
Research Article
Method to Correct the Velocity Variation Information of an
Automatic Crash Notification System in Vehicle-to-Rigid Barrier
Frontal Collisions

Ying Lu ,1 Xiaojie Ji,1 and Yu Shu2

1School of Automotive and Traffic Engineering, Jiangsu University, Zhenjiang 212013, China
2Fourth People’s Hospital of Zhenjiang, Zhenjiang 212000, China

Correspondence should be addressed to Ying Lu; luying@ujs.edu.cn

Received 12 January 2021; Revised 9 July 2021; Accepted 9 August 2021; Published 19 August 2021

Academic Editor: Dario Richiedei

Copyright © 2021 Ying Lu et al.&is is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Automatic crash notification systems (ACNSs) play a key role in post-accident safety. To improve the accuracy and efficiency of
ACNSs, a method to correct the velocity variation information of ACNSs was established. First, after the acceleration data of sled
crash tests were analysed, the factors affecting the accuracy of the velocity variation information were determined, and the
influence of the discrimination threshold and acceleration curve shape on the velocity variation information was examined.
Second, according to the acceleration data generated by the simulation model of a sled crash, the correlation between the accuracy
of the velocity variation information and influencing factors was modelled. &ird, an automatic crash notification algorithm
involving a velocity variation correction function (VVCF) was proposed based on the correlation model. Finally, to verify its
reliability, the improved algorithm was applied to an automatic crash notification system (ACNS) terminal. &e validation results
show that the ACNS terminal can accurately identify collisions and transmit accident information. Moreover, more accurate
velocity variation information can be retrieved.

1. Introduction

Automatic crash notification systems (ACNSs) represent
valuable tools to ensure post-accident safety. In the event of
an accident, if the passengers in the vehicle cannot seek help
themselves, the ACNS detects the vehicle collision and
transmits a rescue signal and the accident information to
rescue centres, thereby improving rescue efficiency and the
possibility of survival [1]. ACNSs can significantly reduce the
collision-to-hospital time, especially in rural areas [2]. By
facilitating the timely provision of treatment, which can
increase the chances of survival and alleviate the severity of
injuries, ACNSs can greatly assist road accident victims [3].
It has been reported that ACNSs can likely reduce the road
traffic mortality by 1.84% and 2.4–3.8% in the USA and
South Australia, respectively [4].

In the ACNS design, collision identification is a critical
challenge. To identify the occurrence of a collision, most
existing ACNS terminals are triggered by the ignition signal

of the airbag system. A major drawback of such trigger
methods is that their reliability depends on the quality of the
airbag system. Moreover, information regarding the occu-
pant injury conditions and extent of damage to the vehicle
cannot be directly obtained from an airbag system, which
limits the scope of application of such ACNSs. Another
widely used trigger method is based on the acceleration
signal of the vehicle body. Such an ACNS constantly records
acceleration signals. If the recorded acceleration signals or
their derivatives (such as the acceleration gradient, velocity
variation, or specific power) exceed the preset thresholds, the
ACNS identifies that an accident has occurred and transmits
the relevant information to rescue centres. Except for the
acceleration peak algorithm, most of the acceleration trig-
gering algorithms employ two levels of thresholds. &e first-
level threshold is the discrimination threshold, which dis-
tinguishes collisions from uneven road driving, emergency
braking, and so on. &e second-level threshold is the trig-
gering threshold, which evaluates the severity of the
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collision. Considerable research has been performed on the
setting of discrimination thresholds. By considering the
vehicle emergency braking and passing of the vehicle
through barricades, Xiao et al. [5] set the discrimination
threshold as −2g (1g � 9.8m/s2). Jia [6] compared the ac-
celeration peaks of vehicle bodies that were generated in
multiple driving experiments on uneven roads and decel-
eration strips and set the discrimination threshold to −6g.
Ge et al. [7] recommended that the discrimination threshold
should be set between −5g and −15g. However, because the
discrimination threshold determines the starting time of the
ACNS velocity variation algorithm [5], an error likely exists
between the calculated and actual velocity variations, re-
gardless of the discrimination threshold.

With the development of passive safety technologies for
modern automobiles, traditional ACNSs have been suc-
ceeded by advanced automatic crash notification systems
(AACNSs), which help identify whether an accident is life
threatening by estimating the severity of the crash and
disseminating information concerning the severity [8]. &e
algorithms of most of the current AACNSs are based on
regression models generated by examining different acci-
dent-injury databases [9, 10]. AACNSs commonly use ab-
breviated injury scale (AIS) metrics to define the severity of
the occupants’ injuries. Many scholars have examined the
application of ACNSs in occupant injury evaluation. Schoell
et al. [11] proposed an occult score combined with injury-
based metrics to define a list of injuries. Kononen et al. [12]
developed a multivariate logistic regression model based on
the data from the National Automotive Sampling System
Crashworthiness Data System (NASS-CDS) to predict the
probability that a crash-involved vehicle contains one or
more occupants with serious or incapacitating injuries. In
this model, the independent variables included the age, belt
usage, number of events, andΔv. Yoshida et al. [13] proposed
four types of crash-direction-based models (that is, the
frontal crash, near-side crash, far-side crash, and rear-end
crash models) by using a logistic regression modelling
technique and accident data from a Japanese statistical da-
tabase. Stitzel et al. [14] proposed an occupant transportation
decision algorithm (OTDA).&is algorithm relied mainly on
vehicle remote sensing technology to collect the vehicle data
to predict occupant injuries and formulate the optimal
transportation scheme for the injured occupants. Pal et al.
[15] introduced two additional variables—intrusion mag-
nitude and maximum deformation location—to Kononen’s
model to build a logistic regression model to improve the
accuracy of the AACNS. Lu et al. [16] developed an injury
prediction model where the velocity variation was the in-
dependent variable. &e dependent variable was the prob-
ability of the driver’s max abbreviated injury scale reaching
or exceeding Level 3 (denoted by MAIS3+). &e authors
noted that as the velocity variation increased, the probability
of the driver’s injury level reaching MAIS3+ increased.
&erefore, the accuracy of the velocity variation directly
affects the prediction accuracy of the driver’s injury level.

&e abovementioned studies indicated that regardless of
how the injuries are defined, the velocity variation
(expressed by Δv) is one of the most important pieces of

accident information because it serves as the basis for the
evaluation of occupant injuries. &e accuracy of the velocity
variation determination directly affects the evaluation ac-
curacy of the occupant’s injury level. In addition, the velocity
variation also plays an important role in traffic accident
reconstruction. Specifically, this variation can be considered
to calculate the collision velocities of the vehicles involved in
a collision [17, 18]. After the initial velocity of the vehicle is
determined, accident reproduction and the division of re-
sponsibility can be realized according to the relevant judicial
expertise [19–21]. &erefore, it is necessary to conduct an in-
depth study on the methods to accurately determine the
velocity variation information.

&is study was aimed at developing a method to correct
the velocity variation to increase the accuracy and efficiency
of ACNSs. Due to the complexity of automotive body
structures and materials used in vehicles, the collision ac-
celerations of different vehicles are quite different from each
other even if the initial collision speeds are identical [22].
Sled test systems have been used by automotive industries to
develop safety systems. &e collision acceleration curves of
different sled test systems are different from one another.
According to the Federal Motor Vehicle Safety Standard
(FMVSS) in the U.S.A, as long as the accelerations are within
the range of the upper and lower bounds recommended by
the FMVSS, the sled systems are reliable [23]. Since definite
expressions for collision accelerations in terms of the initial
collision speeds do not exist, it is difficult to derive a the-
oretical model to correct the error caused by the discrimi-
nation threshold in the ACNS. &e remaining paper is
organized as follows. Section 2 describes the analysis of the
factors that affect the accuracy of velocity variation by
considering the acceleration data generated in sled tests.
Section 3 describes the modelling of the correlation between
the velocity variation error and influencing factors. Section 4
introduces the ACNS velocity variation algorithm developed
based on the correlation model. Section 5 details the reli-
ability of the novel algorithm applied to an ACNS terminal.
Section 6 discusses the sensitivity of the algorithm and its
applicability in the case of head-to-head collision. &e final
section presents the concluding remarks and discusses the
scope for future research.

2. Factors Affecting the Accuracy of
Velocity Variation

2.1. Discrimination *reshold. Typically, to reduce the
probability of false triggering on uneven roads, a relatively
large absolute value of the discrimination threshold value is
set. However, because the ACNS begins to calculate the
velocity variation only when the intensity of the acceleration
signal collected by the acceleration sensor is larger than the
discrimination threshold, the selected discrimination
threshold definitely affects the calculated velocity variation.

&e acceleration data in the vehicle collision process are
the basis for analysing the relationship between the dis-
crimination threshold and velocity variation. However, the
cost of real vehicle testing is high, and only a limited set of
acceleration data can be obtained in one real vehicle test.&e
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amount of data cannot meet the research needs. A sled test is
considerably more economical than a real vehicle crash test
and can be implemented multiple times. &erefore, in this
study, sled tests were adopted instead of real vehicle crash
tests. &e DAPG-QJ-MNPZ sled impact system was used in
this study. &e main components of the system are as
follows:

(1) &e sled, as shown in Figure 1, can withstand a
maximum load mass of 1000 kg. In this test, the total
mass of the sled is 400 kg. &e speed range of the sled
is 8–80 km/h. &e accuracy is ±1%.

(2) &e sled track, as shown in Figure 2, travels along the
track during the entire test, and its length is 55m.

(3) &e traction system, as shown in Figure 3, consists of
mainly a swivel hub and hydraulic control cabinet.
&e objective of this system is to collide at a specified
speed through a steel rope traction sled.

(4) &e collision system, as shown in Figure 4, consists of
an olive head and energy-absorbing device. &e olive
head is installed at the front of the sled. &e energy-
absorbing device is installed in parallel on a fixed
barrier.&e energy-absorbing device is a sleeve made
of polyurethane energy-absorbing material and is
used to absorb the energy generated when the sled
collides. Generally, when the total mass of the sled is
increased by 200 kg, an energy absorption device is
added. Because the total weight of the sled in the test
is 400 kg, 2 energy-absorbing devices are required.
&e size of the energy-absorbing device and amount
of the corresponding energy-absorbing materials
must be adjusted to ensure that the acceleration
curve during the collision is within the range
specified in the Chinese National Standard GB14166-
2013, which is similar to the requirement in FMVSS
[24].

(5) &emain console is shown in Figure 5.&e operation
interface of the main console is shown in Figure 6.
&e main console is used to set up the entire crash
test to control the movement of the console car. &e
system parameters, such as the test speed, acceler-
ation time, and speed stabilization time, are set
through the main console of the sled collision test
system. In the test, linear acceleration is selected, and
the initial velocity is 15 km/h. &e acceleration and
speed stabilization durations are set as 3 s and 10 s,
respectively. After the parameter setting is com-
pleted, the sled test system is implemented to con-
duct the crash test.

In addition, the sled crash test system has its own ac-
celeration acquisition device, which can accurately acquire
and save the acceleration data of the sled in the forward
direction in the event of a large collision.

Based on the acceleration data obtained from the sled
test, the relationship between the discrimination
threshold and accuracy of velocity variation can be de-
termined. &e actual velocity variation in the collision
process can be expressed as

Δv � 􏽚
tp

t0

a(t)dt, (1)

where Δv is the velocity variation in the process of collision;
t0 is the start of collision; tp is the end of collision, that is, the
time at which the acceleration of the vehicle returns to 0g; t
is the current moment; and a(t) is the acceleration of the
vehicle corresponding to the current moment.

Due to the difficulty in determining the exact start of
the collision, the ACNS commonly adopts the time at
which the acceleration of the vehicle reaches the dis-
crimination threshold for the first time to substitute t0. In
this case,

Figure 1: Test sled.

Figure 2: Sled track.

Figure 3: Traction system.

Figure 4: Collision system.
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ΔvACN � 􏽚
tp

tdt

a(t)dt, (2)

where ΔvACN is the velocity variation calculated by the
ACNS, and tdt is the time at which the acceleration of the
vehicle reaches the discrimination threshold for the first
time.

As shown in Figure 7, when the discrimination threshold
is −2g, the starting time of the collision determined by the
ACNS is tdt, and the calculated velocity variation in the
collision process is the acceleration integral value from tdt to
tp. When the discrimination threshold is −2g, the starting
time of the collision determined by the ACNS is tdt

′ . At this
time, the calculated velocity variation in the collision process
is the acceleration integral value from tdt

′ to tp. Clearly,
under different discrimination thresholds, the velocity
variation calculated by the ACNS is different since the
threshold cannot be 0g. Consequently, an error in the
calculation is expected to appear for all threshold values.

We consider the velocity variation error to represent the
accuracy of the velocity variation, which is defined as the
difference between Δv and ΔvACN. Let E be the velocity
variation error:

E � Δv − ΔvACN. (3)

According to this analysis, a smaller absolute value of the
discrimination threshold corresponds to a smaller E. &is
finding indicates that a correlation exists between the dis-
crimination threshold and E.

2.2. Acceleration Curve Shape. In addition to the discrimi-
nation threshold, the shape of the collision acceleration
curve directly affects the velocity variation. When a car
collides with another object at different initial velocities, the
acceleration curves are different from one another. For

different shapes of acceleration curves, the integral values of
the acceleration data (that is, the velocity variation) are
different. Several characteristic variables of acceleration can
be used to describe the shape of the acceleration curve,
including the acceleration peak, acceleration slope, and
velocity variation in a certain window width. &e acceler-
ation peak is the maximum value of the reverse acceleration
during the collision of the vehicle. &e acceleration slope is
the derivative of the acceleration data during the collision.
&e velocity variation in a certain window width is the
integral value calculated in the given window width [5].
Because it is difficult to directly observe the relationship
among these variables, the discrimination threshold, and E,
we perform regression analyses on these variables to identify
the optimal correlation model.

3. Correlation Model between the Velocity
Variation Error and Influencing Factors

3.1. SledCrash SimulationModel. To establish the regression
equation between the velocity variation error and influ-
encing factors, a considerable amount of collision acceler-
ation data is required. Commonly, a regression can be
obtained using real data. However, considering the high cost
and effort associated with conducting multiple real vehicle
tests and sled tests, simulation models are widely utilized in
the current vehicle crash studies to generate data for further
analysis [23]. Simulation software is needed to simulate the
vehicle collision process. &e LS-DYNA simulation software
has been widely used in the research field of vehicle colli-
sions. Consequently, in this paper, we used LS-DYNA R7.0.0
to establish a sled crash simulation model and simulate the
sled test process. &e components of the sled crash simu-
lation model were consistent with those of the DAPG-QJ-
MNPZ sled impact system. To ensure that the simulated data
were similar to the sled test data, the dimensions of the sled
were measured to build a three-dimensional simulation
model, and the materials for each part were determined to
set the collision conditions. &e specific parameters of this
sled impact system were as follows:

(1) &e sled was composed mainly of a flat plate with a
length and width of 1800mm and 20mm, respec-
tively. &e mass of the sled was 400 kg, and the
material was 45 steel.
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Figure 7: Function of discrimination threshold.
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Select linear acceleration 

Acceleration time : 3 s 
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Start acceleration 

Figure 5: Main console.

Figure 6: Main console operation interface.
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(2) &e diameter of the olive head in front of the sled was
46.4mm, and the material was 45 steel.

(3) &e olive head and plate were connected by a strut.
&e length and diameter were 645mm and 27mm,
respectively. &e material was 45 steel.

(4) &e polyurethane energy absorber tube had an outer
diameter of 59.1mm and an inner hole with a cir-
cular platform structure. &e inner diameter of the
tube was 44.5mm near the impact end and 21.8mm
away from the impact end. &e tube was made of a
polyurethane composite material [25].

(5) &e length and outer diameter of the guide tube were
655.0mm and 80.0mm, respectively. &e material
was 45 steel. &e polyurethane energy-absorbing
tube was installed in the guide tube.

(6) &e steel barrier in which the guide tube was installed
was 1800mm long, 20mm wide, and 1000mm high.
&e material was 45 steel.

&e final sled crash simulation model is shown in
Figure 8.

Before using the simulation model to generate data for
the subsequent analysis, we compared the simulation results
with those obtained experimentally to validate the simula-
tion model. Figure 9 shows the crash acceleration curves
pertaining to the simulation and test results for 30 km/h after
filtering the disturbing acceleration. In general, vehicle vi-
brations and electromagnetic interference generate noise
and other unwanted signal components in the inertial signal
samples. &erefore, it is necessary to select the appropriate
signal filtering technique to minimize the noise and maxi-
mize the signal [26]. &e acceleration data of the simulation
test were filtered with a CFC60 SAE filter. &e acceleration
data of the sled test were measured at a sampling rate of
1000Hz and filtered with a CFC60 filter [27]. In this paper,
the x-axis pointed forward from the sled or vehicle. When a
collision did not occur, the acceleration was 0. After the
collision was initiated, the acceleration direction was along
the negative x-axis, and thus, the acceleration varied from 0
to a less-than-zero value. After the peak occurred, the
collision ended, and the sled began to return. During the
rebound, the acceleration direction was consistent with the
positive x-axis, so the acceleration value at the end of the
rebound was greater than 0. After the rebound, the accel-
eration decreased and finally became 0. &e tested sled
reached a peak acceleration of −24.9g at 65ms and stopped
moving at 150ms. &e simulated sled reached a peak ac-
celeration of −19.5g at 63ms and stopped moving at 151ms.
Considering the curve track, peak acceleration, occurrence
time, and stop time, the simulated and tested curves were
considered to be in agreement. &ese findings indicated that
the sled collision simulation can accurately reproduce the
sled collision process, which demonstrates the model ac-
curacy. &erefore, the proposed model can be used for
subsequent research. As long as the initial velocity of the sled
varies, the collision acceleration data of the sled at different
initial velocities can be obtained, which represents the data
basis for establishing the regression model.

3.2. Regression Analysis. After the sled crash simulation
model is developed, it is necessary to perform a regression
analysis for the velocity variation error, discrimination
threshold, and acceleration curve shape. Note that the shape
of the acceleration curve can be described by three kinds of
variables—an acceleration peak, an acceleration slope, and a
velocity variation in a certain window width. Hence, these
variables should not be incorporated in the same regression
equation. Only one of the three variables and the discrim-
ination threshold value can be selected as the independent
variables, with the velocity variation error used as the de-
pendent variable to construct the regression equation. To
identify the most obvious correlation relationship among
these three kinds of variables with the velocity variation
error, we conducted a regression analysis of the velocity
variation, discrimination threshold, and the three variables
based on the verified simulation data [28, 29].

3.2.1. Acceleration Peak as an Independent Variable. &e
acceleration peak is the maximum value of the reverse ac-
celeration during the collision of a vehicle. According to the
acceleration data obtained by an LS-DYNA simulation, if the
initial velocity of vehicle collision increases, the acceleration
peak increases, which indicates that the acceleration peak
and initial velocity of collision are positively correlated.
Since the initial velocity of collision directly affects the shape
of the collision curve and thus the velocity variation
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Figure 8: Sled crash simulation model.
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calculated by the ACNS, the acceleration peak and E are
likely correlated.

We conducted 12 sled impact simulation tests with
different initial speeds to generate multiple acceleration
curves and recorded the corresponding acceleration peaks
associated with E for different D. In general, to analyse the
relationship among the acceleration peak, discrimination
threshold, and E, it is necessary to determine whether the
relationship between these variables is linear or nonlinear. A
scatter plot can clearly depict the data points of multiple
variables, and the correlations among these variables can be
identified by observing the distribution of the data points.
Hence, we used MATLAB R2015a to draw a scatter plot to
demonstrate the distribution of data points, whereD denotes
the discrimination threshold andM denotes the acceleration
peak, as shown in Figure 10.

Figure 10 shows that the data points form a plane in
three-dimensional space with two independent variables and
one dependent variable, so multiple linear regression
analysis was used in this work. Many regression models are
available, such as the linear model, quadratic model, ex-
ponential model, power model, and logarithmic model. &e
least-squares method finds the best function to match the
data by minimizing the sum of squares of the errors. &is
method can be used to obtain unknown data, and the sum of
squares of the errors between the obtained data and actual
data is minimized. We used the least-squares method to
perform multiple regression analysis, with E regarded as the
dependent variable and D and M considered as the inde-
pendent variables.

We implemented the linear regression process in SPSS
16.0. &e default 95% confidence interval was selected. &e
statistics of the regression model are shown in Table 1, and
the coefficients and their significance are shown in Table 2.

Tables 1 and 2 show that the R square of the entire model
is 0.560. All the coefficients, except for the constant, are
statistically significant at P< 0.05.

Figure 10 demonstrates that a curvilinear relationship
exists among E, D, and M. Since the relationship between E,
M, andD is curvilinear, the quadratic model was chosen here.
In addition, because the quadraticmodel is relatively simple, it
can be easily programmed in the ACNS.&e quadratic model
for E in terms of D and M can be expressed as

E � b1 + b2D + b3M + b4D
2

+ b5M
2

+ b6DM􏼐 􏼑 + ε, (4)

where b1 is the coefficient of the constant term; b2 and b3 are
the coefficients of the primary terms of D and M, respec-
tively; b4 and b5 are the coefficients of the square terms of D
and M, respectively; b6 is the coefficient of the interaction
term of D and M; and ε is the regression error. Let 􏽢E be the
estimated value of E, which can be defined as

E
∧

� b1 + b2D + b3M + b4D
2

+ b5M
2

+ b6DM. (5)

We implemented the regression process in SPSS 16.0.
&e default 95% confidence interval was selected. &e sta-
tistics of the quadratic model are shown in Table 3, and the
coefficients and their significance are shown in Table 4.

&e comparison of Tables 1 and 3 indicates that the
quadratic model exhibits a higher performance than the
linear model, with a greater adjusted R square and lower
standard error of regression. Tables 3 and 4 indicate that the
R square of the entire model is 0.792, and the P value is 0,
which is less than 5% of the significance level, thereby in-
dicating that the model is reliable. &e P values corre-
sponding to D andM are 0.256 and 0.124, respectively, both
of which are greater than the 5% significance level. &e P

values corresponding to D2, DM, andM2 are 0, 0, and 0.002,
respectively, which are less than 5% of the significance level.
&e absolute values of the corresponding T statistics of D2,
DM, and M2 are greater than 2, indicating that the
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Figure 10: Velocity variation error-acceleration peak-discrimi-
nation threshold relationship diagram.

Table 1: Statistics of the linear model (acceleration peak involved).

Name Value
R square 0.560
Adjusted R square 0.552
Standard error of regression 1.046
Sum of residuals 117.179
F statistic 68.026
P 0.000

Table 2: Significance of coefficients (acceleration peak involved).

Variable Coefficient T statistic P

C∗ 0.248 0.886 0.378
D 0.370 10.642 0.000
M −0.033 −4.776 0.000
∗C denotes the constant term.

Table 3: Statistics of the quadratic model (acceleration peaks
included).

Name Value
R square 0.792
Adjusted R square 0.782
Standard error of regression 0.730
Sum of residuals 55.476
F statistic 78.999
P 0.000
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significance test is passed. In regression analyses, it is
necessary to test whether multiple correlation problems exist
among the variables. &e tolerance and variance inflation
factor (VIF) test was performed in this study. If the tolerance
value is greater than 0.1 and the VIF value is less than 10, no
multicollinearity is considered to exist among the variables.
According to Table 4, the tolerance values of D, M, D2, and
M2 are less than 0.1, and their VIF values are greater than 10.
&us, significant multicollinearity likely occurs among these
independent variables, except for DM.

We excluded the variables that were not statistically
significant at the 5% significance level (that is, D and M) to
adjust the initial regression model. &e statistics of the
adjusted quadratic model are shown in Table 5. &e coef-
ficients and their significance values are shown in Table 6.

According to the two tables, the R square of this model is
0.785, and the P value is 0, which is less than 5% of the
significance level, indicating that the model is reliable. &e P

values corresponding to the independent variables are less
than 5% of the significance level, and the absolute values of
the T statistic are greater than 2, which indicates that the
significance test is passed. Because the tolerance values of the
independent variables are greater than 0.1 and their VIF
values are less than 10, no significant multicollinearity is
considered to exist among the independent variables. &e
adjusted regression equation is expressed as equation (6),
and its three-dimensional graph is shown in Figure 11.

E
∧

� 0.232 − 0.065D
2

− 0.0005M
2

+ 0.013 DM. (6)

3.2.2. Mean Absolute Values of the Acceleration Slopes as an
Independent Variable. &e acceleration slope describes the
slope corresponding to each data point on the acceleration
curve, which indicates the speed of change in acceleration.
Let J(t) be the acceleration slope. In this case,

J(t) �
a(t) − a(t − Δt)
Δt

, (7)

where a(t − Δt) is the acceleration of the previous time
relative to the current moment, and Δt is the time interval
between two acceleration signals.

For a certain initial velocity of the collision, J(t) is clearly
not unique. &e data amount J(t) is determined by the
number of data points included in the acceleration curve.
Hence, a one-to-one correspondence does not exist between

J(t) and E. In addition, because the acceleration slope can be
positive and negative, the mean acceleration slope is close to
0. Consequently, to establish the relationship between the
acceleration slope and velocity variation error, we used the
mean absolute values of the acceleration slope as the in-
dependent variables rather than the mean acceleration slope.
Let J denote the mean of the absolute values of the accel-
eration slope, defined as

J �
1
N

􏽘
t

|J(t)|, (8)

where N is the number of sample points in the time domain.
Note that for each acceleration curve, there exists a

corresponding J. In this way, a one-to-one correspondence
can be achieved between the variables. We calculated the
corresponding J of the acceleration curves associated with
different D. &en, we constructed a scatter plot involving D,
J, and E, as shown in Figure 12.

We used the least-squares method to perform a multiple
regression analysis, where E was regarded as the dependent
variable and D and J were used as the independent variables.
We implemented the linear regression process in SPSS 16.0.
&e default 95% confidence interval was selected. &e

Table 4: Significance of coefficients (acceleration peaks included).

Variable Coefficient∗ T statistic P

Collinearity
statistics

Tolerance VIF
C −0.572 −1.234 0.220
D −0.133 −1.142 0.256 0.043 23.090
M −0.037 −1.549 0.124 0.040 25.119
D2 −0.073 −7.610 0.000 0.050 19.906
M2 −0.001 −3.135 0.002 0.047 21.453
DM 0.011 6.923 0.000 0.127 7.850
∗&ese coefficients correspond to b1, b2, b3, b4, b5, and b6 sequentially.

Table 5: Statistics of the adjusted quadratic models (acceleration
peaks included).

Name Value
R square 0.785
Adjusted R square 0.779
Standard error of regression 0.73471
Sum of residuals 57.219
F statistic 129.031
P 0.000

Table 6: Significance of coefficients of the adjusted model (ac-
celeration peaks included).

Variable Coefficient T statistic P

Collinearity
statistics

Tolerance VIF
C 0.232 1.832 0.070
D2 −0.065 −16.571 0.000 0.306 3.272
M2 −0.0005 −4.492 0.000 0.276 3.627
DM 0.013 8.961 0.000 0.170 5.899
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Figure 11:&ree-dimensional graph of the velocity variation error-
acceleration peak-discrimination threshold regression equation.
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statistics of the regression model are shown in Table 7, and
the coefficients and their significance are shown in Table 8.

Tables 7 and 8 show that the R square of the entire model
is 0.523. All the coefficients are statistically significant
atP< 0.05, except for the constant term.

In addition, we adopted a quadratic model for the re-
gression analysis. &e expression of the quadratic model was
similar to equation (5), albeit with J substituted forM. &ese
data were input to SPSS 16.0. &e default 95% confidence
interval was selected. &e statistics of the quadratic model
are shown in Table 9, and the coefficients and their sig-
nificances are shown in Table 10.

&e comparison of Tables 7 and 9 indicates that the
quadratic model seems to perform better than the linear
model does, with a greater adjusted R square and lower
standard error of regression.&e data in the aforementioned
tables show that the R square of this model is 0.703, and the P

value is 0, which is less than 5% of the significance level,
indicating that the model is reliable. &e P value corre-
sponding to D2 and DJ is 0, less than 5% of the significance
level, and the absolute value of the Tstatistic is greater than 2,
indicating that the significance test is passed. However, the P

value corresponding to J2 is 0.132, which is greater than the
significance level, and the absolute value of the corre-
sponding T statistic is less than 2. &e P values corre-
sponding to D and J are 0.840 and 0.299, respectively, which
are greater than the 5% significance level. &e absolute value
of the corresponding T statistic of D and J is less than 2.
&erefore, a linear relationship does not exist between the
two independent variables and dependent variable, and the
nonlinear relationship is not significant. Because the tol-
erance values ofD, J,D2, J2, andDJ are less than 0.1 and their
VIF values are greater than 10, significant multicollinearity is
considered to exist among the independent variables.

We excluded variables that were not statistically sig-
nificant at the 5% significance level (that is,D and J) to adjust
the intimal regression model. &e statistics of the adjusted
quadratic model are shown in Table 11, and the coefficients
and their significances are shown in Table 12.

&e two aforementioned tables indicate that the R
square of this adjusted model is 0.699, and the P value is 0,
which is less than 5% of the significance level, indicating
that the model is reliable.&e P values corresponding toD2,
J2, and DJ are less than 5% of the significance level, and the
absolute values of the T statistic are greater than 2, which

indicates that the significance test is passed. &e tolerance
values of D2 and J2 are greater than 0.1, and the VIF values
are less than 10. No significant multicollinearity is con-
sidered to exist among the independent variables except for
DJ. &e adjusted regression equation is expressed as
equation (9), and its three-dimensional graph is shown in
Figure 13.
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Figure 12: Velocity variation error-mean absolute acceleration
slope-discrimination threshold relationship diagram.

Table 7: Statistics of the linear model (mean absolute values of the
acceleration slopes).

Name Value
R square 0.523
Adjusted R square 0.515
Standard error of regression 1.089
Sum of residuals 126.849
F statistic 58.761
P 0.000

Table 8: Significance of coefficients (mean absolute values of the
acceleration slopes).

Variable Coefficient T statistic P

C −0.250 −0.573 0.568
D 0.370 10.228 0.000
J 0.000 3.593 0.000

Table 9: Statistics of quadratic models (mean absolute values of the
acceleration slopes).

Name Value
R square 0.703
Adjusted R square 0.688
Standard error of regression 0.872
Sum of residuals 79.115
F statistic 49.179
P 0.000

Table 10: Significance of coefficients (mean absolute values of the
acceleration slopes).

Variable Coefficient T statistic P

Collinearity
statistics

Tolerance VIF
C −1.585 −0.947 0.346
D 0.034 0.202 0.840 0.030 32.972
J 0.001 1.044 0.299 0.011 87.082
D2 −0.073 −6.372 0.000 0.050 19.906
J2 −6.70E− 8 −1.518 0.132 0.012 83.415
DJ −9.20E− 5 −4.454 0.000 0.056 17.732

Table 11: Statistics of the adjusted quadratic models (mean velocity
variation in a certain window width).

Name Value
R square 0.699
Adjusted R square 0.691
Standard error of regression 0.869
Sum of residuals 80.032
F statistic 82.180
P 0.000
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􏽢E � −0.021 − 0.076D
2

− 2.03 × 10−8
J
2

− 9.22 × 10−5
DJ.

(9)

3.2.3. Mean Velocity Variation in a Certain Window Width
as an Independent Variable. &e velocity variation in a
certain window width can be obtained by integrating the
acceleration data in a certain window, that is,

S(t, w) � 􏽚
t

t−w
a(t)dt, (10)

where S(t, w) is the velocity variation in a moving window
and w is the window width.

Xiao et al. [5] recommended 8ms as the optimal w.
Hence, in our paper, we set w as 8ms. Notably, S(t, 8)

changes with t along the time axis, and thus, it is not unique
for a specific acceleration curve. &erefore, S(t, 8) and E
cannot have a one-to-one correspondence. Although S(t, 8)

can be both positive and negative, the number of negative
values are dominant, and the absolute values of the positive
and negative numbers are considerably different. &erefore,
we considered the mean of S(t, 8) as one of the independent
variables (denoted by Δv8ms). Specifically,

Δv8ms �
1
N

􏽘
t

S(t, 8). (11)

Note that for each acceleration curve, there exists a cor-
responding Δv8ms. &erefore, a one-to-one correspondence

can be achieved between the variables.We calculated theΔv8ms
corresponding to the different acceleration curves associated
with E for different D. &e scatter plot of the three variables is
shown in Figure 14.

&e least-squares method was adopted to perform
multiple regression: E was considered as the dependent
variable, and D and Δv8ms were used as the independent
variables. We implemented the linear regression process in
SPSS 16.0. &e default 95% confidence interval was selected.
&e statistics of the regression model are shown in Table 13,
and the coefficients and their significance are shown in
Table 14.

Tables 13 and 14 show that the R square of the entire
model is 0.575. All the coefficients are statistically significant
at P< 0.05, except for the constant term.

Furthermore, we adopted a quadratic model for the
regression analysis. &e expression of the regression model
was similar to equation (5), although Δv8ms substituted M.
We input these data into SPSS 16.0. &e default 95% con-
fidence interval was selected. &e statistics of the quadratic
model are shown in Table 15, and the coefficients and their
significances are shown in Table 16.

&e comparison of Tables 13 and 15 indicates that the
quadratic model is superior to the linear model, with a
greater adjusted R square and lower standard error of re-
gression. It can be seen from the above two tables that the R
square of the entire model is 0.796, and the P value of the
model is 0, which is less than 5% of the significance level,
indicating that the model is reliable. &e P value corre-
sponding to D2 and DΔ v8ms is 0, less than 5% of the sig-
nificance level, and the absolute value of the T statistic is
greater than 2, indicating significance. However, the P value
corresponding to Δv28ms is 0.541, which is greater than the
significance level. &e absolute value of the corresponding T
statistic ofΔv28ms is less than 2.&e P values corresponding to
D and Δv8ms are 0.664 and 0.08, respectively, which is greater
than the saliency level of 5%, and the absolute value of the
corresponding T statistic is less than 2. &erefore, the
nonlinear relationship is not significant. Because the tol-
erance values ofD, Δv8ms,D

2, and Δv28ms are less than 0.1 and
their VIF values are greater than 10, significant multi-
collinearity is considered to occur among the independent
variables except for DΔv8ms.

We excluded the variables that were not statistically
significant at the 5% significance level to adjust the intimal
regression model. &e statistics of the adjusted regression
model are shown in Table 17, and the coefficients and their
significance are shown in Table 18.

According to the two abovementioned tables, the R
square of this model is 0.795, and the P value of the model is
0, which is less than 5% of the significance level, indicating
that the model is reliable. &e P values corresponding to the
independent variables are less than 5% of the significance
level, and the absolute values of the T statistic are greater
than 2, which indicates significance. Because the tolerance
values of the independent variables are greater than 0.1 and
their VIF values are less than 10, no significant multi-
collinearity is considered to exist among the independent
variables. &e adjusted regression equation is expressed as
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Figure 13: &ree-dimensional graph of velocity variation error-
mean absolute acceleration slope-discrimination threshold re-
gression equation.

Table 12: Significance of coefficients of the adjusted model (mean
velocity variation in a certain window width).

Variable Coefficient T statistic P

Collinearity
statistics

Tolerance VIF
C −0.021 −0.113 0.910
D2 −0.076 −10.310 0.000 0.121 8.298
J2 −2.030E− 8 −2.382 0.019 0.319 3.131
DJ −9.220E− 5 −5.840 0.000 0.096 10.429
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equation (12), and its three-dimensional graph is shown in
Figure 15.

􏽢E � 0.616 + 0.66Δv8ms − 0.069D
2

+ 0.25 DΔv8ms. (12)

3.2.4. Choice of the Model Equation. To determine the ap-
propriate model to be applied in the ACNS, we considered
the following factors.

(1) Fitting degree: &is value should be high enough to
more accurately reflect the actual speed change loss.

(2) Calculation efficiency: Because the ACNS requires a
high computing efficiency, the results must be calcu-
lated with a high efficiency after the collision. &ere-
fore, a simple and efficient model should be selected.

According to the comparison of the regression models,
including M, J, and Δv8ms, equation (12) has the highest R
square (that is, the highest fitting degree), while equation (9)
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Figure 14: Velocity variation error-mean velocity variation in a
window width of 8ms-discrimination threshold relationship
diagram.

Table 13: Statistics of the linear model (mean velocity variation in a
certain window width).

Name Value
R square 0.575
Adjusted R square 0.567
Standard error of regression 1.028
Sum of residuals 113.168
F statistic 72.332
P 0.000

Table 14: Significance of coefficients (mean velocity variation in a
certain window width).

Variable Coefficient T statistic P

C −0.019 −0.064 0.949
D 0.370 10.829 0.000
Δv8ms −0.715 −5.235 0.000

Table 15: Statistics of quadratic models (mean velocity variation in
a certain window width).

Name Value
R square 0.796
Adjusted R square 0.786
Standard error of regression 0.72263
Sum of residuals 54.308
F statistic 81.144
P 0.000

Table 16: Significance of coefficients (mean velocity variation in a
certain window width).

Variable Coefficient T statistic P

Collinearity
statistics

Tolerance VIF
C 0.649 1.284 0.202
D −0.052 −0.435 0.664 0.041 24.642
Δv8ms 0.917 1.768 0.080 0.034 29.204
D2 −0.073 −7.691 0.000 0.050 19.906
Δv28ms 0.094 0.614 0.541 0.039 25.537
DΔv8ms 0.244 7.293 0.000 0.106 9.403

Table 17: Statistics of regressionmodels (mean velocity variation in
a certain window width).

Name Value
R square 0.795
Adjusted R square 0.789
Standard error of regression 0.71773
Sum of residuals 54.604
F statistic 136.903
P 0.000

Table 18: Significance of coefficients of the adjusted model (mean
velocity variation in a certain window width).

Variable Coefficient T statistic P

Collinearity
statistics

Tolerance VIF
C 0.616 2.570 0.012
Δv8ms 0.660 3.480 0.001 0.252 3.962
D2 −0.069 −15.255 0.000 0.216 4.634
DΔv8ms 0.250 8.383 0.000 0.132 7.596
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Figure 15: Velocity variation error-mean velocity variation in a
window width of 8 ms-discrimination threshold regression
equation 3D graph.
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has the lowest R square (that is, the lowest fitting degree).
However, in the case of equation (12), not every P and T
statistic corresponding to each item in the equation passes
the significance test. Furthermore, although the fitting de-
gree of equation (6) is not the highest, the square terms of the
independent variable in the equation exhibit a nonlinear
relationship according to the significance test. On the col-
lision curve, M is the point with the largest absolute value,
and thus, we can approximately determine the trend of the
entire curve according to this point. Compared with J and
Δv8ms, M can more accurately reflect the shape of the col-
lision curve. &erefore, in this paper, we selected M as the
independent variable rather than J and Δv8ms and used
equation (6) as the correlation model of acceleration, dis-
crimination threshold, and velocity variation error.

&e comparison of the three models indicates that the
acceleration peak can be promptly obtained, and the cal-
culation speed is very fast. To improve the accuracy of the
velocity variation, we can introduce equation (6) in the
automatic crash notification (ACN) velocity variation al-
gorithm. Specifically, 􏽢E obtained from the correlation model
is added to the ACN velocity variation calculation result.
Hence, we obtain

Δv′ � ΔvACN + 􏽢E, (13)

where Δv′ is the improved velocity variation, and 􏽢E can be
determined according to equation (6).

4. Design of an ACN Algorithm with a Velocity
Variation Correction Function

Based on the traditional ACN algorithm, this paper proposes
an ACN algorithm with the velocity variation correction
function (VVCF), which incorporates the established cor-
relationmodel of 􏽢E,D, andM, as shown in Figure 16. First,D
needs to be determined. Generally, this value can be set
based on uneven driving tests or emergency braking tests.
&en, the ACNS collects the acceleration data and deter-
mines the acceleration peak (M). Subsequently, the accel-
eration peak is compared with the discrimination threshold.
If the acceleration peak is less thanM, the system determines
that a collision has occurred; however, if the acceleration
peak is larger than M, the acceleration data continue to be
collected and compared with the discrimination threshold.
Finally, once the ACNS determines that a collision has
occurred, the acceleration-based collision algorithm deter-
mines whether it is necessary to seek help and transmit the
accident information [30]. If it is not necessary to seek help
and transmit the accident information, the algorithm is
automatically terminated. Otherwise, the system calculates
Δv′ according to equations (6) and (13) and sends it to the
rescue centre, along with the other accident information.

5. Verification of the Algorithm

5.1. Crash Test. After designing the ACN algorithm with
VVCF, it was necessary to verify whether this algorithm can
enhance the accuracy of the velocity variation information
sent by the ACNS in actual collision accidents through

experiments. &erefore, in this paper, we conducted sled
tests and real vehicle crash tests to verify the effectiveness
and reliability of the algorithm. Notably, the sled test can be
carried out many times, and the collision acceleration data of
multiple sets of different initial velocities can be obtained.
Although the actual car crash test cannot be carried out
many times, the results of such tests most closely mimic the
actual crash situation, so the verification results of actual car
tests are the most convincing. When the sled and real vehicle
crash test data are combined, the verification reliability can
be improved.

5.1.1. Sled Test. In this paper, the DAPG-QJ-MNPZ sled test
system was used for the sled test. To obtain the collision
acceleration data of the sled at different initial velocities, sled
collision tests were conducted at initial velocities of 30 km/h,
34 km/h, 50 km/h, and 56 km/h. &e massive impact force
during the collision may cause the sled to vibrate, resulting
in a large oscillation in the collected acceleration data in the x
direction. To eliminate the interference of the sled vibration
on the collected acceleration signals, we used the CFC60
filter to filter the collected acceleration data at a sampling
rate of 1000Hz. Figure 17 shows the crash acceleration
curves between the simulation and test results at 34 km/h,
50 km/h, and 56 km/h after filtering the disturbing accel-
eration. When the initial speed is 34 km/h, the tested and
simulated sleds reach a peak acceleration of −20.42g and
−20.46g at 0.136 s and 0.141 s, respectively. When the initial
speed is 50 km/h, the tested and simulated sleds reach a peak
acceleration of −36.51g and −34.38g at 0.15 s and 0.16 s,
respectively. When the initial speed is 56 km/h, the tested
and simulated sleds reach a peak acceleration of −42.84g and
−50.7g at 0.11 s and 0.12 s, respectively. &e simulated and
tested curves at these speeds are well matched, in accordance
with the comparison shown in Figure 9. Hence, the accuracy
of the model is verified.

5.1.2. Real Vehicle Crash Test. To achieve highly convincing
test results, 50 km/h full-frontal vehicle-to-rigid fixed barrier
testing was conducted at the Shanghai Municipal Bureau of
Quality and Technical Supervision. &e test vehicle was a
Proton four-door sedan with a kerb weight of 1308 kg.
Figure 18 shows the vehicle before and after the collision.

Data were acquired using the DTS TDAS/G5 acquisition
instrument, as shown in Figure 19.&e systemmemory is 16
bits, sensing capacity is 200g, and sampling rate is 10,000Hz.
&e acceleration curve of the full-frontal impact at 50 km/h
is shown in Figure 20.

According to the figure, three peaks occur in the
acceleration curve at 0.13 s, 0.15 s, and 0.18 s, consistent
with the three-level stiffness distribution at the front of
the vehicle. &e front bumper, air intake grille, anti-
collision steel beam, foam material, and engine cover
constitute the first-level deformation zone. &e material
density of these components is generally low, and they
obviously cannot absorb much energy. &erefore, the
first peak value is small, reaching −20.36g. &e radiator
bracket, suspension system, engine, transmission,
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longitudinal beam, and frame constitute the second-level
compatibility zone, which can provide sufficient rigidity
for the vehicle and limit the amount of deformation of
the front of the body. In this case, the acceleration peak
value reaches −31.78g. &e steering column, firewall,
instrument panel, windshield, A-pillar, and other com-
ponents constitute the third-level occupant protection
zone. &e components in this area need to have sufficient
rigidity, so the third peak value is greater than the first
two peaks, reaching −38.91g.

5.2. Validation Analysis. To examine the accuracy en-
hancement in the velocity variation calculated according
to the algorithm with VVCF, the proposed ACN algorithm
designed in this paper was imported to an ACNS terminal
and compared with the traditional ACN algorithm in
terms of the velocity variation outputs.&e ACNS terminal
consisted of an STM32F103C8T6 microprocessor, an
ATK-S1216F8-BD GPS/BD module, an ATK-SIM800C
module, a controller area network (CAN) communication
interface, and an NRF2401 wireless radio frequency (RF)
module, as shown in Figure 21. &e whole system was
based on an STM32F103C8T6 microprocessor. A CAN
communication interface was used to receive the infor-
mation from the vehicle. &e NRF2401 wireless RF module
could receive the acceleration data transmitted by the

accelerometers as a wireless signal. &e ATK-S1216F8-BD
GPS/BD module could receive and parse the location
information. All the integrated information was delivered
to the emergency management system (EMS) by the ATK-
SIM800C module. &e whole ACNS terminal is shown in
Figure 22. To facilitate verification, we used a mobile
phone to represent the EMS as the receiving end of the
accident information.

5.2.1. Discrimination *reshold Setting and Anti-False-
Alarm Ability of the ACNS. &e discrimination threshold,
which distinguishes collisions from uneven road driving,
emergency braking, and so on, is a critical setting to avoid
false alarms. Table 19 shows the peak acceleration of the
vehicle body (denoted by axp) under the typical working
conditions at different speeds [31].

According to Table 19, when a vehicle drives over flat
roads or passes through ordinary barricades, a relatively
small absolute value of the discrimination threshold can
satisfy the requirements of resisting the road interference.
However, for certain roads, a larger discrimination threshold
is needed.

In our ACNS terminal, we set the discrimination
threshold as −9g. &is value is larger than the peak accel-
eration of the vehicle body under most circumstances.
Consequently, the occurrence possibility of false alarms is low.

Start

Set D

Collect acceleration data

Judge M by acceleration
data

Judge collision by collision
algorithms

Has a collision
occurred?

No

Calculate ∆v' by improved
ACNS algorithm

Judge whether help must
be sought via the trigger

Call for help?

Send SOS and accident
information

End

Yes

Yes

No

Figure 16: ACN algorithm with VVCF workflow.
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5.2.2. Evaluation of the ACN Algorithm with VVCF.
According to the European regulation ECE R94, when a car
frontally impacts a fixed rigid barrier at a speed of more than
30 km/h, the air bag should be deployed, which means that
the ACNS should be triggered. Hence, we considered the
collision acceleration data of the sled at the initial speed of

30 km/h to perform the verification experiment. &e tra-
ditional ACN algorithm was based on the moving window
integral algorithm (MWIA) [5]. We used the Micro-
controller Development Kit (MDK) Version 5 to pro-
gramme the algorithm. &e sets of acceleration data and
discrimination threshold were directly written into the

(a) (b)

Figure 18: Test vehicle before and after the collision. (a) Before vehicle collision. (b) After vehicle collision.
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Figure 17: Collision acceleration curve.(a) Acceleration curve of the simulation and real sled crash test after filtering at 34 km/h.
(b) Acceleration curve of the simulation and real sled crash test after filtering at 50 km/h. (c) Acceleration curve of the simulation and real
sled crash test after filtering at 56 km/h.
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Figure 19: Acquisition instrument.
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Figure 20: Acceleration curve of the real vehicle crash test.
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Figure 21: Diagram of the ACNS terminal.

Figure 22: ACNS terminal.
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program. &en, this program was imported to the ACNS
terminal. To facilitate comparison with the traditional al-
gorithm, the ACN algorithm with VVCF was also based on
the MWIA, except that a small section of the speed change
correction programme was introduced. In addition, the
same acceleration data and discrimination threshold were
written into the program. &e information received by the
mobile phone is shown in Tables 20 and 21.

According to Tables 20 and 21, even though the accel-
eration data and the discrimination threshold are the same,
the velocity variations calculated by the two ACN algorithms
are different. &e velocity variation obtained via the tradi-
tional algorithm and algorithmwith VVCF is −19.0717 km/h
and −22.5088 km/h, respectively. Ideally, Δv should be
30 km/h since the sled initial speed is 30 km/h. Because
frictional resistance exists on the sled track, some loss in the
impact speed is expected. By examining the acceleration
data, we determined t0 and tp and integrated the acceleration
data with an initial speed of 30 km/h. Consequently, the
actual velocity variation during the collision is calculated to
be −23.2599 km/h. &erefore, the result obtained via the
algorithm with VVCF is closer to the actual value.

6. Discussion

6.1. Sensitivity Analysis. To investigate the impact of the
discrimination threshold and collision speed on the efficiency
of the proposed ACN algorithm with VVCF, the acceleration
data under different discrimination thresholds and initial
velocities were imported into the two programs to calculate
the respective velocities. &e discrimination threshold was set
to different values ranging between −10g and 0g. Accelera-
tion data at initial velocities of 30 km/h, 34 km/h, 50 km/h,
and 56 km/h, obtained by sled tests, and 50 km/h, obtained by
the real vehicle crash test, were directly written into the ACNS
terminal. &e results are shown in Tables 22 and 23.&e third
row of Table 22 represents the initial velocity; the first column
represents the discrimination thresholds; and the data in the
remaining table represent E. Similarly, the third row of Ta-
ble 23 represents the initial velocity corresponding to the
collision acceleration data. &e first column represents the
discrimination threshold.

Let E′ denote the errors between the actual value and
velocity variation calculated using the ACN algorithm with
VVCF, that is,

E′ � Δv − Δv′. (14)

&e remaining data in Table 23 indicate the results.

According to Tables 22 and 23, when the initial velocity
of the vehicle collision is low, the calculation error of the
traditional ACN algorithm is large, and the error of the ACN
algorithm with VVCF is significantly reduced. When the
initial velocity of the vehicle collision is high, the errors in
the velocity variation calculated via the traditional ACN
algorithm and ACN algorithm with VVCF are small, and the
latter value is reduced. Because the original error is not large,
the improvement is not very obvious. &is phenomenon
occurs because the calculation error of the traditional ACN
algorithm decreases as the initial velocity of the vehicle
collision increases (according to equation (6), a smaller M
corresponds to a larger initial collision speed). Hence, the
proposed ACN algorithm with VVCF exhibits a higher
performance when the vehicle is at a low speed by providing

Table 19: Peak acceleration under typical working conditions.

Working conditions Speed
(km/h) axp (g)

Driving on gravel road 60 −1 to −0.8
Driving on washboard road 60 −5 to −3
Driving on stone road 50 −2 to −1.5
Emergency braking 60 −1 to −0.8
Passing through 110mm high
barricades 60 −8 to −6

Table 20: Output of the traditional ACN algorithm.

Whether a collision occurred Yes
Longitude 119.52185 E
Latitude 32.20446N
UTC date 2020/11/16
UTC time 12 : 02 :12
Velocity variation in collision −19.0717 km/h

Table 21: Output of the ACN algorithm with VVCF.

Whether a collision occurred Yes
Longitude 119.52185 E
Latitude 32.20446N
UTC date 2020/11/16
UTC time 13 :19 : 32
Velocity variation in collision −22.5088 km/h

Table 22: Errors in the speed changes obtained via the traditional
ACN algorithm.

D (g)
E (km/h)

Initial speed v0 (km/h)
30 34 50 56 50∗

−6 2.27 1.46 0.60 0.58 1.75
−7 2.74 1.70 0.85 0.58 1.82
−8 3.56 2.25 1.14 0.85 1.87
−9 4.19 2.88 1.47 1.18 1.97
−10 4.87 3.23 1.83 1.55 2.04
∗means the real vehicle test.

Table 23: Errors in the speed changes obtained using the ACN
algorithm with VVCF.

D (g)
E′ (km/h)

Initial speed v0 (km/h)
30 34 50 56 50∗

−6 1.19 0.74 0.53 0.26 1.58
−7 1.00 0.40 0.55 0.55 1.65
−8 1.04 0.24 0.34 0.46 1.23
−9 0.75 0.03 0.04 0.24 0.73
−10 0.38 0.59 0.36 0.07 0.07
∗means the real vehicle test.
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larger error compensation. Moreover, the algorithm attains
a certain improvement in the calculation of the velocity
variation information for a vehicle at high speed.

6.2.Head-to-HeadCollisionAnalysis. &e ratio of the vehicle
speed after a crash (denoted by v′) to the speed before the
vehicle collision v0 is known as the coefficient of restitution
and can be expressed as

e � −
v′
v0

, (15)

When e� 1, the collision is elastic; when 0< e< 1, the
collision is inelastic; and when e� 0, the collision is com-
pletely inelastic [32].

&e regression models adopted in this paper were based on
the data generated by sled tests.&e considered collisions can be
regarded as completely inelastic collisions since the sled and rigid
barriers are affixed. In the case of real vehicle collisions, when the
vehicles impact the barrier at medium and low speeds, the
collision can be considered an inelastic collision, for which
0< e<1. However, when the collision speed exceeds a certain
limit value, the collision is considered completely inelastic. For
instance, when the collision speed is 50km/h, the coefficient of
restitution e is 0.1, and the collision can be considered to be
completely inelastic. Hence, our method is mainly suitable for
vehicle-to-rigid barrier frontal collisions at high initial velocities.

In the real world, head-to-head collisions between two
vehicles occur in certain scenarios. &e characteristics of
such collisions are completely different from those of a
frontal crash with a fixed object. Figure 23 shows the vehicles
before and after head-to-head collisions.

&e significant difference between head-to-head colli-
sions and vehicle-to-rigid barrier frontal collisions pertains
to the coefficient of restitution. &e coefficient of restitution
for the former case is

e � −
v1′ − v2′

v1 − v2
, (16)

where v1 and v2 are the initial impact speeds of the two
vehicles, and v1′ and v2′ are the post-crash speeds of the two
vehicles. It is difficult to judge whether e equals 0 under this
circumstance.

To investigate the applicability of our algorithm in the
case of a head-to-head collision, we introduce the equivalent
barrier velocity (EBV), as shown in Figure 24.

&e equivalent barrier velocity for vehicle 1, denoted by
vB1, is expressed as

vB1 � v2 − v1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

��������������
k2

k1 + k2

m2

m1 + m2

􏽳

, (17)

where k1 and k2 are the stiffnesses of vehicles 1 and 2, re-
spectively, andm1 andm2 are the masses of vehicles 1 and 2,
respectively [33].

According to equations (16) and (17), we can derive the
following conclusions.

(1) When e � 0, the stiffnesses of the unit masses of
vehicles 1 and 2 are equal; that is, (k1/m1 � k2/m2),
vB1 �Δv1.

(2) When v1 � −v2, m1 �m2, and k1 � k2, vB1 � |v1|.
(3) In other cases, it is impossible to directly suggest the

connection among vB1, Δv1, and v1.

Note that Δv′ calculated by the ACN algorithm with
VVCF is approximately equal to vB1. &erefore, the cor-
rection procedure for the velocity variation in the head-to-
head-collision vehicle can be summarized as follows:

(1) Calculate Δv′ by using the ACN algorithm with
VVCF. Let vB1 be Δv′.

(2) If k1/m1 � k2/m2 and vehicles 1 and 2 are affixed,
Δv1 � vB1.

(3) If the two vehicles are similar and collide with each
other at similar initial speeds, |v1|� vB1.

(4) In other cases, we cannot definitively obtain the
correct Δv1 or v1.

7. Conclusion

&e ACNS velocity variation algorithm was enhanced in this
paper by establishing the correlation model between E and the
influencing factors, thereby rendering the calculated velocity
variation more accurate and increasing the rescue efficiency.
First, we analysed the factors affecting the accuracy of velocity
variation based on the acceleration data generated by sled tests.
&en, the correlation between the accuracy of the velocity
variation and influencing factors was modelled. Next, we
proposed an ACNS velocity variation algorithm based on this
correlation model. &e reliability of the new algorithm was

v1 v2

1 2

(a)

v1' v2'

1 2

(b)

Figure 23: Head-to-head collision. (a) Before head-to-head collision. (b) After head-to-head collision.

Δv1 vB1

1 2

Figure 24: Velocity variation and equivalent barrier velocity.
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verified over an ACNS terminal. &e results showed that when
the program of theACNS terminal contains theACN algorithm
with VVCF, the error between the calculated and actual velocity
variations is reduced, which indicates that the improved ACNS
velocity variation algorithm proposed in this paper is effective.
By introducing the EBV, we investigated the applicability of our
algorithm in the case of a head-to-head collision. &e results
indicated that under certain conditions, the EBV is equal to the
velocity variation or initial collision speed.

Future work can be aimed at extending this research in
several directions. First, the collision angle can be considered. In
this study, the simulationmodel, sled test, and real vehicle crash
test designed in this paper pertained to 100% frontal overlap
rigid barrier collision tests. &e correlation model was based on
these impact data. However, in actual collision scenarios, rear
and side collisions also occur. &us, it is necessary to verify
whether the velocity variation algorithm is suitable for these
situations. Second, the impact of the vehicle features on the
characteristics of the acceleration curves can be examined. &is
study was conducted using a simulation model to obtain the
correlation model between the velocity variation errors and
influencing factors rather than using real collision data. Hence,
other factors, such as the characteristics of vehicles and roll-
overs, should also be considered in future studies.

Nomenclature

Δv: Velocity variation
ΔvACN: Velocity variation calculated via the ACN

algorithm
t0: Starting time of collision
tP: Ending time of collision
t: Current moment
a(t): Acceleration corresponding to the current

moment
tdt: Starting time of collision, as determined by the

ACNS
E: Velocity variation error
D: Discrimination threshold
M: Acceleration peak
b1, . . . , b6: Coefficient of the regression equation
ε: Regression error
E
∧
: Estimated value of E

J(t): Acceleration slope
J: Mean of the absolute values of the acceleration

slope
Δt: Time interval between two acceleration signals
a(t − Δt): &e acceleration of the previous time relative to

the current moment
N: Number of sample points in the time domain
S(t, w): Velocity variation in a moving window.
w: Window width
Δv8ms: Mean of the velocity variation in 8ms
Δv′: Improved velocity variation
v0: Initial speed
E′: Errors between the actual velocity variation and

that calculated via the ACN algorithm with
VVCF

v′: Vehicle speed after crash
e: Coefficient of restitution
v1, v2: Initial impact speeds of vehicles 1 and 2,

respectively
v1′ , v2′ : Post-crash speeds of vehicles 1 and 2,

respectively
vB1: Equivalent barrier velocity for vehicle 1
k1, k2: Stiffness of vehicles 1 and 2, respectively
m1, m2: Mass of vehicles 1 and 2, respectively.
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