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In actual working conditions, the initial faults of rolling bearings are difficult to effectively predict due to the lack of evolution
knowledge, weak fault information, and strong noise interference. In this paper, a rolling bearing initial fault prediction model
that is based on transfer learning and the DCAE-TCN is presented. Firstly, a deep autoencoder (DAE as the first two hidden layers
and CAE as the last hidden layer) is used to extract fault features from the rolling bearing vibration signal data.,en, the balanced
distributed adaptation (BDA) is used to minimise the distribution difference and class spacing between extracted fault features,
and a common feature set is constructed. ,e temporal features of the original vibration signal in the target domain are extracted
using the advantages of the TCN. ,e experiments are conducted on the publicly available XJTU-SY dataset. ,e experimental
results show that the proposed method can effectively learn the transferable features and compensate the differences between the
source and target domains and has a promising application with higher accuracy and robustness for the prediction of early failures
of rolling bearings.

1. Introduction

Rolling bearings, as one of the core components of rotating
machinery [1, 2], are extremely vulnerable to damage due to
installation, temperature, lubrication, and other factors
during long-term operation [3].,e faults of rolling bearings
will cause damage to other parts and even the life of the
entire machine. If the initial fault is not effectively identified
and removed in time, the accuracy of the rotating machinery
will continue to decrease until the system is completely
damaged, or it even causes irreversible consequences.

,e information on the initial fault characteristics of
rolling bearings is very weak. So far, the main methods for the
initial fault are mathematical model and data drive [4]. ,e
mathematical modelling approach relies on the operational
vibration signal or acoustic signal of rotating machines for the
fault diagnosis [5], which are analysed in the time domain,
frequency domain, and time-frequency domain, and a large
number of characteristic parameters are extracted from the

signal as criteria for traditional fault diagnosis. However,
acoustic signals have a lower signal-to-noise ratio than vi-
bration signals and are susceptible to environmental noise
interference in the acquisition process, which affects the
accuracy of rolling bearing fault diagnosis [6]. ,erefore,
time-domain features (RMS and kurtosis) are widely used in
bearing performance evaluation [7–9]. Chen et al. [10]
proposed a time-domain statistical indicator based on the
root mean square (RMS) value for use in rolling bearing
condition identification; the RMS reflects the signal energy
and is not effective relative to the weak early fault amplitude
values. Yuan based on the time-domain statistical index of
kurtosis [11] for rolling bearing condition identification,
which has a high sensitivity to initial abnormal fault signals,
but is prone to false alarms and has an impact on the reliability
of assessing rolling bearing faults. RMS and kurtosis are the
most common time-domain characterisationmethods as they
effectively reflect the real-time changes in rolling bearing
operating vibrations. ,e complexity of rotating machinery
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systems and the uncertainty of their operating conditions
make them difficult to describe accurately with mathematical
models.

,e data-driven deep learning method can automatically
learn rich and different features and have a strong feature
extraction capability, which makes it possible to apply them
to the initial fault study of rolling bearings. ,e method of
traditional artificial neural network (ANN) cannot accu-
rately diagnose bearing faults in the field of initial fault
research of rolling bearings [12, 13]. Deep learning auto-
matically learns representative features from rolling bearing
vibration signals and gets rid of the dependence on signal
processing technology. Lu et al. [14] proposed a new DAE
model to diagnose bearing faults, which improved the ability
and robustness of the hidden layer to extract features. Du
et al. [15] entered the bearing vibration signal in the form of
a time-frequency image into a convolutional neural network
and achieved a diagnostic accuracy of over 90%. Chen and Li
[16] input bearing vibration signals directly into deep sparse
autoencoders performing automatic character extraction
and analysis. A deep self-coding network for rolling bearing
fault diagnosis incorporating advanced features was pro-
posed by Shao et al. [13], which improved the robustness of
feature extraction. Although all of the above research studies
have adopted deep models to analyze rolling bearing faults
more successfully, the models are independent of each other,
ignoring the time series correlation between the data.
Temporal convolutional network (TCN) [17] is a kind of
network structure based on the convolution structure, which
is specially used to process sequence information. It can not
only grasp the overall information of the sequence from local
to global but also use convolution instead of recursion, so it
also has a great advantage in training speed. Chen et al. [18]
used TCN to mine the time series characteristics of the
bearing degradation trend, obtain the health index of the
bearing, and predict the residual life of the bearing. Jaya-
singhe et al. [19] combined twomodels of TCN and LSTM to
construct a residual life prediction model for industrial
equipment with good prediction results for data obtained
from complex environments.

All of the above methods require a large amount of
rolling bearing fault characteristic data, but in the area of
initial fault diagnosis for rolling bearings, initial fault
characteristic data are very scarce. Without abundant label
data, it is very complicated to construct a rolling bearing
initial fault prediction model. Transfer learning (TL) [20]
breaks the assumption of independent identical distribu-
tions between different domains so that knowledge can be
transferred through training data where the domain test data
(target domain) are related but have differences in edge
distributions or differences in conditional distributions. At
present, transfer learning has been proved to be applied in
machine vision [21], bioinformatics [22], object recognition
[23], and natural language processing [24]. A domain
adaptive machine fault diagnosis method based on a depth
model was proposed by Li et al. [25], and the performance of
the method was tested with rolling bearing datasets collected

under different conditions of operation. Wen et al. [26]
developed a deep transfer learning model to verify the
validity of fault diagnosis with a dataset obtained at a bearing
test rig operating under different load conditions. A feature-
based transfer learning network (FTNN) approach was
presented by Yang et al. [27]. ,e data from the laboratory
rotating machinery are used to learn transferable features to
identify the health status existing in the actual rotating
machinery. ,rough the use of transfer learning methods,
the above methods have achieved better results compared
with other methods.

Based on the above research and the successful appli-
cation of transfer learning in other fields, a rolling bearing
initial fault prediction (TDCTCN) model that uses transfer
learning and DCAE-TCN is proposed. In the fault feature
extraction stage, the denoising autoencoder (DAE) is used as
the first two layers, and the contractive autoencoder (CAE) is
used as the last hidden layer to construct a deep autoencoder
(DCAE) to gain the initial fault data for rolling bearings. ,e
labelled source sample data and the unlabelled or with only a
few labels target sample data are, respectively, used as the
input to the feature extraction module to obtain the feature
datasets ξs and ξt in the source samples and the target
samples, respectively. In the domain adaptation stage, the
feature dataset obtained in the previous phase is used as the
input. ,e equilibrium factor μ of the two feature sets is
calculated by A-distance, and the distribution adaptation
(edge probability distribution or conditional probability
distribution) method is chosen to first optimise that to
minimise the distance between the source and target domain
feature sets and then to construct the common feature set. In
the rolling bearing early failure prediction stage, in order to
predict the time of the initial fault occurrence, the obtained
common feature set is used as the input to the TCN as the
pseudo-label of the target data, the data temporal features
are extracted from the target data, and the predicted value of
the next moment is output to predict the operation status of
the rolling bearing at the next moment. ,e experimental
validation is conducted using the XJTU-SY full life cycle
dataset.,e experimental results showed that, on the basis of
transfer learning and the DCAE-TCN model, the operating
condition of the rolling bearing can be well described, and
the initial fault of the rolling bearing can be predicted earlier
andmore stably, which is very important for the degradation
monitoring of the rolling bearing running state.

Based on the above model analysis methods, the main
contributions of this paper to the initial failure prediction of
rolling bearings are as follows:

(1) We propose a rolling bearing initial fault prediction
model based on transfer learning and DCAE-TCN.
By combining the domain adaptive method of
transfer learning with the deep autoencoder network
and temporal convolution network, the data features
of rolling bearings in the target domain can be
extracted more accurately, and the evolution
knowledge of rolling bearings is transferred to the
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target domain for more accurate prediction of the
next moment of operation of rolling bearings in the
target domain.

(2) ,e DAE and the CAE are used as the first two
implicit layers and the last implicit layer to construct
the DCAE that can extract the data features of rolling
bearings. Meanwhile, the temporal correlation be-
tween the data extracted by the TCN can extract
more complete initial fault features and temporal
sequence, and the improved model can make the
accuracy and smoothness optimal.

(3) A balanced distribution adaptation approach is
adopted. A common feature set is constructed be-
tween different domains by reducing the difference
in the distribution of transferable features between
the source and target domain datasets layer by layer.
,is common feature set is then used for model
training of the TDCTCN network.

,is paper is organised as follows. In Section 2, the basic
theory of initial failure prediction of rolling bearings is
briefly introduced. Section 3 introduces the model for
initial fault prediction based on DCAE-TCN for transfer
learning. Section 4 experiments the method on the basis of
a full life cycle of a rolling bearing and analyses and dis-
cusses the experimental results of early failure prediction in
rolling bearings. Conclusions of the full paper are given in
Section 5.

2. Basic Methods

2.1. Description of Transfer Learning Problems. Transfer
learning (TL) breaks the assumption of independence and
identity between data from different domains and reduces
the distance and class range between source and target
samples’ data by the domain adaptive method [28]. In this
paper, the knowledge of rolling bearing operation evolution
in the source samples is transferred to the target samples’
data, and early failures of rolling bearings are predicted in
the target domain. Assume that Ds and Dt are the source
domain data and the target domain data, respectively. We
will get a labelled source domain dataset Xsi, Ysi 

n

i�1 and an
unlabelled target domain dataset Xtj 

m

j�1. Assume a sample
feature space χs ∈ Ds, χt ∈ Dt, and label space
Υs � 1, 2, 3 . . . . . . , k{ } containing the evolution of rolling
bearings from a normal state to k failure state. From the
perspective of data generation, different data distributions
have marginal distribution Ps(Xs)≠Pt(Xt) and conditional
distribution Ps(Ys|Xs)≠Ps(Yt|Xt). ,e aim of TL is to
transfer the learned knowledge from the source domain to
the unknown target domain. Balanced distribution adap-
tation methods solve transfer learning problems by adap-
tively minimizing the variance in the distribution between
the source and target domains and deal with the class im-
balance problem, which minimizes the differences between
Ps(Xs) and Pt(Xt) and between P(Ys|Xs) and P(Yt|Xt).

At the stage of transfer learning domain adaptation,
knowledge of the health evolution of the rolling bearing in
the source domain is transferred to the target domain to
predict the next moment of operation of the rolling bearing
in the target domain. ,e following assumptions should be
met:

(1) All data include the evolution of degradation from
normal to faulty states, and the evolution of the
experimental data in the source and target samples
from the normal state to the initial fault state is
intrinsically consistent

(2) ,e source domain data have temporal association,
which provides the necessary knowledge of evolution
from the normal state to the initial fault state for the
initial fault prediction of the target object

(3) For different working situations, the sample space of
target domain data and derived data is χt ∈ Dt, and
the data have the characteristics of temporal
association

Unlike fault diagnosis, the nature of initial fault pre-
diction is more inclined to the problem of anomaly detec-
tion, that is, only the data at the start of the operational phase
are marked as normal, and the time of appearance of an early
fault is expected based on the deviation of the anomalous
data from the normal data. ,rough iterative training with
labelled data in the source domain, a nonlinear relationship
f: χs⟶ ys from the sample space χs ∈ Ds to the labelled
sample space Υs can be established, which is the predictive
knowledge of initial faults in rolling bearings. Because the
label data of the target domain are usually few or even
missing, it is difficult to establish the prediction model
f: χt⟶ yt for the initial fault prediction accuracy of
rolling bearings in the target domain.

In this paper, knowledge of the prediction of initial fault
of rolling bearings in the source domain is used to predict
early failures of rolling bearings in the target domain. ,e
functions of transfer learning in the proposed model are
mainly reflected in the following: (1) through the principle of
balanced distribution adaptation, the data distribution of the
source and the target domains is adapted to establish the
evolutionary knowledge representation from the normal
state to the initial fault state. (2) With the help of the
evolution knowledge and distinguishing information from
the normal state to the initial fault state of the source do-
main, the effectiveness and robustness of initial fault pre-
diction of rolling bearing data in target domain are
promoted.

2.2. Balanced Distribution Adaptation (BDA). Balanced
distribution adaptation (BDA) is an excellent tool for mi-
gration learning, which solves the migration learning
problem by minimizing the difference in distribution be-
tween the source and target samples and deals with the class
imbalance problem, that is, minimizing the difference
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between P(Xs) and P(Xt) and P(Ys|Xs) and P(Yt|Xt). ,e
balanced distribution adaptation can be adaptively adjusted
to the probability distribution according to the relationship
between the source and target samples:

D Ds, Dt(  ≈ (1 − μ)D P Xs( , P Xt( ( 

+ μD P Ys|Xs( , P Yt|Xt( ( .
(1)

In the above equation, μ ∈ [0, 1]. When μ⟶ 0, the
greater the difference between the datasets, the more obvious
the marginal distribution. When μ⟶ 1, the more similar
the datasets are, the more suitable the conditional distri-
bution is than the marginal distribution.

It is also important to notice the impossibility to evaluate
the conditional distribution because the target domain data

have no or few labels. ,erefore, using the class-conditional
distribution P(Xt|Yt), P(Xt|Yt) is very similar to P(Yt|Xt)

based on sufficient statistics for very large data samples. In
the purpose of calculating P(Xt|Yt), the data with labels Ds

are trained to obtain the pseudo-label of Dt and to make
predictions for Dt.

For calculating the probability distributions in equation
(1), the marginal and conditional distributions are estimated
empirically using the maximum mean difference (MMD)
method. As a nonparametric measure, MMD is widely used
in existing migration learning algorithms, so equation (1) is
rewritten in the following form:

D Ds, Dt(  ≈ (1 − μ)
1
n
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where H is the regenerative kernel Hilbert space,
c ∈ 1, 2, 3, 4 · · · · · · C{ } denotes the count of labels, n, m are
the number of samples, D(c)

s and D
(c)
t belong to C and

represent samples, and nc � |D(c)
s | and mc � |D

(c)
t | belonging

to D(c)
s and D

(c)
t in the source and the target domains, re-

spectively, denote the number of samples. ,e first and
second parts indicate the distances of the edge distributions
and the distances of the conditional distributions between
different domains, respectively.

2.3. Deep Autoencoder Network (DCAE). ,e autoencoder
(AE) is a type of unsupervised feature representation net-
work consisting of an input layer (x), a hidden layer (h), and
an output layer (r). ,e aim for the AE is to minimise the
differences between input and output data by encoding and
decoding the reconstructed data. ,e DAE obtains robust
reconstructed data from data samples that are corrupted or
noisy. ,e CAE enhances the robustness of the learned
features by adding penalty terms (Jacobi) to the loss func-
tion. In other words, the CAE enhances the robustness of
feature learning by using the internal information of the
data, mainly for the output of the data, and the DAE en-
hances the robustness of feature learning by using the ex-
ternal information of the data, mainly for the data input.
,erefore, a CAE is combined with a DAE to build the
DCAE to enhance the data feature learning capability.

Based on their own merits, DAEs and CAEs are applied
to learn potential features from rolling bearing vibration
data and to learn deeper features on top of potential features,
respectively. Finally, the deep feature of learning is robust to
the small disturbance of the input. Figure 1 is a structure
diagram of a deep autoencoder network.

As shown in Figure 1, the DCAE is composed of three
hidden layers: the first and second implied layers consist of

the DAE and the third implied layer consists of the CAE.
Feature learning is performed based on input and output
data to increase the robustness of initial fault feature ex-
traction for rolling bearings.

,e encoding formula of the AE to the hidden layer is

h � fe ah(  � σ Wxhx + bxh( , (3)

where fe is the encoding function for the hidden layer, σ is
the activation function of sigmoid, Wxh is its weight, and bxh

is its bias.
,e decoding formula of the AE to the output layer is

r � fd(h) � σ Whrh + bhr( , (4)

where fd( ) is a decoding function to the output layer, Whr is
the weight, and bhr is the bias.

,e central idea of the AE is to keep the input data
consistent with the output data through encoding and
decoding, so the reconstruction error of the AE is

JAE(θ) � L(x, r) � − 
N

i�1
xilog ri(  + 1 − xi( log 1 − ri(  ,

(5)

where L(x, r) is the calculation difference between coding
and decoding loss functions.

,e unprocessed vibration data contain a large amount
of noise, so the noise-laden x is used instead of the noise-free
input data x. ,e encoding and decoding equations for the
denoising autoencoder (DAE) are shown in the following:

h � fe ah(  � σ Wxhx + bxh( , (6)

r � fd(h) � σ Whr
h + bhr . (7)

,erefore, the reconstruction error of the DAE is
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JDAE(θ) � L(x, r) � − 
N

i�1
xilog ri(  + 1 − xi( log 1 − ri(  .

(8)

A contractive item is inserted into the loss function to
improve the robustness of the CAE in learning information
inside the data, and the reconstruction error of the CAE is

JCAE(θ) � L(x, r) + λ Jh(x)
����

����
2
F
, (9)
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, (11)

where λ is the constriction factor, ‖Jh(x)‖2F is the con-
striction penalty item, and Jh(x) is a Jacobian matrix.

2.4. Temporal Convolutional Neural Network. ,e temporal
convolutional neural network (TCN), first proposed in 2018,
adds residual blocks and inflated causal convolutions to the
convolutional neural network (CNN) to obtain a temporal
dilated convolution that possesses causality and longevity.
Causality means that the current convolution result only
depends on the previous and present input so that it can
accept long-term historical information, while the long-term
effect brings a large perception field for convolution so that it
can build a time series network with memory ability. ,e
TCN structure is illustrated in Figure 2.

Suppose the input data are X � X0, X1, · · · , Xn−1, Xn 

and output data are Y � Y0, Y1, · · · , Yn−1, Yn , which have
the same sequence length, and the output data Yn only
involve time n and sequence elements before n. Assuming

that the current time is n0, the one-dimensional causal
convolution replaces the input X0 of all n< n0 moments with
0:

f(x) �
xn, n< n0

0, n> n0
. (12)

In addition, the TCN also uses the expansion convo-
lution method to increase the receptive field, and the ex-
pansion convolution transport is the convolution of the unit
with a fixed gap. As shown in Figure 2, ε is the expansion
factor, which increases with the number of network layers. It
is obvious that when the expansive convolution is used, the
expansion of the receptive field is much faster than that of
the ordinary convolution.

3. The Proposed Method

We construct a rolling bearing early failure prediction model
based on transfer learning and the integration of the DCAE
and TCN to predict the initial faults for rolling bearings in
this paper.

3.1. Overview of the ProposedMethod. ,e proposed method
comprises four parts (see Figure 3): domain division, feature
extraction, balanced distribution adaptation, time series
feature extraction, and initial fault prediction. In terms of
domain division, the source domain contains evolutionary
knowledge of various stages of the degradation process in the
state of normal to failure, while the target sample provides
no fault information. ,us, the source evolutionary
knowledge is taken to predict the early fault of the target
rolling bearing. In terms of feature extraction, a combination
of the DAE and CAE is performed to extract the transferable
features of source ξs and target ξt. In addition, the source and
target datasets need to have the same or similar fault evo-
lution process. In the balanced distribution adaptation part,
the balance factor μ is obtained by calculating the ratio
between the overall distance and the class distance between
the transferable features of source ξs and target ξt and then
calculating the nonparametric distance between their
transferable features. ,e obtained similarity matrix of the
target domains is used as the optimisation target, and
backpropagation will be used to train the parameters of the
nonlinear characteristic mapping and obtain the common
feature set Y. In terms of temporal feature extraction and

Input
layer

DAE layer

DAE layer

CAE layer

Output layer

……

……

……

……

1

12

13

14

Figure 1: Deep autoencoder network structure.

0 padding
Input layer

Hidden layer

Output layer

Hidden layer

Y0 Y1 Y2

X0 X1 X2

Yn–1 Yn...

Xn–1 Xn...

ε = 4

ε = 2

ε = 1

Figure 2: TCN structure diagram.
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early fault prediction, the TCN extracts temporal features
from the target rolling bearing data to predict the operating
state of rolling bearings at the next moment. And based on
the knowledge of the evolution of rolling bearings contained
in the common feature set, the initial faults of rolling
bearings are predicted accurately and efficiently.

3.2. PredictionModel Establishment. ,e construction of the
DCAE-TCN rolling bearing initial fault prediction model
based on migration learning includes the feature extraction
stage, domain adaptive stage, and initial fault prediction
stage. In the feature extraction stage, the source and target
sample data are input into the deep autoencoder stacked by
DAE and CAE, respectively, so as to, respectively, affect the
input and output of source and target domain data and
extract weak early fault characteristic information. In the
domain adaptation stage, for the feature information
extracted from the source and the target domains in the
previous stage, the BDA is used to reduce the distance
between the feature information of the source and target
domains, and then the common feature set is obtained. In
the initial fault prediction stage, the TCN is taken to extract
the time sequence features of the target sample data, and the
common feature set obtained in the previous stage is taken to
predict the next operating condition of rolling bearings in
the target domain and the initial fault by using the evolution
information from the normal state of the source data to the
initial fault state. Figure 4 is a flowchart of initial fault
prediction of rolling bearings.

3.2.1. Feature Extraction Stage

(1) Use the source domain dataset Xsi, Ysi 
n

i�1 and the
target domain dataset Xtj 

m

j�1 input to the DCAE
model.

(2) ,e source domain dataset is iteratively trained
according to formulas (6)–(11), and the weight Ws

and bias bs are updated in real time in the training
process.

(3) Judge whether the accuracy meets the requirements
or whether it reaches the set maximum number of
training times. If not satisfied, repeat execution (2); if
satisfied, stop the training.

(4) After the model is trained, save the extracted source
domain data feature set ξ3s , weights, and biases of the
model.

(5) Fix the trained DCAE model, and input the target
data into the DCAE.,e saved weights and biases are
used as model parameters and will not be updated.

(6) Based on the feature extraction of the target data, the
feature set ξ3t of the target data is obtained.

3.2.2. Domain Adaptive Stage

(1) ,e balance factor μ is obtained by using the
A-distance method to calculate between the trans-
ferable features of source ξ3s and target ξ3t

(2) If μ⟶ 1, then the conditional probability distri-
bution is preferentially fitted between the transfer-
able feature sets; if μ⟶ 0, the marginal probability
distribution is adapted first

(3) According to the distance between the source
transferable feature set and the target transferable
feature set, the target similarity matrix
R � R0, R1, · · · , Rn  is obtained

(4) According to the source label sample space Υs, the
target pseudo-label is constructed, and the public
sensitive feature set F � F0′, F1′, · · · , Rn

′  is
established

3.2.3. Initial Fault Prediction Stage

(1) ,e common feature set Y obtained in the previous
step is used as a pseudo-label and input into the TCN
to perform temporal feature extraction on the target
dataset to obtain the predicted value for the next
moment.

(2) Determine whether the predicted value obtained
exceeds the normal state threshold; if yes, determine
the presence of an abnormal vibration signal. If not,
repeat cycle (1).

4. Experimental Analysis and Prediction

4.1.ExperimentalDataset. In order to verify the effectiveness
of the proposed method in the initial fault prediction of

Normal

Fault state

Early fault Ds

Dt

Fault state

Normal

Domain division

… … …

Feature extraction Equilibrium distribution fit Early fault prediction

Figure 3: DCAE-TCN model structure based on transfer learning.
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rolling bearings, experiment and analysis are carried out by
using the life cycle data of rolling bearings obtained from the
rolling bearing test platform (XJTU-SY) [29]. Figure 5 shows
a rolling bearing testbed, which consists of an AC motor, a
motor speed controller, a supporting shaft, two supporting

bearings (heavy roller bearings), and a hydraulic loading
system.,e rotational speed is provided by the ACmotor. A
hydraulic loading system loaded onto the bearing seat being
tested provides the system with radial forces. ,e platform
can carry out speeding up the degradation tests of bearings

Source domain dataset

Training the first DAE

Training the second DAE

Training the third CAE

Target domain dataset

Training the first DAE

Training the second DAE

Training the third CAE

Equilibrium factor μ→1? Marginal probability 
table

Conditional 
probability table

Target domain similarity 
matrix

Common feature set Y

Training the TCN model

Predicting the value

Yes No

Domain adaptive

Target domain dataset
Early fault prediction

Feature extraction

Whether the normal state 
threshold is exceeded

Initial fault 

Yes

No

S (ws) wt

Feature ξs
3 Feature ξt

3

Calculate the dynamic 
equilibrium factor of ξs and ξt

3 3

Figure 4: Flowchart of the rolling bearing initial fault prediction model.
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in different working states so that the full data of rolling
bearings from operation to failure can be obtained.

As shown in Table 1, there are several sets of experiments
under three working conditions. ,ere are 5 bearings per
operating condition, which are sampled at 25.6 kHz, with
32,768 data points per sample.

According to Table 1, two transfer learning tasks are
created, that is, A⟶B and A⟶C.,e A dataset is used
as the source sample data to provide the evolution
knowledge of rolling bearings, and the B and C datasets
are taken as the target sample data. ,e reason for transfer
learning is for predicting, as much as possible, the time
period of initial faults of rolling bearings under B and C
conditions.

4.2. Initial Fault Prediction of the TDCTCN Rolling Bearing.
Bearing1_3 and bearing1_5 in experiment A are selected as
the source domain data. Bearing2_3 and bearing2_5 in
experiment B and bearing3_3 and bearing3_4 in experiment
C are selected as target domain datasets. ,e original time-
domain vibration signal plots for the whole life cycle of the
four rolling bearings in the target domain are shown in
Figure 6.

As seen in Figure 7(a), the time-domain response of
bearing2_3 is relatively stable before about 410 samples (7
hours), and then the time-domain signal shows very obvious
abnormal vibration, that is, the 2_3 rolling bearing is ob-
viously damaged, but the damage degree of the rolling
bearing cannot be judged. In Figure 7(b), the signal of
bearing2_5 before about 230 samples (4 hours) is cross-
stationary, then the time-domain signal shows an abnormal
vibration phenomenon, and the rolling bearing is obviously
damaged. In Figure 7(c), since the radial force of the C group
experiment is smaller than that of the other two groups of

experiments, bearing3_3 and bearing3_4 run relatively
smoothly, bearing3_3 shows obvious abnormality after
about 440 samples (7.5 h), and the rolling bearing has ob-
vious damage. In Figure 7(d), bearing3_4 shows obvious
abnormal vibration and obvious damage after 1800 samples
(30 hours), but like bearing2_3, the degree of damage to the
roller bearing cannot be determined by the three bearings of
bearing2_5, bearing3_3, and bearing3_4. As shown in the
figure, the signal in the time domain can reflect the deg-
radation trend to a certain extent for the rolling bearings, but
it cannot well reflect the change process of initial faults of
rolling bearings nor can it judge the degree of damage of
rolling bearings. It is also impossible to judge when rolling
bearings need to take corresponding measures to reduce
losses.

,e datasets of bearing2_3, bearing2_5, bearing3_3, and
bearing3_4 in experiment B and experiment C were brought
into the model for training. As shown in Figure 8, the
DCAE-TCN model combined with transfer learning pro-
posed in this paper describes the running states of the rolling
bearings, as well as the prediction of the initial fault time of
the rolling bearings and the classification of the running
states of the rolling bearings.

As shown in Figure 8, the TDCTCN model can better
reflect the running states of the rolling bearings and predict
the time of the initial faults of the rolling bearings and can
also judge the damage degree of the rolling bearings
according to the acceleration. In Figure 8(a) bearing2_3 at
about the 5500th sampling period, the first abnormal test
data increased compared with the normal signal amplitude,
the rolling bearing ran for about 3 hours, and then the data
tended to normal. Compared with Figure 7(a), abnormalities
were detected about 4 hours in advance. In about
20,000–25,000 sampling periods, the vibration of the test
data increased significantly compared with the test data of

Horizontal accelerometer

Vertical accelerometer Tested bearingDigital force display

Hydraulic loading

Motor speed controller

AC motor Support bearings

Support shaft

Figure 5: Rolling bearing test platform.
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the first abnormal signal, and then there were no normal
data, so it can be judged that a moderate fault has occurred.
By analogy, a severe fault occurred in about 25,000–34,000
sampling periods, after which the signal vibration increased
obviously, and the rolling bearing is in the failure stage.
Similarly, bearing2_5 first detected abnormal data in about
7000th sampling period (bearing running time is about
2.7 h), which is about 1.3 h earlier than Figure 7(b).
Bearig3_3 first detected abnormal data in about 25,000
sampling periods (bearing running time is about 6.8 h),
which is about 1 hour earlier than Figure 7(c). Bearing3_4
first detected abnormal data in about 42,000 sampling pe-
riods (bearing running about 23.8 hours), about 6 hours
earlier than Figure 7(d). Similar to bearing2_3, bearing2_5,
bearing3_3, and bearing3_4 can also determine the damage
degree of rolling bearings according to the comparison of
signal amplitude with the normal state. ,e presence of
abnormal vibration signals in rolling bearings is better
judged by using the data characteristic of the normal con-
dition of the rolling bearing as a control line. In summary,
the TDCTCNmodel can well learn the existing knowledge of
rolling bearings’ evolution in the source domain and more
accurately reflect the initial faults and degradation stages of
rolling bearings.

4.3. Comparative Results and Analysis

4.3.1. TDCTCN Model versus Traditional Feature Extraction
Metrics. To verify the effectiveness of the proposed method
in this paper, the proposed method TDCTCN algorithm was
compared with the time-domain statistical indicators

kurtosis, RMS, DCAE+RMS, and DCAE+ kurtosis. Both
the comparison method and the method proposed in this
paper use a BDA to reduce the distribution differences and
class spacing between the target and source data for early
fault prediction of the target rolling bearing operating data.
A graph of the comparison results is shown in Figure 9; the
blue line represents the TDCTCN algorithm proposed in
this paper, the green line shows the pending variable kurtosis
statistics, the red line shows the table RMS statistics, the
orange line represents the features extracted by DCAE and
RMS, and the purple line represents the features extracted by
DCAE and kurtosis.

Figure 9 depicts the progression of the four target
bearing faults. As can be seen in Figure 9(a), an abnormal
vibration signal appears near about 5500 more samples, and
both kurtosis and the method proposed in this paper show
higher than normal vibration signals. ,e other conven-
tional time-domain indicators do not show any abnormal
fluctuations in the vicinity of this sample. For kurtosis, it is
very sensitive to abnormal changes in the signal. When a
rolling bearing runs abnormally, there will be a transient
spike in the vibration signal, so kurtosis will change sig-
nificantly, but it will cause the diagnostic results to be un-
stable, and the chance of causing a false diagnosis will
increase. At around 22,000 sample cycles, rolling bearings
showed significant faults, where DCAE+RMS showed ab-
normal fluctuations, in line with the method proposed in
this paper, but their vibration signals did not produce ab-
normalities at the time of the initial fault of the rolling
bearing and only fluctuated at the later stages of the fault, so
they cannot be used as an assessment indicator to give a good
indication of the operating condition of the rolling bearing.

Inner race wear

Outer race wear

Figure 6: Diagram of faulty bearings.

Table 1: Accelerated life condition of bearings.

Experimental condition Radial force (KN) Rotational speed (r/min) Bearing dataset
A 12 2100 Bearing1_1 Bearing1_2 Bearing1_3 Bearing1_4 Bearing1_5
B 11 2250 Bearing2_1 Bearing2_2 Bearing2_3 Bearing2_4 Bearing2_5
C 10 2400 Bearing3_1 Bearing3_2 Bearing3_3 Bearing3_4 Bearing3_5

Shock and Vibration 9



,e other two methods, RMS and SDAE+ kurtosis, are not
sensitive to changes in the condition of the target rolling
bearing. By analogy, similar results appear in Figures 9(b)–
9(d). And the TDCTCN algorithm proposed in this paper
can not only be very sensitive to the initial abnormalities of
the target rolling bearing but also can reflect the degradation
trend of the target rolling bearing at a later stage, and the
signal of the rolling bearing is stable during the diagnosis
process, so it can predict the initial fault of the target rolling
bearing.

4.3.2. DCTCN Model without Transfer Learning. To verify
the validity of the TDCTCN initial fault prediction model of
rolling bearings and the necessity of transfer learning, we
trained the data of the target domain with the DCTCN
model without transfer learning. Relying on the fault
character extraction ability of the deep autoencoding net-
work and the time sequence feature extraction capability of
the TCN network, the initial faults of rolling bearings were

predicted. Figure 10 is a result graph of the training accuracy
and loss rate of the DCTCN model without migration
learning.

As shown in Figure 10, for the DCTCN model without
transfer learning, the accuracy rises to near 1, and the loss
rate decreases to around 0 after 30 iterations. ,e accuracy
and loss rate fluctuate at the beginning, which means that
the model is constantly trying to converge to the best point,
and then the model is gradually stable. In summary, the
DCAE-TCN model has high accuracy, which proves that
the DCAE-TCN model has good feature extraction
capabilities.

Figure 11 shows the description of the operating con-
dition of the rolling bearings by the DCTCN model without
transfer learning.

To validate the necessity of migration learning, the target
sample data are directly imported into the deep autoencoder
network for fault feature extraction, and then the trained
data are taken as the input to the temporal convolution
neural network for temporal feature extraction. Instead of
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Figure 7: Plot of the original time-domain vibration signal for the full life cycle of a rolling bearing. (a) Bearing2_3. (b) Bearing2_5. (c)
Bearing3_3. (d) Bearing3_4.
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transferring the existing rolling bearing evolution knowl-
edge to the target domain, the DCAE-TCN model is used to
predict the initial faults of the target bearing.

Figure 11 is a description of the operation status of
rolling bearings in the target domain without transfer
learning. Compared with Figure 8, Figure 11 is zoomed in in
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Figure 8: Description curve of the running state of rolling bearings. (a) Bearing2_3. (b) Bearing2_5. (c) Bearing3_3. (d) Bearing3_4.
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Figure 9: Description of the running state of rolling bearings. (a) Bearing2_3. (b) Bearing2_5. (c) Bearing3_3. (d) Bearing3_4.
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the same place to more clearly reflect the presence of ab-
normal test data. In Figure 11(a), bearing2_3 has no ab-
normal detection data during about the 5500 sampling
period, but abnormal test data appeared near the 18,000
sampling period, and the acceleration increased continu-
ously compared with normal data until the rolling bearing
failed completely. In Figure 11(b), the abnormal data of
bearing2_5 first appeared near about 7000 revolutions’
sampling period, but the amplitude of the abnormal data
relative to bearing2_5 in Figure 7 is relatively small, then the
acceleration increased continuously, and the abnormal test
data appeared again in the sampling period of about 12,000
revolutions until the rolling bearing failed completely. In

Figure 11(c), the amplitude of the test data in about 25,000
sampling periods is somewhat larger than that of the normal
data, but the increase is not very large, and then the data
returned to a stable level, but the number of abnormal data
continued to increase until the rolling bearing failed com-
pletely. In Figure 11(d), there are no abnormal test data
around about 42,000 sampling periods. It can be seen that
although the amplitude of the bearing2_3 and bearing2_5
signal can roughly determine the degree of damage of the
rolling bearings, compared with Figure 7, it cannot effec-
tively predict in advance. In addition, the fault character-
istics of bearing3_3 and bearing3_4 are not obvious, that is,
the damage degree of the rolling bearing cannot be clearly
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Figure 10: DCTCN model training accuracy.
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Figure 11: Description of the running state of rolling bearings. (a) Bearing2_3. (b) Bearing2_5. (c) Bearing3_3. (d) Bearing3_4.
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shown. In summary, although the DCTCN model without
transfer learning has higher accuracy and higher loss rate, it
cannot well reflect the occurrence of initial faults of rolling
bearings. It is further demonstrated that the proposed
DCTCN model based on transfer learning is effective.

4.3.3. Quantitative Comparative Analysis. ,e migration
accuracy of the proposed method is compared with transfer
component analysis (TCA) [30], joint distribution adapta-
tion (JDA) [31], transfer joint matching (TJM) [32], deep
domain confusion (DDC) [33], and domain adversarial
training of neural networks (DANN) [34].

TCA is a new regional adaptive feature extraction
method as a comparison that learns a group of common
migration components under two interrelated domains so
that it is possible to project the data distribution differences
in different domains into a subspace. ,e data distribution
differences can be significantly reduced by the TCAmethod.
JDA is a transfer learning method that deals with different
probability distributions of the source domain and the target
domain (no marked data). JDA extends the nonparametric
maximum average deviation to measure the separation of
marginal and conditional allocations. It is combined with
principal component analysis (PCA) to construct an efficient
and robust feature representation of distribution differences.
TJM is an unsupervised domain adaptive joint distributed
migration method. Its goal is to reduce domain differences
through the principle process of dimensionality reduction,
as well as joint matching features and cross-domain weights.
And new feature representations are constructed, which are
invariant to distribution differences and unrelated instances.
In order to ensure the domain invariance of learning fea-
tures, DDC adds adaptive layer and distribution matching
term MMD to the structure of CNN. DANN adds other
components of domain judgment to the deep neural net-
work to learn the data characteristics provided by the source
domain. As shown in Table 2, after selecting the optimal
parameters for each method, 10 experiments were carried
out, and the average values were taken.

In order to see the migration accuracy of each of the
above methods more intuitively, as shown in Figure 12, the
migration accuracy of each method is intuitively repre-
sented in a chart.

From Figure 12, we can see that the TDCTCN’s accuracy
is 80.56%, which is the highest among the six methods.
Compared with JDA and TJM, TCA does not have joint
distribution adaptation and lacks domain adaptation ca-
pabilities. ,erefore, the accuracy of TCA is lower than that
of the other five methods, which is 51.78%. ,e average
accuracy of JDA is 53.18%. ,e average accuracy of TJM is
63.18%. Although these two methods adopt joint distribu-
tion adaptation, they cannot extract weak fault features from
rolling bearing data samples, so their accuracy for initial
fault prediction of rolling bearings is not as good as that of
the method presented in this paper. Both DDC and DANN

networks are deep learning and migration learning methods
with the function of reducing the range between the source
and target domains. ,erefore, the migration accuracy is
significantly higher than TCA, JDA, and TJM, but still in-
ferior to the TDCTCNmethod. In summary, the validity and
accuracy of the TDCTCN model in the initial fault pre-
diction for rolling bearings are verified.

5. Conclusions

,e initial fault vibration signal information of rolling
bearings is weak. ,e weak fault characteristic information
and strong noise interference make it difficult to effectively
predict the initial faults of rolling bearings. Aiming at the
problems, a TDCTCN rolling bearing initial fault prediction
method based on transfer learning is proposed. ,e fol-
lowing conclusions were obtained:

(1) By combining the domain adaptive method of
transfer learning with the deep autoencoder network
and the temporal convolutional network, the data
features of rolling bearings in the target field are
accurately extracted. In addition, the evolution
knowledge of rolling bearings in the source samples
is transferred to the target sample, and the running
state of target rolling bearings is accurately predicted.

(2) ,e experimental data verified by XJTU-SY show
that the proposed TDCTCN method can predict the

Table 2: Transfer accuracy for transfer tasks (%).

Transfer learning A⟶B A⟶C Average
TCA 52.20 54.28 51.78
JDA 57.45 62.89 53.18
TJM 53.25 49.41 63.18
DDC 71.69 69.17 75.67
DANN 75.92 76.95 78.81
TDCTCN (ours) 89.35 79.78 80.56
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initial faults of rolling bearings at least 1 hour in
advance. For bearings running smoothly, the initial
failure of rolling bearings can be predicted after 23.8
hours of operation.

(3) Compared with other traditional feature extrac-
tion methods, the method proposed in this paper
can predict the early faults of rolling bearings
earlier and has strong robustness. Compared with
other transfer learning methods, the method has
higher transfer accuracy. Compared with the
DCTCN model without transfer learning, the
proposed model has better stability and robust-
ness, which is of great significance for predicting
early faults and life cycle calculation of rolling
bearings.

In the future research, we will combine the advantages of
the proposed method with other intelligent diagnosis
methods to carry out real-time online detection and diag-
nosis of early faults of rolling bearings.
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