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It is essential to investigate the influence of blasting vibrations on pipelines, and the dynamic response is the crux in the safety
issues. At present, the blasting seismic wave is usually regarded as a plane wave. However, there is little research about the dynamic
response characteristics of underground structures subjected to nonplane waves. -e analytical solution to dynamic stress
concentration factor (DSCF) of pipelines subjected to cylindrical SH wave was derived. Besides, the randomness of the shear
modulus of soil was considered, and the statistical analysis of DSCF was carried out by the Monte Carlo simulation method.
Results show that the variability of the shear modulus of soil has a significant influence on the probability distribution of DSCF.
-e larger the variation coefficient of the shear modulus is, the more obvious the skewness of DSCF is. -e influence of low-
frequency wave on pipeline increases with the reducing normalized distance r∗, while the influence of high-frequency wave
reduces and the variation amplitude of DSCF increases. Compared with the DSCF of pipe subjected to a plane wave, a lower
dominant frequency or larger normalized distance for the cylindrical SHwave will generate a more similar statistical characteristic
of DSCF.

1. Introduction

With the rapid development of transportation construction,
the drilling and blasting method has been widely used in the
excavation of underground space due to its efficiency and
economy. However, blasting seismic waves induced by the
structures excavation will undermine the safety of nearby
pipelines which are important channels for energy trans-
mission and even cause serious economic losses and suc-
cessive disasters.

A large number of research studies have been imple-
mented to study the dynamic response characteristics of
underground structures subjected to blasting seismic waves.
Pao and Mow [1] investigated the dynamic stress concen-
tration factors (DSCFs) of a cavity in an unbounded elastic
space under the incident plane P, SH, and SV waves. Lee and
Trifunac [2–4] studied the dynamic response of tunnels and
cavities induced by plane P, SH, and SV waves. -ambirajah
et al. [5] considered the effect of DSCF and studied the

scattering of SH waves by two caverns. Liu and Wang [6]
revealed the dynamic response law of cavities subjected to
plane waves. Wang et al. [7] used the wave function ex-
pansionmethod to give an analytical solution to the dynamic
response of a deep-buried soft rock circular tunnel under the
incident plane SH wave. Fu et al. [8] studied the interaction
between the soil and the tunnel when the blasting plane SH
wave was considered. Yi et al. [9] proposed an analytical
solution to the dynamic response of a circular tunnel when
the imperfect contact exists between surrounding rock and
lining subjected to incident plane P waves. Liu et al. [10] used
the complex functions and multilevel coordinate method to
analyze the influence of P wave on pipelines in saturated soil.
He et al. [11] studied the scattering of plane SH waves by
underground caverns with arbitrary cross-sectional shapes.
Zhang et al. [12] derived the analytical solution to the dy-
namic responses of deep-water foundation sites when both
incident plane P and SV waves were considered. Liang et al.
[13] studied the diffraction of plane SH waves by a

Hindawi
Shock and Vibration
Volume 2021, Article ID 5592858, 9 pages
https://doi.org/10.1155/2021/5592858

mailto:hengzhang@yangtzeu.edu.cn
https://orcid.org/0000-0002-5683-2231
https://orcid.org/0000-0002-4656-1474
https://orcid.org/0000-0002-6934-6726
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/5592858


semicircular cavity in half-space by using the wave function
expansion method. Xu et al. [14] deduced a series solution
of dynamic stress for a circular lining tunnel subjected to
incident plane P waves in an elastic half-space. Xu [15]
derived the blasting safety criterion of an unlined circular
tunnel subjected to plane P waves. Qi et al. [16, 17] carried
out the dynamic analysis for circular inclusions near
interface impacted by SH waves using the complex
method and Green’s function method. Fan et al. [18]
predicted the dynamic response of a circular lined tunnel
with an imperfect interface to plane SV waves based on the
wave function expansion method and the linear spring
model. Lu et al. [19] studied the dynamic stress con-
centration and vibration velocity scaling factors of an
unlined circular tunnel subjected to a triangular P wave.
Xia et al. [20] calculated the vibration response of buried
flexible HDPE pipes under impact loads based on the
Winkler model and the Timoshenko beam theory. Re-
cently, Jiang et al. [21–23] studied the dynamic failure
behavior of buried cast iron gas pipeline subjected to
blasting vibration. In order to simplify the analysis, most
of these studies approximately regard blasting seismic
waves as plane waves. However, the assumption is not
reliable when the explosion source is close to the un-
derground structure because the curvature of incident
blasting waves cannot be ignored. Although some re-
search studies about cylindrical waves have been carried
out, the random dynamic response of underground
structures under cylindrical waves is still rare in literature
[24–26].

At present, He and Liang [27] used the Monte Carlo
simulation method to study the influence of the shape
variability of the outer wall on the peak value of DSCF
around the inner wall. However, due to the effects of
multiple factors, such as sedimentation, weathering,
chemical action, transportation processes, and different
loading history, the physical and mechanical properties of
rock and soil vary spatially. -erefore, it is more suitable to
study the DSCF of pipelines under cylindrical SH waves
when the shear modulus of soil is considered as random
parameter.

2. Random Dynamic Responses of Pipeline
Subjected to Cylindrical SH Waves

2.1. Simplified Model. A linear wave source is assumed to
locate at O1, and the axis of a circular pipe whose inner and
outer radius are a and b, respectively, coincides with O2. -e
distance betweenO1 andO2 is r0, and the coordinate systems
O1x1y1 andO2x2y2 are established onO1 andO2, respectively,
as shown in Figure 1. P is an arbitrary point in the soil, and
the distances away fromO1 andO2 are r1 and r2, respectively.
-e displacement function of the cylindrical SH wave
generated at O1 can be expressed in the following form
[28, 29]:
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(1)
0 is the 0th-order Hankel function, i is the

imaginary unit, β1 is the wave number of SH wave in the soil,
and β1 �ω/cs1, in which ω is the frequency of the incident
wave and cs1 �
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G/ρ

􏽰
is the speed of SH wave in the soil. ρ is

the density of the soil. -e shear modulus G of the soil is
considered as a random parameter, which can be described
as

G(ξ) � G(1 + αξ), (2)

where G is the mean value of the shear modulus of soil and ξ
is a random variable with standard normal distribution
N(0,1). As a result, the shear modulus of the soil G and the
SH wave-number β1 will be a function of the random
variable ξ. -en, the coefficient of variation (Cov) of the
shear modulus δG of the soil can be calculated as

δG �
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􏽰

E[G(ξ)]
� α. (3)

Generally, when a cylindrical SH wave reaches the pipe,
it will generate a reflected SH wave (W(r)) propagating
outward in the soil and a refracted SH wave (W(f)) prop-
agating outward and inward in the pipe. -eir displacement
can be expressed as follows:
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where β2 �ω/cs2 is the wave number of SH waves in the pipe
and cs2 �

�����
G2/ρ2

􏽰
is the speed of SH wave in the pipe, in

which G2 is the shear modulus of the pipe and ρ2 is the
density of the pipe.

In order to obtain the displacement function of the
incident wave, the reflected wave, and the refracted wave, the
incident wave potential function in the O1x1y1 coordinate
system must be converted to the expression form in the
O2x2y2 coordinate system. -e conversion formula is
expressed as follows [30, 31]:
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Figure 1: Incident cylindrical SH wave.
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where H(1)
n is the nth-order Hankel function and Jn is the

nth-order Bessel function.
Substituting equation (5) into equation (1), we can ex-

press the displacement function of the cylindrical SHwave as
follows:

W
(i)
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A0nJn β1(ξ)r2􏼂 􏼃cosnθ2 exp(−iωt), (6)

where A0n � (−1)n∈nH(1)
n [β1(ξ)r0]; if n� 0, ∈0 � 1; when

n> 0, ∈0 � 2.

2.2. Boundary Conditions. Let W1 � W(i) + W(r) and
W2 � W(f); considering the interface between the pipe and
the soil as an ideal contact interface, the boundary condi-
tions can be expressed as follows:

τrz1 � τrz2, W1 � W2, if r2 � b,

τrz2 � 0, if r2 � a.
􏼨 (7)

-e relationship between the displacement and the stress
of a cylindrical SH wave can be expressed as follows:

τrz �
μ zW

zr
,

τθz �
μ
r

·
zW

zθ
.

(8)

According to equations (5) and (8), the value of Bn, Cn,
Dn, En, Fn, and Gn can be obtained.

2.3. Solution of Random DSCF Based on the Monte Carlo
Simulation Method. In order to obtain general results, the
dimensionless parameters of DSCF and normalized distance
r∗ are defined as follows:

DSCF � max
τθz2

τ(i)
rz1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
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, (9)
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where τ(i)
rz1 � −μ1β1(ξ)H

(1)
1 [β1(ξ)r1].

When the randomness of structural parameters is
considered, the dynamic response of the structure will also
be random. In order to obtain the random response of the
structure, a series of various strategies such as the Monte
Carlo simulation method [32], stochastic finite element
method [33], and the probability density evolution method
[34] are proposed. -e Monte Carlo simulation method has
a high calculation accuracy in solving complex functions.
Besides, the calculation accuracy is not affected by the
variability of random parameters.-erefore, it is widely used
in theoretical research studies. Owing to the given explicit
formula of DSCF, the Monte Carlo simulation method is

adopted to obtain the statistical results of DSCF. -e main
steps are as follows:

Step 1. Use equation (2) to describe the randomness of
the shear modulus of the soil and generate a sufficient
number of samples ξ which obeys the standard normal
distribution
Step 2. According to the derivation process of DSCF,
substitute each sample into the expression of the shear
modulus of soil and obtain the corresponding result of
DSCF
Step 3. Perform statistical analysis on the samples of
DSCF obtained in Step 2

3. Engineering Background

-e underground passage of Baotong Temple passes through
the concrete sewage pipe at a short distance and is excavated
by drilling and blasting.-e top of the passage is only 0.69m
away from the sewage pipe. -e density and shear modulus
of the pipeline are 2400 kg/m3 and 12.61GPa, respectively.
-e inner radius a and the outer radius b are 400mm and
465mm, respectively. -e density of the surrounding soil is
1980 kg/m3, and the average shear modulus of the soil G is
150MPa. According to the construction information, the
dominant frequency of blasting seismic waves is below
200Hz. Consequently, the dominant frequency f and r0 are
considered as 10∼200Hz and 2b∼10b, respectively. δG is
selected as 0.1 and 0.2, respectively, in the following analysis.

4. Results and Discussion

4.1. Convergence Analysis. -e Monte Carlo simulation
method is employed to obtain the statistical results of the
DSCF. First, a certain number of samples which obey the
standard normal distribution are generated, then the ran-
dom shear modulus is expressed using equation (2), and
finally the sample values of the DSCF are calculated through
equations (4)–(9).

Before the implementation of the Monte Carlo simu-
lation progress, it is necessary to study the influence of the
number of the samples on the convergence of the solution.
Figure 2 exhibits the first four statistic moments (mean,
standard deviation, skewness, and kurtosis) of DSCF gen-
erated by the Monte Carlo simulation method with the
number of the samples increasing from 1× 103 to 5×105

when the four dominant frequencies are 10Hz, 50Hz,
100Hz, and 200Hz, respectively. It is found that in the
aspects of mean and standard deviation, only a small number
of samples is needed to obtain stable results regardless of f.
However, in the aspects of skewness and kurtosis, a large
number of samples are required. It indicates that a sufficient
large number of samples are necessary to obtain stable high-
order statistical moments of DSCF to ensure the conver-
gence. For example, the calculation results of the first four
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statistic moments tend to be stable when more than 100,000
samples are selected, and thus 100,000 samples should be
used in the subsequent analysis.

Figure 3 shows the mean and standard deviation of the
DSCF when different values of r∗ are considered. It is ob-
served from Figure 3 that when δG is equal to 0.1 and 0.2, the
mean of the DSCF decreases significantly when the domi-
nant frequency increases. When the dominant frequency is
equal to 50Hz, 100Hz, and 200Hz, the standard deviation of
DSCF decreases with the increasing r∗, especially when
2≤ r∗ ≤ 5. However, the standard deviation of DSCF is al-
most unchanged when f� 10Hz.

4.2.Analysis of thePipelineDynamicResponseCharacteristics.
Figures 4 and 5 show the probability density function (PDF)
curve and cumulative distribution function (CDF) curve of
DSCF when δG � 0.1 and 0.2, respectively. DSCF of the
pipeline under the plane wave is also provided for
comparison.

It can be seen from Figure 4 that when δG is small (i.e.,
δG � 0.1), the PDF of DSCF approximately obeys the
Gaussian distribution when f� 10Hz. With the increase in
r∗, the PDF curve integrally shifts to the left, which suggests
that the mean of the DSCF reduces. However, the mean of
DSCF increases with the increase in r∗ when f is equal to
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Figure 2: First four statistic moments of DSCF obtained with different numbers of samples: (a) mean; (b) standard deviation; (c) skewness;
(d) kurtosis.
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Figure 3: Mean and standard deviation of DSCF for different values of r∗: (a) mean (δG � 0.1); (b) standard deviation (δG � 0.1); (c) mean
(δG � 0.2); (d) standard deviation (δG � 0.2).
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Figure 4: Continued.
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Figure 4: PDF curves (left) and CDF curves (right) of DSCF when δG � 0.1: (a) PDF f� 10Hz; (b) CDF f� 10Hz; (c) PDF f� 50Hz; (d) CDF
f� 50Hz; (e) PDF f� 100Hz; (f ) CDF f� 100Hz; (g) PDF f� 200Hz; (h) CDF f� 200Hz.
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Figure 5: Continued.
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50Hz, 100Hz, and 200Hz. -e PDF curve when f� 50Hz is
obviously different from that of other cases. When the
dominant frequency is relatively small (10Hz or 50Hz), the
PDF and CDF of DSCF generated by the cylindrical SH wave
are very similar to the results of the plane wave. As the
dominant frequency increases, the distinctions between the
cylindrical SH wave and plane wave will appear; however,
the PDF and CDF of DSCF are getting close to the results of
the plane wave as r∗ increases.

It is found from Figure 5 that the variation of themean of
DSCF with r∗ is similar when δG is equal to 0.1 and 0.2,
respectively. However, all the PDF curves of DSCF become
leftward, and they do not obey the normal distribution any
more, especially in the case of f� 50Hz. A comparison
between Figures 4 and 5 shows that the larger δG is, the more
obvious the skewness of PDF is, which indicates that the
relationship of DSCF and shear modulus of soil is signifi-
cantly nonlinear. Compared with the DSCF under the plane
wave, it has a same trend as δG � 0.1; a lower dominant
frequency or larger normalized distance under the cylin-
drical SH wave will obtain a closer result.

5. Conclusions

(1) -e shear modulus of soil is defined as a random
parameter, and the analytical expression of the
maximum DSCF of pipe subjected to an incident
cylindrical SH wave is established based on the
Fourier–Bessel expansion and the Monte Carlo
simulation method.

(2) When the dominant frequency is 10Hz, the mean
and median of DSCF decrease as the normalized
distance increases. However, this is contrary to those
when the frequency of incident wave is 50Hz,
100Hz, and 200Hz, which indicates that when the
normalized distance is small, the lower-frequency

wave has a greater impact on the pipeline than the
higher-frequency wave.

(3) With the increase in normalized distance, the PDF of
DSCF gradually becomes narrow, indicating that the
variability of DSCF decreases with the increase in
normalized distance.

(4) Compared with the DSCF of pipe subjected to a
plane wave, a lower dominant frequency or larger
normalized distance for the cylindrical SH wave will
generate much closer PDF and CDF of DSCF.
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