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In this study, the parameters of the MacPherson front suspension and the E-type multilink rear suspension are matched to
enhance the vehicle ride comfort on bump road. Vehicle vibration and suspension stiffness are analyzed theoretically. In the
simulation study, the influence of the front and rear wheels on the vehicle vibration is considered, so the time-domain curves of
the front and rear seat rail accelerations are processed by adding windows with two different window functions. -e resulting
ΔRmsLocal and ΔRmsGlobal are used as evaluation indexes of the vehicle ride comfort. -e sensitivity analysis yields the
magnitude of the influence of the suspension parameters on the evaluation indexes. In addition, the trends of ΔRmsLocal and
ΔRmsGlobal with bushing stiffness at different vehicle speeds are discussed. -e results show that longitudinal ΔRmsLocal and
ΔRmsGlobal of the seat rails are influenced by the bushings mostly, while the vertical ΔRmsLocal and ΔRmsGlobal of the seat rails
are influenced by the spring and shock absorber mostly. -e trends of ΔRmsLocal and ΔRmsGlobal with bushing stiffness are
influenced by the speed of the vehicle. Finally, the vehicle ride comfort is enhanced after optimization and matching of the
suspension parameters by NSGA-II optimization algorithm.

1. Introduction

Vehicle ride comfort refers to keeping the impact of vi-
brations and shocks within certain ranges when the vehicle is
excited by the road. -e study of vehicle ride comfort has
always been a subject of interest for scholars.

Several scholars have carried out extensive theoretical
studies on vehicle ride comfort [1–5]. Wang et al. [1] de-
veloped a frequency-based modelling approach for vehicles
equipped with a hydraulic interconnected suspension (HIS)
system. Guntur et al. [2] focused on the effect of the asym-
metric characteristics of the damping forces on the ride
comfort of a typical passenger car under different road ex-
citations. Jiao et al. [4] proposed a 4-DOF dynamic model for
the two-axle heavy truck to investigate the low-frequency
vibration characteristics of the suspension system. Zhao et al.
[6] established a vibration simulation model of a three-axle
goods vehicle passing through a speed bump. -e vibration
characteristics of the vehicle at different speeds were studied

through the simulation, the vibration decay time at different
speeds was obtained, and the minimum distance between the
speed bump and the vehicle scale was determined.

Several scholars have conducted a lot of studies to
improve vehicle ride comfort [7–20]. Qi et al. [8] pro-
posed a new type of suspension including a hydraulically
interlinked suspension and electronically controlled air
springs, enabling a high level of performance in terms of
both handling stability and ride comfort. Tan et al. [9]
proposed a pitch-roll-interconnected hydropneumatic
suspension system to improve the stability and attenuate
the vibration for the lying patients. Ebrahimi-Nejad et al.
[10] derived the vibration control equations for the
vehicle suspension system and compared the effects of
different damping coefficients and spring stiffnesses on
the vehicle ride comfort. Finally, multiobjective opti-
mization was carried out with the TOPSIS method to
improve the ride comfort of the vehicle. Li et al. [11]
developed a 10-DOF model considering the lying patient

Hindawi
Shock and Vibration
Volume 2021, Article ID 5806444, 20 pages
https://doi.org/10.1155/2021/5806444

mailto:906845822@qq.com
https://orcid.org/0000-0001-6375-2865
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/5806444


and the driver to investigate the ride comfort of the
ambulance. After multiobjective optimization, vehicle
ride comfort bump and random road have been im-
proved. Kaldas et al. [12] developed a novel optimization
technique for optimizing the damper top mount char-
acteristics to improve vehicle ride comfort. Based on the
Bolza-Meyer criterion, Phu [17] proposed a new optimal
control law with sliding mode control. -e proposed
controller is applied to a vehicle seat suspension system
with magneto-rheological damper to evaluate vibration
control performances. -rough simulation studies, the
proposed optimal controller is shown to have the ad-
vantages of less power and faster convergence. He et al.
[18] developed and simulated a multibody dynamics
model based on nonlinear damping and equivalent
damping and optimized with an optimization method
based on nonlinear damping and intelligent algorithms
to improve the vehicle ride comfort. Phu et al. [19]
designed a new controller based on a modified Riccati-
like equation. Simulation experiments are carried out on
both bump and random road. -e results show that the
controller can control the acceleration and displacement
at the driver position effectively. Phu et al. [20] proposed
a novel adaptive control method to deal with the dead
zone and time delay issues in actuators of vibration
control systems. -e unwanted vibrations due to external
excitations are well controlled despite of the presence of
dead zone and time delay in actuators.

Many studies by scholars have focused on the vibration
of vehicles on random road. Global and local vibrations are
not considered separately in the study of vibration char-
acteristics. Most of the studies improve vehicle ride comfort
only by matching spring stiffness of suspension and
damping coefficient of shock absorber. -e optimization of
vehicle ride comfort based on specific suspension structures
has not yet been well explored.

-is study takes into account the following aspects: (a)
taking a full vehicle model with a MacPherson front
suspension and an E-type multilink rear suspension as an
example, the influence of the bushing is analyzed from a
force perspective, and the contribution of bushing stiff-
ness to suspension stiffness is discussed. (b) -e vehicle is
simulated on bump road. Local and global vibrations are
considered, so the time-domain curves of the front and
rear seat rails are windowing with different window
functions and the resulting ΔRmsLocal and ΔRmsGlobal
are used as evaluation indexes. (c) Sensitivity analysis
resulted in the most influential suspension parameters for
ΔRmsLocal and ΔRmsGlobal. -e conclusions resulting
from the theoretical analysis are verified. -e trend of
ΔRmsLocal and ΔRmsGlobal with bushing stiffness is
further discussed. (d) Considering the coupling of the full
vehicle vibration, the suspension parameters are matched
reasonably at different vehicle speeds using the NSGA-II
algorithm.

-e paper is organized as follows: Section 2 develops a
vehicle vibration model and discusses the ride comfort
characteristics of the vehicle. Section 3 analyzes the influence
of suspension’s parameters on suspension’s stiffness. Section

4 verifies the conclusions from part two and part three
through simulation. In Section 5, the front and rear sus-
pension parameters are matched by an optimization algo-
rithm to improve the ride comfort of the vehicle. Section 6
presents the conclusions of this study.

2. Vehicle Vibration Characteristics Analysis

2.1. Vertical Longitudinal Vibration Model. Road excitation
may cause vertical, pitch, and longitudinal vibrations of the
vehicle. -e vertical longitudinal coupling model [21] is
shown in Figure 1. -e model consists of sprung mass
represented by the body mb, unsprung mass represented by
the front axle and wheel m1, rear axle, and wheel m2. -ere
is relative vertical and longitudinal movement between the
body and the wheels. -e body can pitch around the y axes,
Iy representing the pitch inertia of the body around the y

axe. Keqfz and Keqrz are the vertical equivalent stiffnesses of
the front and rear suspensions, respectively; Keqfx and
Keqrx are the longitudinal equivalent stiffnesses of the front
and rear suspensions, respectively; Beqfz and Beqrz are the
vertical equivalent damping coefficients of the front and
rear suspensions, respectively; Beqfx and Beqr are the lon-
gitudinal equivalent damping coefficients of the front and
rear suspensions, respectively; Q is the road excitation; Ztf

and Ztr are the vertical displacements of the front and rear
wheels, respectively; Xtf and Xtr are the longitudinal
displacements of front and rear wheels, respectively; Zf

and Zr are the vertical displacements of the front and rear
body, respectively; Xf and Xr are the longitudinal dis-
placements of the front and rear body, respectively; Zb is
the vertical displacement at the centre of mass of the body;
Xb is the longitudinal displacement at the centre of mass of
the body.

Neglecting the damping of the tyres, the forces between
the wheels and the body consist of elastic and damping
forces. According to the Lagrange equation, which is
expressed as shown in equation (1), the equation of vehicle
coupling vibration can be derived

d
dt

zL

z _qi

􏼠 􏼡 −
zL

zqi

� −
zR

z _qi

, i � 1, 2, 3, . . . n. (1)

L is a Lagrangian function

L � T − U, (2)

where T, U, and R are the kinetic energy, potential energy,
and dissipative energy of the system, respectively.

Generalized coordinates are defined as

Xtf Xtr Ztf Ztr Xb Zb φ􏽨 􏽩. (3)

Generalized velocity is defined as

_Xtf
_Xtr

_Ztf
_Ztr

_Xb
_Zb _φ􏽨 􏽩. (4)

Based on the above analysis of the vehicle model, the
potential energy of vehicle vibration can be expressed by the
stiffness characteristics of the system
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U �
1
2

Ktzf Ztf − qzf􏼐 􏼑
2

+ Ktzr Ztr − qzr( 􏼁
2

+ Keqf Zf − Ztf􏼐 􏼑
2

+ Keqr Zr − Ztr( 􏼁
2

+ Ktxf Xtf − qxf􏼐 􏼑
2

+ Ktxr Xtr − qxr( 􏼁
2

+

Keqf Xf − Xtf􏼐 􏼑
2

+ Keqr Xr − Xtr( 􏼁
2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(5)

-e kinetic energy of the vehicle vibration can be found
as

T �
1
2

mb
_Z
2
b + mb

_X
2
b + Iy _φ2

+ m1
_Z
2
tf + m2

_Z
2
tr + m1

_X
2
tf + m2

_X
2
tr􏼒 􏼓.

(6)

-e dissipation energy of vehicle vibrations can be
expressed by the damping characteristics of the system

R �
1
2

Beqf
_Zf − _Ztf􏼐 􏼑

2
+ Beqr

_Zr − _Ztr􏼐 􏼑
2

+ Beqf
_Xf − _Xtf􏼐 􏼑

2
+ Beqr

_Xr − _Xtr􏼐 􏼑
2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (7)

-e geometric constraints of the model satisfy the fol-
lowing equations:

Zf � Zb − Xb − Xtf + a􏼐 􏼑φ,

_Zf � _Zb − Xb − Xtf + a􏼐 􏼑 _φ,

Zr � Zb + Xb − Xtr + b( 􏼁φ,

_Zr � _Zb + Xb − Xtr + b( 􏼁 _φ,

Xf � Xb − Zb − Ztf + hbw􏼐 􏼑φ,

_Zf � _Xb − Zb − Ztf + hbw􏼐 􏼑 _φ,

Xr � Xb − Zb − Ztr + hbw( 􏼁φ,

_Zf � _Xb − Zb − Ztr + hbw( 􏼁 _φ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(8)

where hbw is the wheel’s centre and vehicle body’s centre of
gravity when the wheel is not in deformation.

Substituting equations (2) and (5)–(8) into (1) yields the
differential equation of vehicle vibration.

m1
€Xtf + Beqfx

_Xtf − Beqfx
_Xb − Beqfxc1 _φ + KeqfxXtf − KeqfxXb − Keqfxc1φ + Ktxf Xtf − qxf􏼐 􏼑 � 0,

m2
€Xtr + Beqrx

_Xtr − Beqrx
_Xb − Beqrxc2 _φ + KeqrxXtr − KeqrxXb − Keqrxc2φ + Ktxr Xtr − qxr( 􏼁 � 0,

m1
€Ztf + Beqfz

_Ztf − Beqfz
_Zb + Beqfzb1 _φ + KeqfzZtf − KeqfzZb + Keqfzb1φ + Ktzf Ztf − qzf􏼐 􏼑 � 0,

m2
€Ztr + Beqrz

_Ztr − Beqrz
_Zb − Beqrzb2 _φ + KeqrzZtr − KeqrzZb − Keqrzb2φ + Ktzr Ztr − qzr( 􏼁 � 0,

mb
€Xb + Beqfx + Beqfx􏼐 􏼑 _Xb − Beqfxc1 + Beqrxc2􏼐 􏼑 _φ − Beqfx

_Xtf − Beqrx
_Xtr + Keqfx + Keqrx􏼐 􏼑Xb

− Keqfxc1 + Keqrxc2􏽨 􏽩φ − KeqfxXtf − KeqrxXtr � 0,

mb
€Zb + Beqfz + Beqfz􏼐 􏼑 _Zb + Beqrzb2 − Beqfzb1􏽨 􏽩 _φ − Beqfz

_Ztf − Beqrz
_Ztr + Keqfz + Keqrz􏼐 􏼑Zb

+ Keqrzb2 − Keqfzb2􏽨 􏽩φ − KeqfzZtf − KeqrzZtr � 0,

Iy€φ + Beqfzb
2
1 + Beqrzb

2
2 + Beqfxc

2
1 + Beqrxc

2
2􏽨 􏽩 _φ + Beqrz

_Zb − _Ztr􏼐 􏼑b2 − Beqfz
_Zb − _Ztf􏼐 􏼑b1􏽨 􏽩

+ Beqfx
_Xtf − _Xb􏼐 􏼑c1 + Beqrx

_Xtr − _Xb􏼐 􏼑c2􏽨 􏽩 + Keqfzb
2
1 + Keqrzb

2
2 + Keqfxc

2
1 + Keqrxc

2
2􏽨 􏽩φ

+ Keqrz Zb − Ztr( 􏼁b2 − Keqfz Zb − Ztf􏼐 􏼑b1􏽨 􏽩 + Keqfx Xtf − Xb􏼐 􏼑c1 + Keqrx Xtr − Xb( 􏼁c2􏽨 􏽩 � 0,
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(9)

where

Keqrx Keqfx

Xr

Q
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Figure 1: Coupling longitudinal vertical vehicle model.
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b1 � Xb − Xtf + a,

b2 � Xb − Xtr + b,

c1 � Zb − Ztf + hbw,

c2 � Zb − Ztr + hbw.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(10)

Writing (9) in matrix form yields

M €P + C _P + KP � KtQ, (11)

where M is the mass matrix; K is the stiffness matrix; C is the
damping matrix; and Kt is the stiffness matrix of the tyre.

M � diag m1 m2 m1 m2 mb mb Iy􏼐 􏼑,

K �

Keqfx 0 0 0 −Keqfx 0 −Keqfxc1

0 Keqrx 0 0 −Keqrx 0 −Keqrxc2

0 0 Keqfz 0 0 −Keqfz Keqfzb1

0 0 0 Keqrz 0 −Keqrz −Keqrzb2

−Keqfx −Keqrx 0 0 Keqfx + Keqfx 0 − Keqfxc1 + Keqrxc2􏼐 􏼑

0 0 0 0 0 Keqfz + Keqfz Keqrzb2 − Keqfzb1

Keqfxc1 Keqrxc2 Keqfzb1 −Keqrzb2 −Keqfxc1 − Keqrxc2 Keqrzb2 − Keqfzb1 Keqfzb
2
1 + Keqrzb

2
2 + Keqfxc

2
1 + Keqrxc

2
2
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,

C �

Beqfx 0 0 0 −Beqfx 0 −Beqfxc1

0 Beqrx 0 0 −Beqrx 0 −Beqrxc2

0 0 Beqfz 0 0 −Beqfz Beqfzb1

0 0 0 Beqrz 0 −Beqrz −Beqrzb2

−Beqfx −Beqrx 0 0 Beqfx + Beqfx 0 − Beqfxc1 + Beqrxc2􏼐 􏼑

0 0 0 0 0 Beqfz + Beqfz Beqrzb2 − Beqfzb1

Beqfxc1 Beqrxc2 Beqfzb1 −Beqrzb2 −Beqfxc1 − Beqrxc2 Beqrzb2 − Beqfzb1 Beqfzb
2
1 + Beqrzb

2
2 + Beqfxc

2
1 + Beqrxc

2
2
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,

Kt � Ktxf Ktxr Ktzf Ktzr 0 0 0􏽨 􏽩
T
.

(12)

A Laplace variation of equation (11) yields the transfer
function matrix of the system vibration

[G(s)] � Ms
2

+ Cs + K􏽨 􏽩
−1

Kt􏼂 􏼃. (13)

Substituting s � jω(j �
���
−1

√
) into equation (13) yields

the frequency response function matrix of the vibration
response

[H(jω)] � K − Mω2
+ jωC􏽨 􏽩

−1
Kt􏼂 􏼃. (14)

2.2. Vehicle Longitudinal and Vertical Vibrations. -e fre-
quency response characteristics of the coupled model can be
found through equation (14). If the coupling between the

front and rear masses of the vehicle is small, the study of
vehicle vibration characteristics can be carried out separately
for the front and rear suspensions.

-e response characteristics of the vehicle vibration can
be analyzed using the single wheel model shown in Figure 2.

Figure 2(a) shows the 2-DOF vertical vibration model of
the vehicle. m1 and m2 are the sprung and unsprung masses,
respectively; Beqz and Keqz are the equivalent damping co-
efficient and equivalent stiffness of the suspension, respec-
tively; Ktz is the vertical stiffness of the tyre.

-e vibrations of the system can be represented by the
displacements of these two masses, so giving two coupled
differential equations:

m1
€Z1 + Beqz

_Z1 − _Z2􏼐 􏼑 + Keqz Z1 − Z2( 􏼁 � 0,

m2
€Z2 − Beqz

_Z1 − _Z2􏼐 􏼑 − Keqz Z1 − Z2( 􏼁 + Ktz Z2 − Z3( 􏼁 � 0.

⎧⎪⎨

⎪⎩
(15)
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-e frequency response functions of the tyre dynamic
load Fd, the suspension dynamic deflection σd, and the
acceleration €Z1 of the suspension vertical vibration response

to the road excitation velocity €Z3 can be calculated,
respectively.

f€Z1 ∼ _Z3
�

jωrk + 2rkξλj
2ω

1 − λ2􏼐 􏼑 1 + rk − λ2/rm􏼐 􏼑 − 1 + rk − 1 + rm/rm( 􏼁λ2􏽨 􏽩2ξλj
,

fσd ∼ _Z3
�

rk − λ2rk􏼐 􏼑 + 2ξλrkj

jω 1 − λ2􏼐 􏼑 1 + rk − λ2/rm􏼐 􏼑 − 1􏽨 􏽩 + 2jωξλrk + 1 + rm( 􏼁λ2/rm􏽨 􏽩ω
,

fFd ∼ _Z3
�

Ktz rk − λ2rk􏼐 􏼑 + 2ξλrkj

jω 1 − λ2􏼐 􏼑 1 + rk − λ2/rm􏼐 􏼑 − 1􏽨 􏽩 − rk − 1 + rm/rm( 􏼁λ2􏽨 􏽩2ξλω
,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(16)

where

rk �
Ktz

Keqz

,

rm �
m1

m2
,

ω0 �

����
Keqz

m1

􏽳

,

λ �
ω
ω0

,

ξ �
Beqz

2
������
Keqzm1

􏽱 ,

(17)

where rk is the vertical stiffness ratio; ξ is the damping ratio
in the vertical direction; rm is the mass ratio;ω0 is the vertical
natural frequency of the suspension; and λ is the frequency
ratio.

Figure 2(b) shows the 2-DOF longitudinal vibration
model of the vehicle. Ktx is the longitudinal stiffness of the
tyre; m

1
′ is considered to be only the front unsprung mass.

-e rear unsprung mass can be considered to be fixed to the
sprung mass and thus equal to m

2
′ [5]; Keqx is the equivalent

longitudinal stiffness of the suspension. Similar to the
vertical vibration, the differential equation of vehicle lon-
gitudinal vibration can be expressed as

m
2
′€X3 − Beqx

_X2 − _X3􏼐 􏼑 − Keqx X2 − X3( 􏼁 � 0,

m
1
′€X2 + Beqx

_X2 − _X3􏼐 􏼑 + Keqx X2 − X3( 􏼁 � Ktx X1 − X2( 􏼁.

⎧⎪⎨

⎪⎩
(18)

-e frequency response functions of the acceleration €X3
to the road excitation velocity _X1 can be calculated

Z2

Z3

Z1m1

m2

Ktz

Keqz
Beqz

(a)

m'1 m'2

Keqx

Beqx

Ktx

X2X1 X3

(b)

Figure 2: Two-degree-of-freedom two-mass vibration model: (a) vertical; (b) longitudinal.
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f €X3 ∼ _X1
�

jωrk
′ − 2rrk
′ξ′λ′ω

1 − λ′2􏼒 􏼓 1 + rk
′ − λ′2/rm

′􏼒 􏼓 − 1 + rk
′ − 1 + rm

′/rm
′( 􏼁λ′2􏼔 􏼕2ξ′λ′j

, (19)

where

rk
′ �

Ktx

Keqx

,

rm
′ �

m2′

m1′
,

ω0′ �

����
Keqx

m2′

􏽳

,

λ′ �
ω′
ω0′

,

ξ′ �
Beqx

2
������
Keqxm2′

􏽱 ,

(20)

where rk
′ is the longitudinal stiffness ratio; ξ′ is the longi-

tudinal damping ratio; rm
′ is the mass ratio; ω0′ is the lon-

gitudinal natural frequency of the suspension; and λ′ is the
frequency ratio.

From equation (16), the frequency response function of
vertical vibration shows that the vertical natural frequency
and damping ratio of suspension make an impact on re-
sponse of the vertical vibration acceleration, the suspension
dynamic deflection, and the tyre dynamic load. From
equation (19), it can be seen that the longitudinal natural
frequency and damping ratio of suspension make an impact
on the response of longitudinal vibration acceleration.

From equation (17), it can be seen that the vertical
natural frequency and vertical damping ratio of the sus-
pension are influenced by the vertical stiffness of the sus-
pension. From equation (20), it can be seen that the
longitudinal natural frequency and longitudinal damping
ratio of the suspension are influenced by the longitudinal
stiffness of the suspension. From equation (9) it can be seen
that the front and rear suspension vibration characteristics
make an impact on the pitching behaviour of the vehicle.

Consequently, well-matched suspension stiffness and
damping can enhance the vehicle ride comfort. In this study,
a full vehicle model with the MacPherson front suspension
and the E-type multilink rear suspension is used as an ex-
ample to analyze the suspension stiffness and to optimize the
vibration characteristics.

3. Stiffness Characteristics
Analysis of Suspensions

3.1. Stiffness of the Suspension. Neglecting the influence of
the bushings and antiroll bar on the suspension stiffness, the
suspension stiffness satisfies the following relationship:

Keq � Ksi
2
, (21)

where Keq is the suspension stiffness; Ks is the spring
stiffness; and i is the installation ratio.

Taking McPherson suspension as an example, equation
(21) is described in detail.

Neglecting the mass of the suspension strut and the
control arm, considering the vertical displacement of the
vehicle only, the quarter-vehicle model of the MacPherson
suspension can be simplified to the model shown in Figure 3
[22]. A is the connection point between the MacPherson
suspension strut and the control arm; B is the connection
point between the control arm and the body. -e global
coordinate system is established with the point B as the
reference point, Z-axis and Y-axis along with the vertical
and horizontal directions, respectively.

In a MacPherson suspension, the position and orien-
tation of the control arm determine the relative movement
between the wheel assembly and the chassis. -e movement
of the system can be seen as a rotational movement around a
transient centre O. F1 is the tangential force acting on the
control arm at point A; F2 is the spring force acting on the
control arm at point A; β is the angle between F1 and F2; F4
is the tangential force acting at point C; F3 is the equivalent
spring force acting at the point C; α is the angle between F3
and F4; lOA and lOC are the lengths of point A and point C to
point R, respectively; Z1 and Z2 are the vertical displace-
ments of the wheel and the suspension, respectively.

-e following relationships can be obtained:

F1 � F2 cos β,

F4 � F3 cos α,

F1lOA � F4lOC,

lOA

lOC

�
Z2 cos β
Z1 cos α

,

F3 �
Z2

Z1

cos β
cos α

􏼠 􏼡

2

F2.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(22)

In the linear range, the deformation is proportional to
the force applied

F3 � KeqZ1,

F2 � KsZ2.
(23)

-e linear equivalent stiffness Keq and installation ratio i

can be obtained from equations (22) and (23)
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Keq �
Z2

Z1

cos β
cos α

􏼠 􏼡

2

Ks,

i �
Z2

Z1

cos β
cos α

.

(24)

From equation (24), it can be seen that the vertical
stiffness Keq of the suspension is influenced by the spring
stiffness Ks and the installation ratio i.

For a multilink rear suspension, the vertical stiffness also
satisfies equation (21).

-e above analysis does not consider the stiffness of the
bushings, whereas, for suspension systems, elastic elements
such as bushings are installed to absorb impacts. -e vertical
stiffness of the suspension is influenced by the spring
stiffness and bushing stiffness. -e deformation of the
bushing makes an impact on the installation ratio i. As for
the longitudinal stiffness of the suspension, in addition to
being influenced by the longitudinal component of the
suspension springs and shock absorber, it is mainly influ-
enced by the stiffness of the bushings. -erefore, the sus-
pension will be analyzed specifically with considering the
stiffness of the bushings. In the actual driving of a vehicle, the
excitation signals transmitted to the bushings are mainly of
low-frequency excitation. -erefore, the influence of
bushing stiffness on vehicle ride comfort can be studied by
considering the static stiffness of the bushing only.

-is paper presents the further analysis of the bushings
by establishing the static equilibrium equation of the
suspension.

3.2. Static Equilibrium Equations for MacPherson Front
Suspension. Figure 4 shows the schematic diagram of the
MacPherson suspension. -e control arm and steering tie
rod are connected to the wheel knuckle by ball joint. Control
arm is connected to the body by bushings. When an external
load is applied to the tyre contact point, the bushings and
spring of suspension will deform, and the tie rod will move
to a new position, thus achieving a new static equilibrium.

-is section will calculate the forces and moments of the
bushings with the methods in reference [23].

-e relative displacement of the bushing’s inner tube to
the bushing’s outer tube is required. For the bushings of the
MacPherson suspension control arm, the displacement of
the outer tube can be considered as zero as the outer tube of
the bushing is fixed to the body. -erefore, the displacement

of the inner tube is only required. Firstly, taking point C as a
reference point to derive the new coordinates of the inner
tube of A and B,

A
∗

� [X(α)][Y(β)][Z(c)] A
0

− C
0

􏼐 􏼑 + C
∗
,

B
∗

� [X(α)][Y(β)][Z(c)] B
0

− C
0

􏼐 􏼑 + C
∗
,

⎧⎪⎨

⎪⎩
(25)

whereA∗, B∗, andC∗ are the new coordinates of the inner tube
of bushings A, B, and C in the global coordinate system, re-
spectively;A0, B0, andC0 are the initial coordinates of the inner
tube of bushings A, B, and C in the global coordinate system,
respectively; [X(α)], [Y(β)], and [Z(c)] are the (3 × 3) ro-
tation matrixes when the control arm is rotated by an angle of
α, β, and c about the x-, y-, and z-axes of its rigid coordinate
system, respectively.

-e new coordinates of the ball joints D and G, which are
connected to the wheel knuckle, and the new coordinates of
point P1 can also be estimated using point C as a reference
point.

D
∗

� X αk( 􏼁􏼂 􏼃 Y βk( 􏼁􏼂 􏼃 Z ck( 􏼁􏼂 􏼃 D
0

− C
0

􏼐 􏼑 + C
∗
,

G
∗

� X αk( 􏼁􏼂 􏼃 Y βk( 􏼁􏼂 􏼃 Z ck( 􏼁􏼂 􏼃 G
0

− C
0

􏼐 􏼑 + C
∗
,

P
∗
1 � X αk( 􏼁􏼂 􏼃 Y βk( 􏼁􏼂 􏼃 Z ck( 􏼁􏼂 􏼃 P

0
1 − C

0
􏼐 􏼑 + C

∗
.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(26)

where [X(αk)], [Y(βk)]. and [Z(ck)] are the (3 × 3) rota-
tion matrixes when the wheel knuckle is rotated by an angle
of αk, βk, and ck about the x-, y-, and z-axes of its rigid
coordinate system, respectively.

-us, the translational deformation of bushing A and
bushing B in the global coordinate system rA

′ and rB
′ is

expressed as

rA
′

rB
′

⎡⎣ ⎤⎦ �
A
∗

− A
0

B
∗

− B
0

⎡⎣ ⎤⎦ +
r
′0
A

r
′0
B

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦, (27)

where r′0A and r′0A are the initial translational displacements of
bushings A and B in the global coordinate system.

-e forces acting on the bushings due to the displace-
ments of bushings A and B in the global coordinate system
can be expressed as

M

O

B

Z

Y

KsCs

F1F2
F4F3

A

β β

α

α

Figure 3: Suspension forces schema for determining equivalent
spring force.

og yg

zg

C

P1

D
E

G

H

xg

Figure 4: Schematic of MacPherson suspension.
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FA

FB

􏼢 􏼣 �
KA,t 0

0 KB,t

􏼢 􏼣
rA
′

rB
′

⎡⎣ ⎤⎦ +
ΔB,t

ΔC,t

⎡⎣ ⎤⎦, (28)

where ΔB,t and ΔC,t are the force-displacement correction
vectors of bushing A and bushing B in the global coordinate
system, respectively; KA,t and KB,t are the linear stiffness
matrixes for bushing A and bushing B in the global coor-
dinate system, respectively.

KA,t can be calculated from the linear stiffness matrix
KA,t of the bushing A in the local coordinate system. KB,t can
be calculated from the linear stiffness matrix KB,t of the
bushing B in the local coordinate system.

KA,t � R
T
S KA,tRS,

KB,t � R
T
S KB,tRS.

⎧⎪⎨

⎪⎩
(29)

RS is the transformation matrix from the local to the
global coordinate system of the bushings A and B.

-e rotational deformations θA
′ and θB
′ of the bushings A

and B in the global coordinate system can be expressed as

θA
′

θB
′

⎡⎣ ⎤⎦ �
θA

θB

􏼢 􏼣 +
θ0A
θ0B

⎡⎢⎣ ⎤⎥⎦, (30)

where θA and θB are rotation angles at load input and θ0A θ0B
are rotation initial displacements.

-e moments of the bushing A and bushing B in the
global coordinate system can be calculated

MA

MB

􏼢 􏼣 �
KA,r 0

0 KB,r

􏼢 􏼣
θA
′

θB
′

⎡⎣ ⎤⎦ +
ΔA,r

ΔB,r

⎡⎣ ⎤⎦, (31)

whereΔA,r andΔB,r are themoment-angle correction vectors
of bushing A and bushing B in the global coordinate system,
respectively; KA,r and KB,r are the linear translational
stiffness matrixes of bushing A and bushing B in the global
coordinate system, respectively.

KA,r can be calculated from the linear stiffness matrix
KA,r of the bushing A in the local coordinate system. KB,r

can be calculated from the linear stiffness matrix KB,r of the
bushing B in the local coordinate system.

KA,r � R
T
S KA,rRS,

KB,r � R
T
S KB,rRS.

⎧⎪⎨

⎪⎩
(32)

According to equations (28) and (31), the reaction forces
and moments acting on the control arms of bushing A and
bushing B can be derived as follows:

RFi

RMi

􏼢 􏼣 �
I 0
􏽥R I

􏼢 􏼣
−Fi

−Mi

􏼢 􏼣. (33)

Subscript i represents bushings A and B; [􏽥R] is the (3× 3)
skew-symmetric matrix of the position vector for bushings A

and B

[􏽥R] �

0 z y

z 0 −x

−y x 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (34)

where x, y, and z represent the displacements of the bushing
in the global coordinate system in the directions of the x-, y-,
and z-axes, respectively.

-e control arm is in equilibrium under the reaction
forces, the reaction moments of the bushings, and the ball
joints of the wheel knuckle, and therefore the following
relationships can be obtained:

RFA + RFB + FC � 0,

RMA + RMB � 0.
􏼨 (35)

-e wheel knuckle is in equilibrium under the reaction
forces and moments from the control arms, the tie rod, and
the external load at the tyre contact patch and therefore
satisfies the following relationships:

FP1 + RFC + RFD + RFG � 0,

MP1 + RMD + RMG � 0,
􏼨 (36)

where MP1 is the external force input to the tyre from the
road; RFG and RMG are the spring reaction force and re-
action moment, respectively.

Since the length of the steering tie rod is constant during
the suspension kinematics, a constraint can be given

LED
′ − LED � 0. (37)

-e spring deformation satisfies the following
constraints:

LGH
′ + ΔLGH − LGH � 0, (38)

where LGH
′ is the new length of the spring; LGH is the initial

length of the spring; and ΔLGH is the displacement of the
spring. ΔLGH can be calculated by

ΔLGH �
fsLED
′ − fs0LGH( 􏼁

Ks

, (39)

where fs0 is the initial scale factor of spring force; fs is the
new scale factor of spring force; and Ks is the stiffness of
spring.

According to (35)–(38), the static equilibrium equation
for the front suspension can be expressed as

RFA + RFB + FC

RMA + RMB

FP1 + RFC + RFD + RFG

MP1 + RMD + RMG

LED
′ − LED

LGH
′ + ΔLGH − LGH

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

� 0. (40)

-ere are 14 equations in equation (40) and the
number of unknowns is 14. -erefore, equation (40) can
be solved
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3.3. Static Equilibrium Equations for E-Type Multilink Rear
Suspensions. Figure 5 shows a diagram of the E-type mul-
tilink rear suspension. S1 is the upper control arm; S2 is the
rear lower control arm; S3 is the front lower control arm; S4
is the trailing arm; Bi(i � 1 ∼ 3) are bushings for the con-
necting rod to the body; Ai(i � 1 ∼ 3) are the bushings for
connecting the wheel knuckle to the rod; A4 is the bushing
for the trailing arm to the body.

-is section will calculate the forces and moments of the
bushings with the methods in reference [23, 24].

-e new position after the bushing movement was
calculated first. Since the outer tube of bushing Ai is con-
nected to the wheel knuckle and the inner tube connected to
the rod, both the inner and outer tubes of bushing Ai will
move.-e displacement of the centre point of both the inner
and outer tubes needs to be taken into account. As the outer
tubes of bushing Bi and bushing A4 are fixed to the body, the
displacement at the centre of the outer tube will be con-
sidered as zero and the displacement at the centre of the
inner tube of the bushing will be taken into account.

-e centre points of the inner and outer tubes of the
bushing coincide at the initial position. A0

i (i � 1 ∼ 3) is the
coordinate of the centre point of the inner and outer tubes of
bushing Ai(i � 1 ∼ 3) in the global coordinate system at the
initial position. B0

i is the coordinate of the centre point of the
inner and outer tubes of the bushing Bi(i � 1 ∼ 3) in the
global coordinate system at the initial position.

Choose B0
i as the reference point and calculate the new

coordinates of the centre point of the inner tube A∗li of the
bushing Ai in the global coordinate system.

A
∗
li

� X αl( 􏼁􏼂 􏼃 Y βl( 􏼁􏼂 􏼃 Z cl( 􏼁􏼂 􏼃 A
0
i − B

0
i􏼐 􏼑 + B

∗
li , (41)

where B∗li is the new coordinate of the centre point of the
inner tube of bushing Bi in the global coordinate system;
[X(αl)], [Y(βl)] and [Z(cl)] are the (3 × 3) rotation ma-
trixes when the rod is rotated by an angle of αl, βl, and cl

about the x-, y-, and z-axes of its rigid coordinate system,
respectively.

Choose P1 as the reference point and calculate the new
coordinates of the centre point of the inner tube A∗

l4
of

bushing A4 in the global coordinate system.

A
∗
ki

� X αk( 􏼁􏼂 􏼃 Y βk( 􏼁􏼂 􏼃 Z ck( 􏼁􏼂 􏼃 A
0
i − P1􏼐 􏼑 + P

∗
1 , (42)

where P∗1 is the new coordinate of the centre point P1 in the
global coordinate system.

By choosing P1 as the reference point, the new coor-
dinates of the inner tube A∗l4 of the bushing A4 in the global
coordinate system can be calculated

A
∗
l4

� X αk( 􏼁􏼂 􏼃 Y βk( 􏼁􏼂 􏼃 Z ck( 􏼁􏼂 􏼃 A
0
l4 − P1􏼐 􏼑 + P

∗
1 , (43)

where [X(αk)], [Y(βk)], and [Z(ck)] are the (3 × 3) rota-
tion matrixes when the wheel knuckle is rotated by an angle
of αk, βk, and ck about the x-, y-, and z-axes of its rigid
coordinate system, respectively.

-e new coordinates of the centre points of the inner and
outer tubes of the bushing can be calculated by equations
(41)–(43).

Based on the preceding analysis, the translational and
rotational deformations of bushing Bi in the global coor-
dinate system can be expressed as

rBi
′

θB
′

⎡⎣ ⎤⎦ �
B
∗
li − B

0
i

θBli

⎡⎢⎣ ⎤⎥⎦ +
r
′0
Bi

θ′0Bi

⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦, (44)

where θBli
is the rotational angle of bushing Bi in the global

coordinate system under the force of the rod; r′0Bi
and θ′0Bi

are
the initial translational displacements and the initial rota-
tional angles of bushing Bi.

-e forces and moments applied to bushing Bi in the
global coordinate system can be expressed as

FBli

MBli

⎡⎣ ⎤⎦ �
KBi,t

0

0 KBi,r

⎡⎣ ⎤⎦
rBi
′

θBi
′

⎡⎣ ⎤⎦ +
ΔBi,t

ΔBi,r

⎡⎢⎢⎣ ⎤⎥⎥⎦, (45)

where ΔBi,t
and ΔBi,r

are the moment-angle and the force-
displacement correction vectors for bushing Bi in the global
coordinate system, respectively; KBi,t

and KBi,r
are the linear

translational stiffness matrixes for bushing Bi in the global
coordinate system, respectively.

KBi,t
and KBi,r

can be calculated from the linear stiffness
matrices KBi,t

, KBi,r
of bushing Bi in the local coordinate

system.

KBi,t
� R
′T
S KBi,t

RS
′,

KBi,r
� R
′T
S KBi,r

RS
′.

⎧⎪⎨

⎪⎩
(46)

RS
′ is the (3× 3) transformation matrix from the global

coordinate system to the local coordinate system of bushing
Bi.

-e reaction forces RFBli
and moments RMBli

applied to
the rod by bushing Bi in the global coordinate system are
therefore

RFBli

RMBli

⎡⎣ ⎤⎦ � −
FBli

MBli

⎡⎣ ⎤⎦ �
−KBi,t

0

0 −KBi,r

⎡⎣ ⎤⎦
rBi
′

θBi
′

⎡⎢⎢⎣ ⎤⎥⎥⎦ −
ΔBi,t

ΔBi,r

⎡⎢⎢⎣ ⎤⎥⎥⎦.

(47)

-e deformation of bushing Ai(i � 1∼3) satisfies the
following relationships:

P1

P2

A0

A1

A2

A4

A3

zg

xg

og
yg

B3

B2

B1

B0

s1

s2
s3

s4

Figure 5: Schematic of MacPherson suspension.
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rAi
′

θAi
′

⎡⎢⎢⎣ ⎤⎥⎥⎦ �
A
∗
li − A

0
i

θlAi

⎡⎢⎣ ⎤⎥⎦ −
A
∗
ki − A

0
i

θkAi

⎡⎢⎣ ⎤⎥⎦ +
r
′0
Ai

θ′0Ai

⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦, (48)

where θlAi
and θkAi

are the rotational angles in relative to
the rod and in relative to the wheel knuckle of the bushing
Ai in the global coordinate system when the load is ap-
plied, respectively; r′0Ai

and θ′0Ai
are the initial translational

displacements and the initial rotational angles of bushing
Ai.

-us, the forces and moments applied to the inner tube
of bushing Ai by the rod in the global coordinate system can
be calculated

FAli

MAli

⎡⎣ ⎤⎦ �
KAi,t

0

0 KAi,r

⎡⎣ ⎤⎦
rAi
′

θAi
′

⎡⎢⎢⎣ ⎤⎥⎥⎦ +
ΔAi,t

ΔAi,r

⎡⎢⎢⎣ ⎤⎥⎥⎦, (49)

where ΔAi,t
and ΔAi,r

are the moment-angle and the force-
displacement correction vectors for bushing Ai in the global
coordinate system, respectively; KAi,t

and KAi,r
are the linear

translational stiffness matrix and rotational stiffness matrix
of bushing Ai in the global coordinate system, respectively.

KAi,t
and KAi,r

can be calculated from the linear stiffness
matrices KAi,t

, KAi,r
of the bushing Ai in the local coordinate

system.

KAi,t
� R
″T
s KAi,t

Rs
″,

KAi,r
� R
″T
s KAi,r

Rs
″,

⎧⎪⎨

⎪⎩
(50)

where Rs
″ is the (3× 3) transformationmatrix from the global

coordinate system to the local coordinate system of bushing
Ai.

Combined with equation (49), the reaction force and
reaction moment applied to the rod by the inner tube of
bushing Ai can be expressed as

RFAli

RMAli

⎡⎣ ⎤⎦ �
I 0

􏽥RAi
I

⎡⎣ ⎤⎦
−FAli

−MAli

⎡⎣ ⎤⎦, (51)

where I is the (3× 3) unity matrix; 􏽥RAi
is the (3× 3) skew-

symmetric matrix of the position vector in the global co-
ordinate system for inner tube of bushing Ai changing with
the rods.

Substituting (49) into (51) gives

RFAli

RMAli

⎡⎢⎢⎣ ⎤⎥⎥⎦ �

−KAi,t
0

−􏽥RAi
KAi,t

−KAi,r

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦
rAi
′

θAi
′

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦ −
ΔAi,t

􏽥RAi
ΔAi,t

+ ΔAi,r

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦,

􏽥RAi
�

0 z′ y′

z′ 0 −x′

−y′ x′ 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(52)

where x′, y′, and z′ are the values of the x, y, and z di-
rections of the position vector for the inner tube of bushing
Ai with the rod, respectively.

Since the inner tube of bushing Ai is loaded against the
outer tube, the forces and moments applying to the outer
tube of the bushing Ai from the wheel knuckle are

FAki

MAki

⎡⎣ ⎤⎦ � −
FAli

MAli

⎡⎣ ⎤⎦. (53)

Taking themoments at P1 and combining with equations
(49) and (53), the reaction force and moment applied by the
bushing Ai to the wheel knuckle can be derived.

RFAki

RMAki

⎡⎣ ⎤⎦ �
I 0

􏽥R′Ai
I

⎡⎣ ⎤⎦
−FAki

−MAki

⎡⎣ ⎤⎦, (54)

where I is the (3× 3) unity matrix; 􏽥RAi
′ is the (3× 3) skew-

symmetric matrix of the position vector in the global co-
ordinate system for the inner tube of bushing Ai changing
with the wheel knuckle.

􏽥RAi
′ �

0 z1′ y1′

z1′ 0 −x1′

−y1′ x1′ 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (55)

Combining equations (49) and (53), equation (54) can be
written as

RFAki

RMAki

⎡⎣ ⎤⎦ �
KAi,t

0

􏽥RAi
′ KAi,t

KBi,r

⎡⎢⎣ ⎤⎥⎦
rAi
′

θAi
′

⎡⎢⎢⎣ ⎤⎥⎥⎦ +
ΔAi,t

􏽥RAi
′ ΔAi,t

+ ΔAi,r

⎡⎢⎢⎣ ⎤⎥⎥⎦.

(56)

Similarly, the translational and rotational deformations
of bushing A4 in the global coordinate system can be
expressed as

rA4
′

θA4
′

⎡⎢⎣ ⎤⎥⎦ �
A
∗
l4 − A

0
4

θAl4

⎡⎢⎣ ⎤⎥⎦ +
r
′0
A4

θ′0A4

⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦, (57)

where θAl4
is the rotational angle of the bushing A4 in relative

to the rod in the global coordinate system when the load is
applied; r′0A4

and θ′0A4
are the initial translational displace-

ments and the initial rotational angles of bushing Ai in the
global coordinate.

Similarly, the forces and moments applied by the rod on
the inner tube of bushing A4 can be derived. Taking the
moments at P1, the reaction force and moment applied by
the bushing A4 to the wheel knuckle can be derived.

RFAl4

RMAl4

⎡⎣ ⎤⎦ �
I 0

􏽥RA4
′ I

⎡⎣ ⎤⎦
−FAl4

−MAl4

⎡⎣ ⎤⎦, (58)

where 􏽥RA4
′ is the (3× 3) skew-symmetric matrix of the po-

sition vector in the global coordinate system for the inner
tube of bushing A4 changing with the wheel knuckle.

Consequently, the sum of each reaction force RF, re-
action moment RM, and external force applied to the wheel
knuckle have a value of zero in the global coordinate system.
-e static equilibrium equation for the wheel knuckle can be
expressed as
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FP1
+ 􏽘

3

i�1
RFAki

+ RFAl4
� 0,

􏽘

3

i�1
RMAki

+ RMAl4
� 0,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(59)

where FP1 is the external force applied to the point P1 on the
wheel.

Rod Si(i � 1, 3) is in equilibrium under the reaction
forces and moments from the bushings Ai and Bi(i � 1, 3).
-us, the static equilibrium equation for the rod Si (i � 1, 3)

can be derived as
RFAli

+ RFBli
� 0,

RMAli
+ RMBli

� 0.

⎧⎨

⎩ (60)

-e lower rear control arm S2 is connected to the body by
the spring.-e ends of S2 are connected to the wheel knuckle
and the body by bushings A2 and B2. -e equations for the
static equilibrium of the lower rear control arm S2 can be
derived as

RFBl2
+ RFAl2

+ FA0
� 0,

RMAl2
+ RMBl2

+ MA0
� 0.

⎧⎨

⎩ (61)

FA0
and MA0

are the forces and moments applied by the
spring with B2 as the reference point. -e initial length, the
length after deformation, and the displacement of the spring
satisfy the following equation:

LA0B0
′ + ΔLA0B0

− LA0B0
� 0, (62)

where LA0B0
′ is the length of the spring after deformation;

LA0B0
is the initial length of the spring; and ΔLA0B0

is the
displacement of the spring. ΔLA0B0

can be calculated from

ΔLA0B0
�

fsL
∗
A0B0

− fs0LA0B0
􏼐 􏼑

Ks

, (63)

where fs0 is the initial scale factor of spring force; Ks is the
stiffness of spring.

According to (58)–(61), the static equilibrium equation
of the E-type multilink rear suspension can be derived

FP1
+ 􏽘

3

i�1
RFAki

+ RFAl4
􏽘

3

i�1
RMAki

+ RMAl4

⎧⎨

⎩

RFAli
+ RFBli

RMAli
+ RMBli

RFBl2
+ RFAl2

+ FA0

RMAl2
+ RMBl2

+ MA0

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

LA0B0
′ + ΔLA0B0

− LA0B0

(i � 1, 3)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

� 0.

(64)

3.4. Bushing Stiffness and Suspension Stiffness.
Longitudinal and vertical forces with intervals of [0, 1500]
are applied to the front and rear wheel centre, respectively.

-e forces of bushing B and bushing A4 are shown in
Figure 6. Taking the example of bushing A, FX

A represents the
force of bushing A in the X direction.

Due to the different stiffness of the bushings, the
bushings generate different displacements. Figure 7 shows
the displacements of bushing B and bushing A4. DX

A rep-
resents the displacement of bushing A in the X direction.

As can be seen in Figure 7, the bushings have initial
forces and initial displacements in the initial position.
-erefore, the values of the change in forces and displace-
ments are used to analyze the influence on bushings. -e
relevant results are obtained, as shown in Figures 8 and 9.

Bushings A and B are the bushings of front suspension.
Bushings Ai(i � 1 ∼ 4) and Bi(i � 1 ∼ 4) are the bushings of
rear suspension.

As can be seen from Figure 8(a), when longitudinal
forces are applied, FY

A, FX
A2, FX

A2, FX
B2, FX

A3, FX
B2 are more

variable. As can be seen from Figure 8(b), when vertical
forces are applied, the forces on the front suspension
bushings have little variation, while the forces on the rear
suspension bushings FX

A1, FX
B1, FX

A2, FX
B2, FX

A3, FX
B3 have larger

variations.
As can be seen in Figure 9(a), when applying longitu-

dinal forces, DY
B and DX

A4 are more variable. As can be seen in
Figure 9(b), displacements of bushings on the front sus-
pension are minor when the vertical force is applied. For the
rear suspension, DZ

B3 and DZ
A4 are more variable.

-e displacements of the bushings will influence the
displacement of the wheel centre. Based on the preceding
analysis, varying the stiffness of bushing B in the Y direction,
the stiffness of bushing A4 in the X direction and Z di-
rection, and the stiffness of bushing B3 in the Z direction, the
longitudinal displacement vs. longitudinal force curve of
wheel centre and the vertical displacement vs. vertical force
curve of wheel centre can be obtained, as shown in Figure 10.
As can be seen in Figure 10, the force vs. displacement curve
changes significantly when changing the stiffness of the
mentioned bushings.

-e vertical stiffness of suspension can be expressed by
the ratio of the vertical load to the vertical displacement of
the wheel centre. Longitudinal stiffness is usually defined as
the ratio of the longitudinal force to the longitudinal dis-
placement of the wheel centre [5]. -e slope of the curve in
the linear range, i.e., the linear stiffness of the suspension,
can be thus obtained, as shown in Tables 1 and 2.

-e stiffness of bushing B in the Y direction is denoted as
TY

B . -e stiffness of bushing A4 in the X direction is denoted
as TX

A4. -e stiffness of bushing A4 in the Z direction is
denoted as TZ

A4.-e stiffness of bushing B3 in the Z direction
is denoted as TZ

B3.
Table 1 shows the longitudinal stiffness of the front

suspension for different stiffness TY
B . As seen in Table 1,

reducing the stiffness TY
B by 50% reduces the longitudinal

stiffness of the front suspension by 44.1%, thus showing that
the stiffness TY

B contributes more than 50% to the longi-
tudinal stiffness of the front suspension. Table 2 shows the
longitudinal and vertical stiffness of the rear suspension for
different stiffnesses of bushing. As seen in Table 2, reducing
the stiffness TX

A4 by 50% reduces the longitudinal stiffness of
the rear suspension by 41.1%, so the contribution of the
stiffness TX

A4 to the longitudinal stiffness of the rear sus-
pension is greater than 50%. Reducing the stiffness TZ

B3 and
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Figure 6: -e forces of bushing: applying longitudinal force (a); applying vertical force (b).
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Figure 7: -e displacements of bushing: applying longitudinal force (a); applying vertical force (b).
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Figure 8: Variation of bushing forces: applying longitudinal force (a); applying vertical force (b).
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Figure 9: Variation of bushing displacements: applying longitudinal force (a); applying vertical force (b).
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Figure 10: Force vs. displacement curves for suspensions with different stiffnesses of bushing: longitudinal (a); vertical (b).

Table 1: Stiffness of front suspension.

Case Bush stiffness Longitudinal stiffness
Baseline (N/mm) TY

B 152
TY

B − 50% (N/mm) 166 85

Table 2: Stiffness of rear suspension.

Case Stiffness Longitudinal stiffness Vertical stiffness

Baseline (N/mm) T
X
A4 � 330, T

Z
B3 � 100,

T
Z
A4 � 200

443.79 24.67

TX
A4 − 50% (N/mm) 165 261.32 —

TZ
B3 − 50% (N/mm) 50 — 24

TZ
A4 − 50% (N/mm) 100 — 23.29
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TZ
A4 by 50% reduces the rear suspension vertical stiffness by

2.8% and 5.6%, respectively, so it can be seen that the
stiffness of these two bushings contributes little to the
vertical stiffness of the rear suspension.

From the analysis in Sections 2 and 3, it is clear that the
stiffness of the bushings will influence the vibration char-
acteristics of the vehicle.

-is paper will analyze the vehicle ride comfort on bump
road through simulation study.

4. Analysis of Vehicle Ride Comfort on
Bump Road

Simulation study on bump road: the parameters of the
simulated vehicle are shown in Table 3, with a bump height
of 25mm and a width of 100mm. -e vehicle will generate
vertical and longitudinal vibrations when passing the bump
road. As can be seen in Figure 11, the reaction force of the
bump road on the tyre can be simplified to the force through
the wheel centre FT and a moment around the wheel centre
MT. MT will be balanced by the reaction moment generated
from the changing of the kingpin caster angle. FT can be
divided into the component force F1 perpendicular to the
line and the component force F2 acting along the line be-
tween the centre of longitudinal inclination O and the wheel
centre. F1 makes the tyres to move upwards, resulting in
vertical vibrations. F2 makes the tyres to move backwards,
resulting in longitudinal vibrations.

Using the continuous RMS method, the transient vi-
brations are taken into account by integrating over short
periods of time.

-is paper calculates longitudinal and vertical acceler-
ation RMS curves with two different calculation windows.

Rms Local �
1

Mloc
􏽚

t0+Mloc

t0

a
2
w(t)dt􏼢 􏼣

1/2

,

RmsGlobal �
1

MGlo
􏽚

t0+MGlo

t0

a
2
w(t)dt􏼢 􏼣

1/2

,

Mloc � 0.52 × 3.6
l

v
�
1.872l

v
,

MGlo � 1.05 × 3.6
l

v
�
3.78l

v
,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(65)

where l is the wheelbase of the vehicle.
Rms Local is the RMS curve of longitudinal and vertical

accelerations calculated using a narrow calculation window,
which is used to separate the influence of the impact of the
front and the rear wheels. RmsGlobal is the RMS curve of
longitudinal and vertical accelerations calculated using a
large calculation window, which is used to consider the
influence of the impact due to all wheels.
ΔRms Local is the maximum difference between

Rms Local during bump passing and before the bump
passing. ΔRmsGlobal is the maximum difference between

RmsGlobal during bump passing and before the bump
passing. ΔRmsGlobal and ΔRmsGlobal are used to study
the transient signals.

Figure 12 shows the curves of the longitudinal and
vertical acceleration time-domain signal, local variation
Rms Local, and global variation RmsGlobal of the front and
rear seat rails when the vehicle passes over the bump road at
the speed of 30 km/h.

As can be seen in Figure 12, the curve of local variation
Rms Local has two significant peaks due to the influence of
the front and rear wheels. -e value of ΔRms Local is greater
than ΔRmsGlobal.

Longitudinal ΔRms Local and longitudinal ΔRmsGlobal
of the front seat rail are greater than the rear suspension.-e
vertical ΔRmsLocal and vertical ΔRmsGlobal of the rear seat
rail are greater than the front suspension.

-e influence of the front and rear suspension param-
eters on the ΔRmsLocal and ΔRmsGlobal of the front and
rear seat rails was analyzed by sensitivity. -e top 10 pa-
rameters with high impact are shown in Figure 13.

As can be seen in Figure 13, the stiffnessTY
B of the bushingB

has a significant influence on the longitudinal ΔRmsLocal and
ΔRmsGlobal of the front seat rail.-e stiffness of the spring and
the damping of the shock absorber of the front suspension have
a greater influence on the vertical ΔRmsLocal and ΔRmsGlobal
of the front seat rail. -e stiffness TX

A4 of bushing A4 has a
significant influence on the longitudinal ΔRmsLocal and
ΔRmsGlobal of the rear seat rail. -e stiffness of the spring and
the damping of the shock absorber of the rear suspension have a
greater influence on the vertical ΔRmsLocal and ΔRmsGlobal
of the rear seat rail.

From the analysis of the suspension stiffness charac-
teristics in Section 3, it is clear that the longitudinal stiffness
of the front suspension is influenced by the stiffness TY

B of
bushing B mostly and the longitudinal stiffness of the rear
suspension is influenced by the stiffness TX

A4 of bushing A4

Table 3: Vehicle’s parameters.

Parameter Value Parameter Value
m (kg) 1815.25 a (mm) 1352.6
l (mm) 2620.0 b (mm) 1247.4
TY

B (N/mm) 332 TX
A4 (N/mm) 330

Ksf (N/mm) 21 Ksr (N/mm) 26
Bsf (N·s/mm) 1.44 Bsr (N·s/mm) 0.976

V

MT
FT

F2

F1

O

25
 m

m

100 mm

Figure 11: Bump event.
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Figure 12: Signal and indexes: front seat rail in the longitudinal direction (a); front seat rail in the vertical direction (b); rear seat rail in the
longitudinal direction (c); rear seat rail in the vertical direction (d).
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Figure 13: Continued.

Shock and Vibration 15



mostly, while the bushing stiffness has little influence on the
vertical stiffness of suspension. Combined with (28), it can
be seen that the vertical stiffness of suspension is influenced
by the spring stiffness mostly.

From the analysis of the vehicle vibration characteristics
in Section 2, it can be seen that the natural frequency and
damping ratio of the suspension influence the acceleration
relative to the road excitation response. -e natural fre-
quency of the suspension is influenced by the stiffness of
suspension. -e damping ratio of the suspension is influ-
enced by the stiffness of spring and the damping of the shock
absorber. -erefore, the results obtained in Figure 13 are
consistent with the previous derivation.

-e trends of longitudinal ΔRmsLocal and ΔRmsGlobal
of the front and rear seat rails with bushing stiffness are
shown in Figure 14. Figures 14(a) and 14(b) show the trends
of longitudinalΔRmsLocal andΔRmsGlobal of the front seat
rail with bushing stiffness TY

B at different vehicle speeds. As
can be seen from both graphs, the variation of ΔRmsLocal
and ΔRmsGlobal with the bushing stiffness TY

B is not a linear
relationship. -e values of longitudinal ΔRmsLocal and
ΔRmsGlobal are different for the same vehicle speed with
different bushing stiffness TY

B . On the other hand, for the
same bushing stiffness TY

B ,the values of longitudinal
ΔRmsLocal and ΔRmsGlobal are different for different
vehicle speeds. Figures 14(c) and 14(d) show the trends of
longitudinal ΔRmsLocal and ΔRmsGlobal of the rear seat
rail with the bushing stiffness TX

A4 at different vehicle speeds.
As can be seen from the two graphs, both ΔRmsGlobal and
ΔRmsLocal of the rear seat rail do not have a linear rela-
tionship with the bushing stiffness TX

A4. -e values of
ΔRmsLocal and ΔRmsGlobal of the rear seat rail are also
influenced by the bushing stiffness TX

A4 and the speed of the
vehicle.

5. Optimal Design of Vehicle Ride Comfort

5.1. Multiobjective Optimization Mathematical Model. It is
clear from Section 2 that the safety of the vehicle needs to be

guaranteed while improving the vehicle ride comfort. As a
result, the dynamic deflection of suspensions σdf and σdr

needs to be used as a constraint. -e spring stiffnesses Ksf

and Ksr of the front and rear suspension, the damping
coefficients Bsf and Bsr of the front and rear shock absorbers,
the stiffness of the bushing TY

B for the front suspension, and
the stiffness of the bushing TX

A4 of the rear suspension are
therefore used as optimization variables. From the analysis
of Figure 14, it can be seen that the stiffness of the bushings
that make ΔRmsLocal and ΔRmsGlobal lower are approx-
imately the same, and the value of ΔRmsLocal is greater than
the value of ΔRmsGlobal. To reduce the amount of calcu-
lation, this paper takes the ΔRmsLocal of the front and rear
seat rails in the longitudinal and vertical directions as op-
timization objective 1, the RMS of the dynamic loads
σFdf, σFdr of the front and rear suspensions as optimization
objective 2, and the RMS of pitch angle acceleration σp for
the body as optimization objective 3. -e equation of
multiobjective optimization mathematical model can be
expressed as

minimize :ΔRmsL1,ΔRmsL2,ΔRms L3,ΔRms L4,

minimize : σFdf, σFdr,

minimize : σp,

subject to : σdf ≤
1
3

fdf􏽨 􏽩, σdr ≤
1
3

fdr􏼂 􏼃,

subject to : 18.9≤Ksf ≤ 23.1, 1.296≤Bsf ≤ 1.584,

subject to : 23.4≤Ksr ≤ 28.6, 0.878≤Bsr ≤ 1.074,

subject to : 166≤T
Y
B ≤ 498, 165≤T

X
A4 ≤ 495,
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Figure 13: -e effect of suspension parameters on the indexes: longitudinal ΔRmsLocal (a); vertical ΔRmsLocal (b); longitudinal
ΔRmsGlobal (c); vertical ΔRmsGlobal (d).
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where ΔRmsL1 is the longitudinal ΔRmsLocal of the front
seat rail; ΔRmsL2 is the vertical ΔRmsLocal of the front seat
rail; ΔRmsL3 is the longitudinal ΔRmsLocal of the rear seat
rail; ΔRmsL4 is the vertical ΔRmsLocal of the rear seat rail;
and [fdf] and [fdr] are the allowable values of dynamic
deflection of the front and rear suspensions, respectively.
-e values of [fdf] and [fdr] in this paper are 50mm and
30mm, respectively.

5.2. Multiobjective Optimization Algorithm. -e genetic al-
gorithm is a group search algorithm that continuously finds
and compares optimal solutions and eliminates poor solu-
tions by iteratively simulating the process of biological
evolution. NSGA-II is a more classical modern genetic al-
gorithm that uses an elite retention strategy to better retain
elite individuals, addressing the problem of standard genetic
algorithms, where the last generation of individuals is dis-
carded in the iteration [25]. In addition, it uses a fast
nondominated ranking method to reduce computational
complexity. -e algorithm then reengages in the selection,
crossover mutation, and elite retention until the maximum
number of evolutionary generations is reached, at which

point the Pareto frontier is obtained. -rough the above
analysis, this paper uses the NSGA-II algorithm to optimize
the above multiobjective optimization problem. -e main
parameters of the NSGA-II algorithm optimization are
shown in Table 4.

5.3. Analysis of Optimization Results. Figure 15 shows the
partial set of Pareto solutions obtained by the optimization
algorithm at a vehicle speed of 30 km/h. Figure 15(a) shows
the Pareto set of solutions for the RMS of the dynamic load
on the front wheels with respect to the vertical ΔRmsLocal of
the front seat rail. Figure 15(b) shows the Pareto set of
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Figure 14: Trends of the indexes with bushing stiffness at different vehicle speeds: TY
B vs. front longitudinal ΔRmsLocal (a); TY

B vs. front
longitudinal ΔRmsGlobal (b); TX

A4 vs. rear longitudinal ΔRmsLocal (c); TX
A4 vs. rear longitudinal ΔRmsGlobal (d).

Table 4: Main parameters of NSGA-II algorithm.

Parameter Value
Population size 12
Number of generations 20
Crossover probability 0.9
Mutation distribution index 20
Max failed runs 100
Failed run penalty 1000
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Figure 15: -e projection of Pareto sets: onto dynamic loads Rms and vertical ΔRmsL1 (a); onto dynamic loads Rms and vertical ΔRmsL4
(b).

Table 5: Comparison of optimization results.

Parameters Before optimization After optimization Percentage change (%)
ΔRmsL1 (g) 0.354002543 0.249441268 −29.54
ΔRmsL2 (g) 0.303106921 0.298594014 −1.49
ΔRmsL3 (g) 0.353069798 0.248816026 −29.53
ΔRmsL4 (g) 0.457749996 0.441953026 −3.45
Fdf (kN) 0.367386372 0.369260841 0.51
Fdr (kN) 0.372544352 0.373740012 0.32
σp (g) 0.036960514 0.035220008 −4.71
Ksf (N/mm) 21 20.28365283 −3.41
Bsf (N·s/mm) 2.16 1.997156851 −7.54
Ksr (N/mm) 26 24.0494012 −7.50
Bsr (N·s/mm) 0.96 0.966029956 0.63
TY

B (N/mm) 332 278.4620487 −16.13
TX

A4 (N/mm) 330 494.462681 49.84
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Figure 16: Comparison of results before and after optimization at different vehicle speeds: longitudinal (a); vertical (b).

18 Shock and Vibration



solutions for the RMS of the dynamic load on the rear wheels
with respect to the vertical ΔRmsLocal of the rear seat rail.
Table 5 shows the values of the optimization objectives and
optimization variables before and after the optimization.

After optimization, the longitudinal ΔRmsLocal of the
front seat rail decreases by 25.94% and the vertical
ΔRmsLocal decreases by 1.49%. -e longitudinal
ΔRmsLocal of the rear seat rail decreases by 29.53% and the
vertical ΔRmsLocal decreases by 3.45%. -e RMS of the
vehicle pitch angle acceleration decreases by 4.71%. -e
increase in the RMS value of the dynamic load of the front
tyres was 0.51% and the increase in the RMS value of the
dynamic load of the rear tyres was 0.32%. After optimiza-
tion, the RMS of the dynamic loads on the front and rear
tyres increased less and the safety of the vehicle could be
guaranteed. In summary, the optimization has improved the
vibration characteristics of the vehicle on bump road and the
safety has not worsened.

-e optimization is carried out at different vehicle
speeds. -e ΔRmsLocal and ΔRmsGlobal of both the lon-
gitudinal and vertical directions of the seat rail are obtained.
-e results of before and after optimization are shown in
Figure 16. As can be seen from the graph, the values of
ΔRmsLocal and ΔRmsGlobal of both the longitudinal and
vertical directions of the front and rear seat rails are reduced
after optimization. Table 6 shows the optimization results of
the optimization variables for different vehicle speeds. As
can be seen from the table, the values of the optimization
variables that make the vehicle ride comfort better at each
speed are different. -e suspension parameters need to be
matched reasonably to ensure the vehicle ride comfort.

6. Conclusions

In this study, the parameters of the MacPherson front
suspension and the E-type multilink rear suspension are
matched reasonably to enhance the vehicle ride comfort on
bump road. -e following conclusions are drawn:

(1) -e longitudinal stiffness of the front suspension is
influenced by the stiffness TY

B of the bushing B

mostly. -e longitudinal stiffness of the rear sus-
pension is influenced by the stiffness TX

A4 of the
bushing A4 mostly.

(2) ΔRmsLocal and ΔRmsGlobal of the front and rear
seat rails are used as the vibration evaluation indexes.
-e vertical ΔRmsLocal and ΔRmsGlobal of the seat
rails are influenced by the stiffness of spring and the
damping of the shock absorbers mostly. -e

longitudinal ΔRmsLocal and ΔRmsGlobal of the seat
rails are influenced by the stiffness TY

B of the bushing
B and the stiffness TX

A4 of the bushing A4 mostly.
(3) -e trends of ΔRmsLocal and ΔRmsGlobal with

bushing stiffness are influenced by the speed of the
vehicle.

(4) Optimal matching of suspension parameters by
NSGA-II algorithm at different speeds: at the speed
of 30 km/h, the longitudinal ΔRmsLocal and the
vertical ΔRmsLocal of the front seat rail decrease by
25.94% and 1.49%, respectively. -e longitudinal
ΔRmsLocal and vertical ΔRmsLocal of the rear seat
rail decrease by 29.53% and 3.45%, respectively. -e
other indexes are within reasonable range. -e
matching combination of suspension parameters
that makes the vehicle ride comfort better is different
at different vehicle speeds.
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