏼁 � P(y)
􏽑

n
i�1 P xi|y( 􏼁

P x1, · · · , xn( 􏼁 �
P(y)

P(X)
􏽙

d

i�1
P xi|y( 􏼁,

(3)

where n is the number of attributes and xi is the value of X on
the i-th attribute.

Generally, for all categories, the probability P(X) has the
same value, so the Bayesian decision criterion based on the
Bayesian optimization classifier is

hnb(x) � argmax
y

P(y) 􏽙
n

i�1
P xi|y( 􏼁. (4)

Obviously, the judgment process of the Naive classifier of
expression (4) is to estimate the prior probability P(y) of the
class based on the dataset, and each attribute estimates the
conditional probability P(xi|y).

)rough the basic formula of the above Bayes algorithm,
the basic process is as follows:

(1) Let X � x1, x2, . . . , xn􏼈 􏼉 be the sample to be classi-
fied, where xi is a characteristic attribute of X.

(2) )e set of categories to be classified is C � y1,􏼈

y2, . . . , yn}.
(3) Calculate the probability of P(y1|X)P(y2|X),

. . . , P(yn|X), respectively.
(4) If P(yk|X) � max P(y1|X), P(yk2|X), . . . , P(yn|􏼈

X)}, then X is considered to be of type yk.

According to the prior distribution that the data obey,
the Naive Bayes classifier can be divided into Gaussian,

multinomial, complement, Bernoulli, and other models. If
the distribution of sample features is continuous, the at-
tribute features can be assumed to obey Gaussian
distribution:

P xi|y( 􏼁 �
1

�����
2πσ2y

􏽱 exp −
xi − μy􏼐 􏼑

2

2σ2y
⎛⎝ ⎞⎠. (5)

)e parameters σy and μy can be calculated using
maximum likelihood estimation (MLE).

Schütze H et al. supposed that when the characteristic
attributes are continuous values, which distribution obeys
the Bernoulli distribution, the Bernoulli’s Naive Bayes
classification algorithm can be introduced for calculating
posterior distribution [4–6]. )e classification decision rule
is calculated based on the Bernoulli distribution probability
as follows:

P xi|y( 􏼁 � P(i|y)xi +(1 − P(i|y)) 1 − xi( 􏼁. (6)

Similarly, when the data prior distribution is polynomial
distribution or other distribution, the corresponding
Bayesian classifier can also be constructed correspondingly.

)e control factors of rock burst are numerous and the
relationship is complicated. It is difficult to develop the
mathematical laws that the control factors obey from the
mechanism, which is difficult to predict the predetermined
distribution of its characteristics. In this paper, Naive
Bayesian models based on Gaussian, polynomial, comple-
ment, and Bernoulli distributions are established, respec-
tively, performing statistical learning on the same dataset
and finally adopting the prior distribution with the best
performance as that prior distribution of the Bayesian
classifier.

In general, the Naive Bayes classifier can only conduct
binary classification task.)e risk assessment of rock burst is
a multiclass classification task, which has to construct a
Naive Bayes classifier suitable for multiclass classification.
)is article establishes multiple basic binary classifiers and
finally completes the multiclass classification task through a
“voting” mechanism. )e basic idea is to establish a binary
classifier between each pair of all categories, that is to say,
there are n categories to be classified, and n (n− 1)/2 clas-
sifiers are established. Let Cij represent the classifier between
category i and category j. For a single training sample X, if
the classification result belongs to i, then class i gets “one
vote.” Otherwise, category j gets “one vote.” Until all n
(n− 1)/2 classifiers have voted for X, X will belong to the
category with the most votes.

3. Model Construction and Training

3.1. Sample Data Collection. Rock burst is caused by the
concentration of on-site stress exceeding the energy storage
limit of the rock mass. )ere are two main control factors of
a rock burst, the field stress indexes and the rock mass
properties. In order to reflect the nature and characteristics
of rock burst comprehensively, this article adopted the
tangential stress of surrounding rock σθ (MPa), the ratio of
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tangential stress to uniaxial tensile strength σθ/σt, the ratio of
uniaxial compressive strength to uniaxial tensile strength
σc/σt, and elastic energy index WET as the attributes of the
data sample to evaluate the risk of rock burst. According to
the commonly accepted standards for ranking a rock burst
grades, a rock burst can be divided into four grades [17].)at
is, no rock burst, moderate rock burst, strong rock burst, and
severe rock burst. )ese four levels are used as data labels to
participate in the construction of statistical learning models
by digitizing. 0 means no rock burst risk, 1 means medium
rock burst risk, 2 means strong rock burst risk, and 3 means
violent rock burst risk.

)is article collected 111 rock burst cases from different
underground excavations over the world [4, 11, 12, 18–20].
Each data sample comprises four control factors of the rock
burst mentioned above in this research as well as the cor-
responding rock burst grades, of which the dataset recorded
a total of 13 samples labelled 0, 29 samples labelled 1, 55
samples labelled 2, and 15 samples labelled 3. )e details of
the data samples used to build the Bayes models are shown in
Table 1.

3.2. Model Training and Verification. )is article uses the
Scikit-Learn statistical learning platform with Python lan-
guage to build and train the Naive Bayes model. In order to
eliminate the dimensional difference of the sample attri-
butes, the sample attributes are standardized according to
formula (7). All attributes are scaled between [0, 1], x is the
original value of the attribute, and x′ is the standardized
sample attribute value.

f: x⟶ x′ �
x − xmin

xmax − xmin
. (7)

In order to compare the classification effect of the Naive
Bayes models under the four prior distributions, trained
models should use unseen samples that have not participated
in the training for model verification. In statistical learning,
the number of training samples have a great impact on the
model’s performance. )is article collected 111 learning
samples, which are typically small. If a part of samples are
retained for model validation, it will further reduce the
number of samples participating inmodel training and harm
the model performance. Hence, this paper uses a 10-fold
cross-validation method to verify the accuracy of the model.
)at is, all training samples are randomly divided into 10
disjoint subsets. In each round of training, nine subsets are
selected for model training, and the remaining one is used
for model validation. )e final classification accuracy is the
average accuracy of 10 round validations. )is strategy
ensures that all samples participate in model training and
also ensures that the validation samples do not participate in,
that is, the independence of verification. Figure 1 shows a
schematic diagram of the 10-fold cross-validation.

Figure 2 shows the training process of four Bayesian
models with different prior distributions.

We can see from Figure 2 that as the training samples
enter the model, the accuracy of the Gaussian Bayes classifier
is steadily increasing. Until all samples are involved in

training, the model accuracy stabilizes at 0.4. Complement
Naive Bayes classifier has the worst accuracy, only 0.25,
which is equal to the probability of random guessing. )e
model obviously did not acquire any knowledge from the
training samples. However, the classification accuracy of
Gaussian Bayes classifier, Bernoulli Bayes classifier, and
polynomial Bayes classifier is not much different, and they
are all approximately 0.4. It is difficult to determine the pros
and cons of the three solely based on classification accuracy.

3.3. Unequal Cost Classification Results. In Section 3.2, the
model validation adopted an intuitive metric, that is, the
classification accuracy of the model (correctly classified
samples/total samples). However, in some special cases,
classification accuracy is not a universal measure for clas-
sification task. Table 2 gives the confusion matrix of the rock
burst classification task in the case of multiclass classification
[21]. )e elements on the diagonal represent the correct
classification, whose misclassification costs are all zero.
Other elements represent the corresponding misclassifica-
tion cost in the case of misclassification. Obviously, this is an
asymmetric matrix. For example, Costvn represents that
violent rock bursts were misclassified as no rock burst. )is
may lead to the lack of timely and effective prevention and
control measures at the project field, resulting in huge ca-
sualties. Costnv represents that it misclassified no rock burst
as violent rock burst. )is will lead to excessive precautions
in areas where there is no danger of rock bursts, resulting in
economic and efficiency losses. )e first misclassification
cost is much higher than the second. )erefore, the risk
assessment of the rock burst is a unequal cost classification.

Consider the following case. )ere are two classifiers A
and B; classifier A misclassified all no rock burst cases as
violent rock burst cases while classifier B misclassified all
violent rock burst cases as no rock burst. )e classification
accuracy of the two is equal which is zero. However, the
misclassification cost for classifier A is lower, and classifier A
is better than classifier B. )erefore, the classification ac-
curacy cannot fully reflect the performance of a classifier,
especially when used for unequal cost classification tasks.

)is article introduces receiver operating characteristic
(ROC) curve to measure the performance of Bayesian
classifiers [22]. )e original intention of ROC curve is
designed to serve two classification tasks with unequal costs.
Combined with the actual needs of this article, the ROC
curve is extended to four classifications. We drew the ROC
curve of each category and finally used the average curve to
reflect the performance of the entire classifier. According to
ROC performance criteria, the classifier with the largest area
under the curve (AUC) has the strongest performance.
Figure 3 reflects the unequal cost classification performance
of the three Bayesian classifiers.

4. Engineering Case Analysis

)e Bayesian classifier based on Gaussian distribution is
found to have the best performance among classifiers with
four prior distributions, that is, the strongest rock burst risk
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Table 1: Sample data.

Number Case σθ σθ/σc σc/σt WET Risk Label

1 Yu Zixi Hydropower Station Water Diversion Tunnel, China 90 0.53 15.04 9 Strong 2
2 Yi Chuan No. 2 Tunnel, China 90 0.41 29.73 7.3 Medium 1
3 Cavern Highway Tunnel, Iran 62.6 0.38 17.53 9 Medium 1
4 Takiyami Power Station Headrace tunnel, Japan 55.4 0.32 24.11 9.3 Strong 2
5 Yutoo Hydropower Station, Norway 30 0.34 23.97 6.6 Strong 2
6 Yutoo Hydropower Station, Norway 48.75 0.27 21.69 5 Strong 2
7 Yutoo Hydropower Station, Norway 80 0.44 26.87 5.5 Medium 1
8 Guanyuk Road Tunnel, Japan 89 0.38 28.43 5 Strong 2
9 Jin Ping No. 2 Diversion Tunnel, China 98.6 0.82 18.46 3.8 Strong 2
10 Jin Ping No. 2 Diversion Tunnel, China 35 0.26 14.34 2.9 Medium 1
11 Tasmanian River Hydropower Station, Australia 157.3 0.58 13.18 6.27 Violent 3
12 Tasmanian River Hydropower Station, Australia 148.4 0.45 17.53 5.08 Medium 1
13 Tasmanian River Hydropower Station, Australia 132.1 0.39 20.86 4.63 Strong 2
14 Tasmanian River Hydropower Station, Australia 127.9 0.28 28.9 3.67 Medium 1
15 Tasmanian River Hydropower Station, Australia 107.5 0.2 36.04 2.29 No 0
16 Tasmanian River Hydropower Station, Australia 96.41 0.19 47.93 1.87 No 0
17 Tasmanian River Hydropower Station, Australia 167.2 0.66 13.2 6.83 Violent 3
18 Tasmanian River Hydropower Station, Australia 118.5 0.22 33.75 2.89 Medium 1
19 Hui Ze Lead-Zinc Mine, China 34.15 0.63 4.48 3.17 Medium 1
20 Jin Chuan No. 2 Mine, China 60 0.444 8.976 4.86 Medium 1
21 Jin Chuan No. 2 Mine, China 60 0.902 6.841 2.15 Medium 1
22 Jin Chuan No. 2 Mine, China 60 0.564 9.498 6.11 Medium 1
23 Jin Chuan No. 2 Mine, China 60 0.697 12.05 2.85 Medium 1
24 Jin Chuan No. 2 Mine, China 60 0.402 16.04 3.5 Medium 1
25 Jin Chuan No. 2 Mine, China 60 0.439 13.13 2.12 Medium 1
26 Ma Luping lead-zinc mine, China 63.8 0.58 24.4 6.31 Strong 2
27 Ma Luping lead-zinc mine, China 2.6 0.13 6.67 1.39 No 0
28 Ma Luping lead-zinc mine, China 44.4 0.37 24 5.1 Medium 1
29 Ma Luping lead-zinc mine, China 13.5 0.45 11.2 2.03 Medium 1
30 Ma Luping lead-zinc mine, China 70.4 0.64 24.4 6.31 Strong 2
31 Ma Luping lead-zinc mine, China 3.8 0.19 6.67 1.39 No 0
32 Ma Luping lead-zinc mine, China 57.6 0.48 24 5.1 Strong 2
33 Ma Luping lead-zinc mine, China 19.5 0.65 11.2 2.03 Strong 2
34 Ma Luping lead-zinc mine, China 81.4 0.74 24.4 6.31 Violent 3
35 Ma Luping lead-zinc mine, China 4.6 0.23 6.67 1.39 No 0
36 Ma Luping lead-zinc mine, China 73.2 0.61 24 5.1 Strong 2
37 Ma Luping lead-zinc mine, China 30 1 11.2 2.03 Violent 3
38 Birmingham Iron Mine, America 15.2 0.283 9.68 1.92 No 0
39 Birmingham Iron Mine, America 88.9 0.627 10.7 3.62 Violent 3
40 Birmingham Iron Mine, America 59.82 0.697 11.7 2.78 Strong 2
41 Birmingham Iron Mine, America 32.3 0.479 10.1 1.1 No 0
42 Birmingham Iron Mine, America 30.1 0.34 23.97 6.6 Violent 3
43 Birmingham Iron Mine, America 18.8 0.11 27.22 7 No 0
44 Birmingham Iron Mine, America 34 0.23 25.25 7.6 Medium 1
45 Birmingham Iron Mine, America 38.2 0.72 13.59 1.6 No 0
46 Birmingham Iron Mine, America 11.3 0.13 18.75 3.6 No 0
47 Birmingham Iron Mine, America 92 0.35 24.58 8 Medium 1
48 Birmingham Iron Mine, America 62.4 0.27 24.74 9 Violent 3
49 Birmingham Iron Mine, America 43.4 0.32 18.96 5.6 Violent 3
50 Birmingham Iron Mine, America 11 0.1 21.43 4.7 No 0
51 Cheng Chao Iron Mine, China 18.7 0.23 7.52 1.5 No 0
52 Cheng Chao Iron Mine, China 28.6 0.23 10.22 2.5 Strong 2
53 Cheng Chao Iron Mine, China 29.8 0.23 11.52 4.6 Strong 2
54 Cheng Chao Iron Mine, China 33.6 0.22 14.45 5.2 Strong 2
55 Cheng Chao Iron Mine, China 26.9 0.29 9.8 3.7 Strong 2
56 Cheng Chao Iron Mine, China 55.9 0.44 20.3 8.1 Violent 3
57 Cheng Chao Iron Mine, China 59.9 0.62 8.26 1.8 Medium 1
58 Cheng Chao Iron Mine, China 68 0.64 17.51 7.2 Violent 3
59 Dong Guashan Copper Mine, China 105.5 0.56 9.74 7.27 Strong 2
60 Dong Guashan Copper Mine, China 105.5 0.62 14.05 5.76 Strong 2
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assessment ability. )e trained Gaussian classifier was used
to evaluate the rock burst hazard of kimberlite in a diamond
mine in Northern Canada.

)e diamond mine is located in the North Slave Lake
region, 250 kilometers north of Yellowknife, the capital of
Yukon Province, Canada. )e mining area includes three
kimberlite pipes with the diameters more than 500m, all of
which are blasted underground. Kimberlite is a kind of

igneous rock that usually contains minerals such as dia-
monds. )e lithology of the kimberlite is hard, which is
prone to burst. Figure 4 shows an aerial view of this diamond
mine and a mining kimberlite stope.

In order to obtain the corresponding risk assessment
attributes, laboratory tests of rock properties and project site
investigations are implemented. Twelve locations in two
kimberlite pipes are selected to investigate the tangential

Table 1: Continued.

Number Case σθ σθ/σc σc/σt WET Risk Label

61 Dong Guashan Copper Mine, China 105.5 0.55 11.11 3.97 Strong 2
62 Tong Yu Tunnel K21 + 680, China 47.56 0.81 16.71 5 Medium 1
63 Tong Yu Tunnel K21 + 680, China 43.62 0.56 24.41 6 Medium 1
64 Da Xiangling Tunnel YK55 + 119, China 25.7 0.43 45.9 1.7 No 0
65 Da Xiangling Tunnel ZK55 + 154, China 26.9 0.42 29.9 2.4 Medium 1
66 Da Xiangling Tunnel YK55+ 819, China 40.4 0.56 34.3 1.9 Medium 1
67 Da Xiangling Tunnel ZK55 + 854, China 39.4 0.6 28.3 3.4 Strong 2
68 Da Xiangling Tunnel YK56 + 080, China 38.2 0.53 21 3.6 Strong 2
69 Da Xiangling Tunnel YK56 + 109, China 45.7 0.66 21.5 4.1 Strong 2
70 Da Xiangling Tunnel YK56 + 177, China 35.8 0.52 17.8 4.3 Strong 2
71 Da Xiangling Tunnel YK56 + 343, China 39.4 0.57 25.6 3.8 Strong 2
72 Da Xiangling Tunnel ZK56 + 374, China 40.6 0.61 25.6 3.7 Strong 2
73 Da Xiangling Tunnel YK56+ 421, China 39 0.56 29.2 4.8 Strong 2
74 Da Xiangling Tunnel YK61 + 305, China 57.2 0.71 32.2 5.5 Violent 3
75 Da Xiangling Tunnel YK61 + 382, China 55.6 0.49 49.5 4.7 Strong 2
76 Da Xiangling Tunnel YK61 + 400, China 56.9 0.46 45.5 5.2 Strong 2
77 Da Xiangling Tunnel ZK61 + 440, China 62.1 0.47 55 5 Strong 2
78 Da Xiangling Tunnel YK61 + 445, China 29.7 0.26 42.9 3.7 Medium 1
79 Da Xiangling Tunnel YK61 + 450, China 29.1 0.31 36.1 3.2 Medium 1
80 Da Xiangling Tunnel YK61 + 493, China 27.8 0.31 42.8 1.8 No 0
81 Da Xiangling Tunnel YK61 + 827, China 30.3 0.34 28.3 3 Medium 1
82 Da Xiangling Tunnel YK61 + 382, China 55.6 0.49 49.5 4.7 Strong 2
83 Da Xiangling Tunnel ZK56 + 451, China 41.6 0.61 25 3.7 Strong 2
84 Da Xiangling Tunnel ZK56 + 479, China 40.1 0.55 31.3 4.6 Strong 2
85 Da Xiangling Tunnel ZK61 + 201, China 58.2 0.69 32.1 5.9 Violent 3
86 Da Xiangling Tunnel ZK61 + 352, China 56.8 0.5 50.9 5.2 Strong 2
87 )e Hegula Tunnel, Norway 54.4 0.34 21.92 4.9 Strong 2
88 West Code Tunnel, Norway 47.3 0.27 21.34 5 Strong 2
89 Sewage Tunnel, Norway 73.5 0.42 21.6 4.8 Strong 2
90 La Xiwa Hydropower Station Underground Chamber ,China 56.3 0.32 23.78 8.9 Strong 2
91 Sheng Qiao Hydropower Station Diversion Tunnel, China 29.7 0.33 25 6.5 Strong 2
92 Er Tan Hydropower Station Branch tunnel, China 88.2 0.41 29.45 6.9 Medium 1
93 Jin Ping Hydropower Station Diversion Tunnel, China 97.2 0.81 18.75 4 Strong 2
94 Yu Zixi Water Hydropower Station Diversion Tunnel, China 87.5 0.53 15.14 8.8 Strong 2
95 A gold mine roadway, South Africa 108 0.5 25.78 7.1 Violent 3
96 Hoist underground cavern, South Africa 93.9 0.47 25.06 6.3 Strong 2
97 Galena Gold Mine, America 52 0.3 25 5.2 Strong 2
98 Sewage Tunnel, Norway 109.4 0.58 31.15 6.9 Strong 2
99 Sewage Tunnel, Norway 85.7 0.46 24.03 5.8 Medium 1
100 Sewage Tunnel, Norway 79.8 0.44 28.57 4.7 Strong 2
101 Long Yangxia Hydropower Station Underground Chamber, China 21.6 0.12 31.03 7.6 No 0
102 Tai Pingyi Hydropower Station Underground Chamber, China 59.4 0.36 17.74 8.9 Medium 1
103 Li Jiaxia Hydropower Station Underground Chamber, China 10.8 0.09 23.53 5.5 No 0
104 Kotoyo Tunnel, Japan 79 0.36 26.83 4.8 Strong 2
105 Vietas Water Power Station Diversion Tunnel, Sweden 81 0.45 27.27 5.1 Medium 1
106 Raibl metal mine tunnel, Italy 103.6 0.74 17.72 5.2 Violent 3
107 Brugge Hydropower Station Underground Chamber, Switzerland 35.6 0.23 29.25 7.9 No 0
108 Waterfall Ditch Hydropower Station Underground Chamber, China 43.4 0.35 20.5 5 Strong 2
109 Qin Ling Tunnel of Xi Kang Railway, China 60.7 0.54 14.2 6.2 Strong 2
110 Bayu Tunnel, China 74.2 0.39 21.3 7.1 Violent 3
111 Kamchik Tunnel, Uzbekistan 59.6 0.4 18.9 6.9 Violent 3
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Figure 1: Schematic diagram of the 10-fold cross-validation process of the model.
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Figure 2: Model training process.

Shock and Vibration 7



stresses of the surrounding rockmass.)e rock samples near
the survey locations are extracted to test the rock burst
attribute parameters. )e distribution of the survey area in
kimberlite pipes and the schematic diagram of the lab tests
are shown in Figure 5.

Table 3 shows the rock burst attributes of 12 kimberlite
samples. )e Naive Bayes classifier with Gaussian prior
distribution is used to evaluate the rock burst hazard, and the
corresponding hazard evaluation results are obtained.

)e hazard evaluation results show that seven out of the
12 sampling areas had medium rock burst hazard, three had

strong rock burst hazard, and the remaining two areas had
no rock burst hazard.)e evaluation results matchedmining
logs which recorded two rock burst cases in this diamond
mine in 2017. )e first rock burst case occurred in the haul
load at the N9750 level of the A154 kimberlite pipe, near the
No. 7 sampling location. )e second rock burst case oc-
curred in the haul road at the N9850 level of A418 pipe, near
the No. 12 sampling location. )e mining log recorded the
first rock burst case situation in which the rock mass was
peeling off from the roof of the roadway and accompanied by
a small-scale ejection, damaging the bolt and wire mesh

Table 2: Generalized confusion matrix for risk evaluation task of rock burst.

Misclassification cost Prediction grade
No rock burst Medium rock burst Strong rock burst Violent rock burst

Actual grade

No rock burst 0 CostNM CostNS CostNV
Medium rock burst CostMN 0 CostMS CostMV
Strong rock burst CostSN CostSM 0 CostSV
violent rock burst CostVN CostVM CostVS 0
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Figure 3: ROC curves and corresponding AUCs for three Bayesian models.
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support of the roadway. )e length of the rock burst area is
about 3m, and no rock burst sound signal was recorded at
the location before the occurrence. )e second rock burst
was even more severe. )e rock mass ejected from the roof
and the roadway support was completely damaged. )e
length of the rock burst area reached 12m. According to the

rock burst evaluation rules, the first rock burst can be de-
termined as a medium rock burst, and the second one can be
determined as a strong rock burst.)e rock burst cases verify
the effectiveness of our proposed Gaussian distribution
Bayesian model.

5. Conclusion and Discussion

(1) )is paper uses a statistical learning model to obtain
information from the collected data of 111 rock burst
cases and trains Naive Bayes classifiers based on dif-
ferent prior distributions. By comparing the classifi-
cation performance of the four classifiers with different
prior distributions, we finally determined that the
Naive Bayesian model based on Gaussian distribution
has the strongest classification ability. )e trained
model was used to determine the rock burst hazard of
kimberlite in a diamond mine in Canada. )e evalu-
ation results obtained from the proposed model match
the rock burst observations on the site, which verifies
the applicability of the model.

(2) )e core part of constructing a Bayesian classifier is to
determine the distribution type of training samples.

(a) (b)

Figure 4: An aerial view of the diamond mine and a schematic diagram of mining kimberlite pillars [23].

(a)

Kimberlite pipe A418 Kimberlite pipe A154

Kimberlite pipe (north) A154Kimberlite pipe (south) A154Kimberlite pipe A418

Sampling locations 1–5
Sampling locations 6–10
Sampling locations 11–12

(b)

Figure 5: Schematic test of mechanical parameters and field sampling points of kimberlite.

Table 3: Sample attributes and corresponding rock burst risk
assessment results.

Sampling
point

σθ
(MPa) σθ/σc σc/σt WET

Risk assessment
results

1 18.167 0.37 31.4 3.3 No
2 21 0.35 18.9 1.7 Medium
3 31.16 0.38 21.2 2.3 Strong
4 46.376 0.62 25.1 3.2 Medium
5 48.64 0.64 18.6 2.5 Medium
6 22.92 0.4 40 1.5 Medium
7 99.088 0.88 30.1 5.2 Medium
8 35.156 0.44 25.6 2.5 Strong
9 15.84 0.32 22.9 2.8 No
10 13.02 0.2 28.5 1.2 Medium
11 21.12 0.4 24.2 2.3 Medium
12 29.121 0.51 17.1 2.2 Strong
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)e four control factors of rock burst selected in this
paper represent the two necessary conditions inducing
a rock burst.)e interactions over these control factors
are complicated, which is difficult to determine the data
distribution of attributes in advance solely through the
rock burst mechanism. )is paper compares four
commonly used prior distributions through model
validation and finds that the Gaussian Bayesian clas-
sifier works the best. Compared with the other three
prior distributions, the selected rock burst attributes
follow the general Gaussian distribution.

(3) Although the performance of the model is in line with
expectations, it can be seen that the performance of the
model still needs to be improved. For example, the
general classification accuracy of themodel in Figure 2
is slightly higher than 0.4, and there is still much room
for improvement. Another shortcoming is the “partial
discipline” of the model. By analyzing the ROC curve,
it can be seen that the model has better performances
on the evaluation of no and strong rock burst hazards
than on moderate and severe rock burst hazards.

(4) Taking the characteristics of the proposed Bayesian
model into account, the followingmeasures are expected
to improve model performance. )e straightforward
one is to more accurately derive the data distribution of
the control factors of the rock burst. Combining the
physical characteristics of the rock burst, we can explore
the mathematical laws of the control factors, so as to
establish the prior distribution of the data more accu-
rately and improve the performance of the Bayesian
model.)e second is to collect more learning samples. If
it is difficult to accurately determine the prior distri-
bution for data, collecting more samples can endow the
model the better prediction performance. )e first
method allows the Bayesian model not to be limited to
several commonly used distributions. Building accurate
prior distribution will cause a qualitative improvement
in model performance. However, when the first method
fails to realize, the second one can make up for the
complement of model performance. However, due to
the fixed prior distribution of the model, the second
method can only achieve limited performance im-
provement of the model.

(5) )is article discards the conventional strategies
based on the mechanism for rock burst hazard
evaluation. )is paper starts from the data, uses the
statistical learning model to automatically obtain
data information, and matches the knowledge ob-
tained by the new input to complete the task of rock
burst risk assessment. )e ideas in this article can
provide references for the rock burst prevention and
prediction of mine dynamic disasters.
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