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The linear barycentric rational collocation method for beam force vibration equation is considered. The discrete beam force
vibration equation is changed into the matrix forms. With the help of convergence rate of barycentric rational interpolation, both
the convergence rates of space and time can be obtained at the same time. At last, some numerical examples are given to validate

our theorem.

1. Introduction

Beam vibration is the amount and direction of movement
that a beam exhibits away from the point of applied force or
the area of attachment. There are lots of application in-
cluding the material used for the construction, length of the
beam, construction of bridges, buildings, towers and the
amount of force applied, and so on. Recently, applications of
nanobeams in engineering structures [1, 2] like nonvolatile
random access memory, nanotweezers, tunable oscillator,
rotational motors, nanorelays, feedback-controlled nano-
cantilevers have also been developed.

There are lots of numerical methods [3-5] to solve the
beam force vibration equation such as the finite difference
method, finite element method, differential quadrature
method, multiscale method, and spectral methods. The
barycentric formula is studied in [6-8] and has been used to
solve Volterra equation and Volterra integro-differential
equation [9, 10]. Cirillo et al. [11-14] have proposed a ra-
tional interpolation scheme which has high numerical sta-
bility and interpolation accuracy on both equidistant and
special distributed nodes. In [15-17], integro-differential
equation, heat conduction equation, and biharnormic
equation are solved by linear barycentric rational collocation
method and the convergence rate is proved. In recent papers,
Wang et al. [18-21] successfully applied the collocation

method to solve initial value problems, plane elasticity
problems, incompressible plane problems, and nonlinear
problems which have expanded the application fields of the
collocation method.

In this paper, we focus on the beam force vibration
equation by barycentric rational interpolation methods.
With the help of barycentric rational polynomial, the col-
location scheme for beam force vibration equation and its
matrix equation have been presented. The convergence rate
of linear barycentric rational collocation methods has been
proved. At last, two examples are presented to illustrate our
theorem analysis.

2. Collocation Scheme for Beam Force
Vibration Equation

In this article, we pay our attention to the numerical solution
of beam force vibration as

o’u o'u
—+ El— =g(x,1),
o TEga=aten

By taking a? = (El/pA) and f (x,t) = (q(x,t)/pA), we
get the equation of EulerBernoulli beam as
o’ o*
—Zt+a2—i:f(x,t), 0<x<l;t>0, (2)
ot 0x

pA 0<x<l;t>0. (1)
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with boundary conditions as follows:

Shock and Vibration

is the weight function. Taking equation (5) into equation (2),

1(x,0) = b, (x): wemhave
u, (x,0) = ¢,(x), 0<x<1, ZRJ (x)i; () + a° ZR(4) (u;(t) = f (x,1),
u(0,) = 0, o -
u,, (0,6)=0, t>0, 3 ZRj(xi)ﬁj(t)+aZZR§4) (x)uj(t) = f(xpt), i=0,1,....,m
j=0 Jj=0
u(0,t) =0, 8)
u,(0,t) =0, >0, . . .
0. = then, we change the form into the following equation:
XX.X 0 t
u, (0,6)=0, t>0. Z 8t (£) +a’ ch”uj(t) = f;(t), i=0,1,....m
=
The free vibration frequency of the beam is only related 9)

to the geometric and material parameters of the beam. The
forced vibration of beam under external load is the result of =~ where R; (x;) =6, R" (x;) = C @D c® k=12 f(x,t) = f;

ij> ij

superposition of free vibration and external excitation. (t),i=0,1,...,m. We get the matrix form as
We partition the interval [a,b] into 0=x,<x;< . (1) )
<x, =Lh=(I/m)and [0,T]into 0 = o <f, < --- <t, = WO [ Con [ @] [0
T,7= (T/n) with Q= 1[0,1] x [0,T] and. (xpt;),i=1,2, : +a : : : = : ,
omyj=12,...,n i (t @ . cW t t
We set iy, (£) Cono Copn I L1ty (1) Jm(®)
(10)
u(x,t)=u;(t), i=0,1,...,m, (4)
where u(t) = [u, (t) u, (), .. u, (O] and f(t) = [f, (1),
and its barycentric interpolation approximation is f1),..., fa (0] By takmg the notation,
u(x,t) = ZRj(X)uj(t), (5) ui(ti) :u(xi,t]) =wy i=0,1....mj=0,1,....n
= "
u; (t) = ZRk(t)uik, i=0,1,...,m
where k=0
11)
(w ilx —x ) (
Ri(x)=— " "7/ (6)
A I TN we have
is the basis function, and
i+d
we =Y (-1 J] (7)
€] j=ij+k Xk~ f
sz( 7 ox @ @
Coo - C| n fo(tj)
2| . . .
: +as| D) Ry(t; )y : ZRk( Dwa|=| + ) (12)
no (4) (4) [Lk=0 )
o | 0l )
k=0

where j=0,1,...,n
Its matrix form can be expressed as

[(1,6D?)+a*(c?el,)]U=F.

The matrix equation can also be written as

LU =F,

where L = (I,® D?) +a*(C%®1I,) and ® is Kronecher
product of matrix:

T

(13) U = [topy thors - - > thops U105 Uyt -+ > Ui - - > Uiy Uyt - - ] >
T
F=[foo forr---s fow F1o0 Frvs-- o> frm- oo Fonos fonts -+ > fonn] >
(15)

14
(14) fij=f(xpt)),i=0,1,...,m;j=0,1,...,n and
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cW _ r.(4)( x-), for k>2, according to mathematical induction, we obtain
& ! J the recurrence formula of m-order differential matrix as
(2)
Cj = r’i'(xj), (16) O
® CH=4cPcV -1 ) i+
P = A(1) e i e LY
are the elements of the differentiation matrices with 1 C,-(f),
w;,/w; L
., (4
r;(tj):tl—t]’ 1) Cim =~ Z
it j=Lj#i
(17) ) (19)
OREPRACTIER @ wnm_ P
2 ) ij .,
j#i Dy =2\ DDy == ). it
Similarly, we have ! @
3 D,~ .
(x) wj/w i " !
ri(x;) = . j#i
IV T T Di(iz):_ z
, , j=lj#i
rj(xi) == Z r; (x;), i=j,
j#i
3. Convergence and Error Analysis
" wj/wi wk/wi 1 . -
r. xA) =2 Z + . j#i, . . . .
AN X - X; XX X — X For the barycentric rational interpolants of function f (x)
J\k#i ! with 7 (x), its error convergence rate is
ri(x) = - Z ”;‘, x;), i=j,
jti
(18)
e(x) = f(x)—r(x)=(x—%x;),. .., (X = Xpq) f [ X0 Xis 1> - - > Xiar X (20)
n—d
T A (x x) — p; A
e(x) = maxe(x)= Lo Mi{ )ni{( Ut AC0) _AG O(hd+l), (21)
a<x<b Zi:o Ai (x) B(x)
where d is the degree of polynomial 7 (x): For the barycentric rational interpolants of function
ned u(x,t) with r,,  (x,t), we can get the barycentric rational
A(x) = Z (1) % s X0 X, interpolants:
i=0
;_d (22) rot) = hn Z;'I:O(wi,j/(x - xi)(t - tj))ui,j (24)
mn ) - )
B(x) = Z A; (x), i Z?:O(wi,j/(x - xi)(t - tj))
i=0
where
where
(-1
Ai(x) = . (23)
' ( —x,),...,(x—xi+d)
) ) ky+d, 1 ky+d, 1
w,; = (-1~ hTR Y . (25)

ky€J; hy=kyhy # j |xi ~ Xp, ky€]j hy=ky,h, # j |tf - thz
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Ji=iki €L, i-d <k <i}, I, ={0,....m—d}, J; = {k,
€l j-dy<k,<j},1,={0,...,n—d,},andd andal2 are
the degree of polynomial of 7, , (x t).
e(x,t) =u(x,t)—r,,(xt)=(x-x,),..., (x — Xirg )u[xi,xm, . ,xi+d1,x]
(26)
+(t =)o (t =i Jultptis - ot t].
le (x, )] <C(K !+ 2%), (28)

The following lemma has been proved by Jean-Paul
Berrut in [10].

Lemma 1 (see reference [10]). For the e(x) defined in

equation (20), we have
le(x)| <Ch™!,
le" ()] < Che,

u e C*a,b),

ueC™®a ), (27)

Proof. For (x,t), the function w; ; (x,t) is well-defined, and
the error functional can be expressed as

o™ TN (A (0w, 1) -
an—dl zn2_d2 A (x)/\j (t)

u('x’ t) ~Vwn (x, t) = T (X, t)))

(29)
le" (0| <Ch™!, ueC™a,bl,d>1.
By the Newton error formula,
Theorem 1. For the e(x,t) defined in equation (26) and
u(x,t) € Ch*2[g, b] x C*=*2[0,T], we have
u(x,t) —r,, (xt) =u(x,t) —u (x,t) +uy (x,£) = 1, (x,1)
=(x-x),..., (x - xi+dl)u[xi,x,~+1, .. ,xi+dl,x,t] (30)
+(t=t))so s (=t )u[tptions - o tja, %ot
we reach that Z A (x)| = 4 'hd -
n,—d
SN (1) 12y Xpags o X s Xt 32
U(X, t) - rm,Vl (x’ t) = [n1—d1 . = ] ny—=d, ( )
Zisg A () S 0]z
L ] - | d,+1
—d, i j=0 d T
YRR Wttt %ot
+ an—dz /\ ®) : Combining equations (29)-(31) together, the proof of
Theorem 1 is completed. O
(31)

By the similarly analysis in Li and Cheng [15], we have

{ le (x, t)|gc(hd1+1 + sz_l)’

Corollary 1. For the e(x,t) defined in equation (26), we have

u(x,t) € C1*3[a,b] x C*%**[0,T],d, > 1,

(33)

leveee (6O <C(RD 72 +25), u(x,t) € C**[a,b] x C2[0,T),d, 23,

Taking the numerical scheme,

n

j;ujR}' (x,t) +a’ Z ujR](-4) (x,8) = f(x,0) (34)

j=1

where Ry (x,1)

Combining equations (1) and (34), we have
Te(x) =e" (x,1) +a’e™” (x,1) = R (x,1), (35)

=f(-x)t)_Rf(xkat))k= 1)2':"')”
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Based on the above lemma, we get the following  where
theorem.
R, (x,t) = uy (x,1) — thyy (X0 £, (38)
Theorem 2. Let Ry (x,t) = f(x,t) = Ry (x, 1),k =1,2,..., Ry (x,t) = @ [thyyr (36, 8) = i (X0 t,)]-
n, we have
As for the R, (x,t), we have
|u(x, 1) —u(x,,,,t,,)|£C(hd‘_3 + sz_l). (36) !
Proof. As
2 2
utt (x’ t) +a uxxxx (x> t) - [utt ('xm> tn) t+a uxxxx (xm’ tn)]
= Uy (X, t) — Uy ('xm’ tn) + aZ [uxxxx (X, t) ~ Uyxxx (xm’ tn)]
=R, (x,1) + R, (x,1),
(37)
Ry (x,1) =ty (x, 1) — thyy (X0 1)
= Uy (X, 1) — uy (xm’ t) +uy (xw t) — Uy (xm’ tn)
-d i -d '
_. Y (=1 uy [xi,xm, s X X t] N Yot D uy, [tj,t]-+1, oot X, t] (39)
- —d —d
ZZO ' A (x) 27:02 Aj (t)
=€y (x, tn) +ey ('xm’ tn)'
Similarly, for R, (x,t), we have
R2 (x’ t) = uxxxx (x’ t) - MXXXX (xm’ tn) = eXXXX (x’ tn) - eXXXX (xm’ tn). (40)
u(x,0)=0, 0<x<l1;
Then, we have
d-3 |, _dy-1 (x,0) =1 x 1< <1
|u(x,t) - u(xm,t,,)| < ZMj(x) [Te(x)| SC(h S ) U X, 0) = +m’ 5S*sh
=1
1 0.5°
(41) u<2,t) =(1 +m>sm t,
The proof is completed. O (43)

4. Numerical Examples

Example 1. Consider the beam force vibration equation:

o’u 1 x*\o'u
—+(=+=)=5=0,
ot x 120/ ox

with the following conditions:

1
ESXSl;tZO, (42)

121 |
u(l,t) =——sin t,
120

1
U, (1,t) = gsin t.

Its analysis solutions is
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TaBLE 1: Convergence rate of equidistant nodes with differentd, (d, = 7) values.

n d =2 d =3 d =4 d =5

8x8 3'506426 -0 1.7148e - 04 2.7309e - 05 2.7309e - 05

16 x 16 2'12126 -0 0'765 32 4.1154¢ - 05 2'(;87 3.6634¢ - 08 9'5770 3.6630¢ - 08 9'5870

32x32 1'164ie -0 0'8;21 9.9209¢ - 06 2'%58 6.9359¢ - 11 9'(;50 9.5628e - 11 8.5875

64 x 64 6'097578 -0 0'92343 2.4447¢ - 06 2'(;22 5.7157e—-07 — 3.7940e - 07 —
TaBLE 2: Convergence rate of equidistant nodes with different d, (d, = 7) values.

n d =2 d, =3 d =4 d =5

88 738130 1.3995¢ - 03 4.6760¢ — 04 1.7882¢ - 04

16 x 16 7'982496 -0 3.2763 4.7529¢ - 05 4'9708 1.3026e - 05 5'1594 1.1934e - 06 7.2560

32x32 9'06856_0 3.1440 2.0817e—-06 4'5119 4.3378e - 07 4'?114 1.3851e-07 3.1131

64 x 64 1'650506 -0 2.4598 1.5216e - 06 — 1.0236e - 06 — 6.4063e - 07 —

FIGURE 2: Errors of LBRCM by quasi-equidistant nodes with m =n = 12andd, =d, = 9.
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x10710

0.6
0 05

FIGURE 3: Errors of equidistant nodes with m =n = 12.

x1079

0.6
0 05

FIGURE 4: Errors of quasi-equidistant nodes with m =n = 12.

TaBLE 3: Convergence rate of quasi-equidistant nodes with different d, (d, = 7) values.

" 4, =2 4, =3 d, =4 d =5

8x8 1'443je -0 1.7229¢ - 04 9.1628¢ - 06 9.1628¢ - 06

16 % 16 1'60536 -0 — 7.4842¢ - 07 7'317 8.0479 10 13554 1.6691e - 09 12.493
32 %32 7'67851‘3 -0 1.0791 6.9197¢ - 06 — 1.4486¢ - 06 — 1.5017¢ - 05 —
64 % 64 1'447246 -0 — 3 '48007 e+0 — 8.0897¢ - 01 — 1.1143¢ 01 —

TaBLE 4: Convergence rate of quasi-equidistant nodes with different d, (d, = 7) values.

" d =2 d =3 d -4 d =5

8x8 1'20739 e=0 1.9645¢ — 04 11008 — 04 4.7330¢ - 05

16x 16 2'603;16 -0 5.6064 6.9740¢ - 07 8%108 2.0174e - 07 9'1262 1.0751e— 08 12,1751
32x 32 1'254??6 -0 — 8.6849¢ - 07 — 7.2689¢ - 06 — 5.8886¢ - 06 —

64 x 64 5.1823e—-0 4.6011 1.0338¢ - 03 — 7.2953e-03 — 5.1897e-03 —
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FIGURE 5: Errors of deflection with quasi-equidistant nodes m = n = 28.
FIGURE 6: Errors of deflection with quasi-equidistant nodes m = n =28 andd, = d, = 25.
TaBLE 5: Convergence rate of deflection with equidistant nodes d, (d, = 7).
n d, =2 d =3 d, =4 d =5
8x8 2.36726€+ 0 3.772216+0 4.932286+0 4.7610e + 02
6% 16 4.17913;e+ 0 5 501 1.30237e +0 B 6.65825e +0 B 7 52800 1.0 B
32 %32 5.2574e+0 . 3.3896e+0 8.586 1.5076e+ 0 8.786 1.2155¢ + 00 9.2746
1 0 2 0 8
64 % 64 373 515 et0 — 7.0233¢— 01 2‘2970 1.0927¢ - 01 3 '7386 4.0207¢ - 02 4.9179
TaBLE 6: Convergence rate of bending moment with equidistant nodes d, (d, = 7).
n d =2 d =3 d =4 d =5
8x8 8.6319 1'25417” 0 1'56711” 0 1.5214e + 01
16 x 16 6.7548¢ - 01 3.6757 2'18319 e+ - 1'10613“ 0 0'2’102 1.2536¢ + 01 -
32x32 8.5357e - 01 - 5.4495e¢ — 02 8'6646 2.4465e — 02 8'?320 1.9834¢ - 02 9.3039
64 X 64 6.0317¢—01 0.5009 1.1256e — 02 2'2575 1.7640e — 03 3";93 6.5673e - 04 49165
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TaBLE 7: Convergence rate of deflection with equidistant nodes d, (d, =
n d =2 d =3 d =4 d =5
8x8 1.22528e+0 1.79026e+0 2.572256+0 35441+ 02
16 x 16 2.53015€+0 22762 2.299fe+0 2.9960 6.5861()e+0 1.9765 5.9839 + 01 25662
32 % 32 3.213%9¢+0 29770 4.7977e+0 2.261 1.2807e+0 5.684 6.7902¢ + 00 3139
0 0 0 0 4
64 x 64 9.0199¢ - 01 1.8331 3.2947e - 01 3'8164 2.3183e—-01 2'§65 1.4751e-01 5.5245
TasLE 8: Convergence rate of bending moment with equidistant nodes d, (d, = 7).
n d =2 d =3 d =4 d =5
3% 8 3.956016 +0 0 5.78808 +0 8.304066 +0 1.1442¢ + 01
16 x 16 4.2155e - 01 3.2303 3.8310e-01 3'215 1’097016 0 2'9220 9.9683¢ - 01 3.5208
32 %32 5.2460e - 02 3.0064 7.8314e - 02 2'190 2.0905e - 02 5'7713 1.1084¢ - 01 3.1689
64 x 64 1.4697e - 02 1.8357 5.3686¢ - 03 3'§66 3.7775e - 03 2'§68 2.4037e-03 5.5271
TaBLE 9: Convergence rate of deflection with quasi-equidistant nodes d, (d, = 7).
n d =2 d =3 d =4 d =5
3x8 4.13525e+0 4.05727€+0 4.39126€+0 43806¢ 4+ 02
16 x 16 2.75412€+0 3.9083 2.00513€+0 4.?;38 2.01315€+0 4.4(1)47 2.0022¢ + 01 44515
SPE N — 1.9063¢ - 01 o7 a9e-02 Y 1.8656¢ - 02 10.068
64 x 64 1'957fe+0 1.1712 2.1823e-02 3'1926 3.5110e - 04 5'9567 3.7910e - 05 8.9428
TaBLE 10: Convergence rate of bending moment with quasi-equidistant nodes d, (d, = 7).
n d =2 d, =3 d =4 d =5
8x8 7.5367e¢+0 7.9725e+0 8.6829¢+0 8.6637¢ + 00
0 0 0
16 x 16 5.5240e - 01 3.7701 4.1382¢-01 4'2967 4.1551e-01 4'?;85 4.1284e-01 4.3913
32 x32 7.3745e - 01 — 3.1740e—-03 7'(;26 3.7026e - 04 102'13 3.1421e-04 10.360
0.873
64 x 64 3.1548e-01 1.2250 1.7330e—-03 0 2.2647¢-03 — 5.4457e-03 —
TaBLE 11: Convergence rate of deflection with quasi-equidistant nodes d, (d, = 7).
n d =2 d, =3 d =4 d =5
3x8 2.72126€+0 3.119266+0 3.51826€+0 3.9417¢ 4+ 02
16 x 16 2.5198e+0 _ 1.6983e +0 0.877 8.6747e+0 5.342 7 7764e + 00 5.6636
2 2 3 0 0
32 %32 3.0502e - 01 9.6902 7.9164e - 02 11%06 6.0185e—02 7'1371 3.4646e - 02 7.8102
64 x 64 8.5111e—-03 5.1634 8.7507e - 04 6'§99 4.7864e - 04 6'9374 1.7242¢ - 04 7.6506
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TaBLE 12: Convergence rate of bending moment with quasi-equidistant nodes d, (d; = 7).

n d, =2 d =3 d =4 d =5
8x8 5.40001€+O 6.189(’)7€+0 6.98101€+0 7 8208e + 00
16 x 16 > '19583”0 — 3'50109 e+0 0821 1.7887¢ 01 5%’86 1.6035¢ - 01 5.6080
32 %32 5.1369e-03 9.9822 1.3332e-03 11.35 1.0136e - 03 7'§63 5.8348e - 04 8.1023
64 x 64 1.7818e - 02 — 4.4772e-02 3.3747e-02 — 2.6845e - 02 —

X Its analysis solutions is

u(x,t)=(1+— |sin t. (44)
120

In this example, we test the linear barycentric rational for
the equidistant nodes. Table 1 shows the convergence rate is
O (h*i~1) with d, = 7 firstly given for the space area for t = 7.
In Table 2, for the space area partition d, = 7 firstly given,
the convergence rate of times is O (7%) which agrees with
our theorem analysis.

In Figures 1 and 2, the errors of LBRCM by equidistant
nodes and quasi-equidistant nodes with m =n =12 and
d, = d, = 9 are presented. From the figure, we know that the
accuracy of equidistant node is higher than quasi-equidis-
tant node.

In Figures 3 and 4, the errors of equidistant nodes and
quasi-equidistant nodes with m =#n =12 are presented.
From the figure, we know that the accuracy of equidistant
node is higher than the quasi-equidistant node.

In Tables 3 and 4, we test the linear barycentric rational
for the quasi-equidistant nodes; Table 3 shows the con-
vergence rate is O (h™!) with d, = 7 firstly given for the
space area for t = . In Table 4, for the space area partition
d, = 7 firstly given, the convergence rate of times is O (7).

Example 2. Consider the beam force vibration equation:

o'w ’w

B+ Qsin Zsin(pt), 0<x<lt>0
— — =Q sin —sin , <x<l;t>0,
ot Por e
(45)
with the boundary conditions as follows:
u(x,0) =0,
(46)
u,(x,0) =0, 0<x<l,
u(0,t) =0,
0,t) =0,
Uy (0,1) (47)
u(l,t) =0,
U, (L,t)=0, t=0.

Qg in (pt) - (p/w)sin (wt)
w(x,t) =;s1n(?) sin{p 2P w251n w )

w —p

2 I

4>

2 2 . )
MGt 12 - QI ) in ) (plsin )
ox pl 1 w - p

2 I

4>

(48)

where EI =4.7726 x 107,p = 420,Q = 10,1 = 10, and p =
(27/0.28335).

In Figures 5 and 6, the errors of deflection with quasi-
equidistant nodesm =n =28,d, =d, = 25,andm =n = 28
are presented. From the figure, we know that the accuracy of
quasi-equidistant node withm =n =28 and d, =d, =251is
higher than m = n = 28.

In this example, we test the linear barycentric rational for
deflection and bending moment with the equidistant nodes;
Table 5 shows the convergence rate is O(h%) with d, =7
firstly given for the space area for ¢ = 1. In Table 6, for the
space area partition d, = 7firstly given, the convergence rate
of times is O (7%2) which agrees with our theorem analysis.

In this example, we test the linear barycentric rational for
deflection and bending moment with the equidistant nodes;
Table 7 shows the convergence rate is O (h*:~1) with d, = 7
firstly given for the space area for t = 1. In Table 8, for the
space area partition d; = 7 firstly given, the convergence rate
of times is O (7%) which agree with our theorem analysis.

In Tables 9 and 10, we test the linear barycentric rational
for deflection and bending moments with the quasi-equi-
distant nodes; Table 9 shows the convergence rate is O (h%)
with d, =7 firstly given for the space area for ¢ =1. In
Table 10, for the space area partition d, = 7 firstly given, the

>
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convergence rate of times is O (%) which agrees with our
theorem analysis.

In Tables 11 and 12, we test the linear barycentric ra-
tional collocation methods for deflection and bending
moment with the quasi-equidistant nodes; Table 11 shows
the convergence rate is O (h™) with d, = 7 firstly given for
the space area for t=1. In Table 12, for the space area
partition d, = 7 firstly given, the convergence rate of times is
O (7%) which agrees with our theorem analysis.

5. Conclusion

In this paper, linear barycentric rational collocation methods
have been presented to solve the beam force vibration
equation. With the help of matrix equation of discrete beam
force vibration equation, the time and space variable can be
solved at the same time. As the coeflicient matrix is full for
the collocation methods, there are certain properties such as
circularity and symmetry that can be studied in the near
future. The 2 + 1 dimensional beam force vibration equation
can also be solved easily by barycentric rational collocation
methods.
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