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Friction stir welding as one of the modern methods of solid-state welding of steel sheets and aluminum is a highly regarded
industry. In these studies, the experimental design and response surface methodology were used. Optimization of experimental
conditions and results which are compared with good agreement between the results was observed.'emechanical properties and
ductility of welded plates under optimal conditions were studied. Microhardness testing, metallography, tensile testing, and
limiting dome height were used to investigate the mechanical properties and formability limit diagram attached, respectively. 'e
results showed that the heat-affected zone is very small and narrow and not easily distinguished from the base metal. In all tests,
the failure of the dome height limit in the area was chaos. In all samples welded with the optimal parameters, tensile failure
occurred in the base metal region. Turbulence in the region confirms the presence of WC particles. Experimental design and
response surface methodology could introduce an optimal state, and the creation of common defects in the FSW process can
prevent the binding strength of the guarantee. But due to the lack of proper stirring in the perturbation area in the samples welded
with non-optimized parameters, the strength of the connection is not suitable, and samples were broken from the SZ region.

1. Introduction

Recent advances in the industry, such as welding, on the one
hand, and arising new necessities, on the other hand, have
encouraged researchers and craftsmen to operate new
methods to make an increase in the volume of production.
Taking the advantage of friction stir welding (hereinafter
called FSW) to connect steel and aluminum sheets has re-
ceived considerable attention in the automobile industry
because this type of welding is very effective. Industries have
recently turned their attention to the FSW as one of the
ground-braking ways of solid-state welding to connect steel
plates. 'is method can produce high-quality, faultless
welding. Plates joined by FSW suffer from some drawbacks,
such as a decrease in the strength of welding compared to the

base metal which is due to a drop in mechanical properties.
Researchers show choosing an instrument with proper speed
and diameter between the pin and its shoulder and selecting
a proper deviation angle, the direction of the instrument’s
rotation (clockwise or anticlockwise), the restrain system,
and last but not least, the geometry of the instrument
contribute to promoting mechanical properties. 'is
method as solid-state welding was innovated in the Welding
Institute, UK, in 1991 [1, 2]. Since then, it was reported in [3]
that FSW has been used in the joining of Al-alloys. In this
context, several studies have been reported on FSW in which
the method has been successfully used in welding difficult-
to-join Al alloys [4–6]. Furthermore, as pointed out in [7, 8],
FSW also has a potential to be used in joining high-tem-
perature materials such as steels. Using this method,
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Jafarzadegan et al. [9] welded steel ST37 to stainless steel 413
while spinning 400 and 800 rotations per minute. 'ey
found that samples welded at a high speed showed further
extension than those welded at 400 rotations per minute.

Burak and Meran [10] studied the effect of the instru-
ment’s rotation ad progressive speed on ferrite steel (AISI
430) using the FSW. 'ey found that everything is being
equal, when progress speed is increased by 160mm/min, the
strength of strain is raised, while in speeds over 160mm/
min, both experience a decrease. Ueji et al. [11] welded three
kinds of steels, including simple-quenched, cold-rolled, and
annealed, which all were composed of 64% carbon and
welded through FSW at five different speeds. 'ey found
that grain size increases when the rotation speed is increased
by 400 rotations per minute. Having similar speed, they
observed the quenched sample possessed a wider altered area
than annealed and cold-rolled one, which is due to a soft
mechanism during the FSW process. 'e main purpose of
optimization is to achieve a welded steel plate with the
highest strength. 'en, tests such as strain, hardness, and
metallography were carried out to evaluate the mechanical
properties of the connecting plate. In the following sections,
some tests are introduced by which effective parameters on
the strength and extension of steel plates are evaluated [12].
So, it contributes to achieving a steel plate with the highest
strength and extension. Moreover, formation of a sample
with the highest strength and extension was studied through
dome limit height test and forming limit diagrams. Finally, a
safety zone was offered to select the instrument’s rotation
and linear movement speed [13].

1.1. Friction Stir Welding (FSW). Friction stir welding was
first innovated in the British welding institute as one of the
solid-state welding practices in 1991. However, Isab in
Sweden was the first company to officially introduce it [14].
A nonconsuming rotating instrument is entered into the
heart of the welding point, the area between pin and
shoulder of the instrument, and then it enters into the gap
between the two adjacent edges andmoves along the welding
line. 'omas et al. [15] found that triple-slit instruments
with spiral pins use less material than cylindrical pins having
an equal radius. 'eir results show that using two-lined
instruments, aluminum plates of 50mm thickness as well as
6082-T6 aluminum plates of 75mm thickness could be
welded using a spiral pin (Figure 1).

q �
4π2αμPωR

3

3V
. (1)

Mishra and Ma evaluated the maximum temperature
developed in the stirred area in the FSW using the welding
microstructure (Figure 2) [16].

Li et al. [17] managed to weld a low-content steel M190
through FSW. 'e most common model to calculate input
temperature using the FSW is available in equations (1) and
(2). Here, the average input temperature is measured based
on surface or time. Here, q, μ, α, P, w, and v as well as R is
input power (W), friction index, heat efficiency, instrument’s
pressure, instrument’s rotational speed, linear movement

speed, and radius of the shoulder, respectively [18]. Forming
limit diagrams serve well to study the behaviour of plates
forming. It is drowned by measuring critical strains in the
first narrowing, departure, or drawing main strains based on
subsidiary ones. When strain in the forming process is
drawn at the bottom of the diagram, the forming process is
carried out easily. If circular patterns are selected, different
states of its deformation, as well as strain conditions, will be
similar to diagram B. 'erefore, given the value of circles’
initial (d), the large (b), and the small diameter (a), the
amount of engineering strain will be obtained from equa-
tions (2) and (3). To draw the FLD diagram, values related to
circles located in the narrowed area are completely or partly
refused, and the strain of circles failing to reach the necking
point is also considered as trues data [19].

emajor(%) �
a − d

d
× 100, (2)

eminor(%) �
b − d

d
× 100. (3)

1.2. Response Surface Methodology. Response surface
methodology was first developed by Crawford in 2006 [21].
Xie et al. [20] define it as follows: response surface meth-
odology is a collection of statistical and mathematical
techniques used for modeling and analyzing problems in
which the given response variable is affected by several other
independent variables. 'e term “response surface” indi-
cates changes in the response variable need to be considered
based on controls [22].

2. Materials and Methods

2.1. Samples. Given the application of ST14 plates in the
automobile industry due to their plasticity, low-carbon ST14
steel of 1.5mm thickness was used in this research. Its
composition is available in Figure 3. 'e ST14 plate was
joined to the basal metal through but connection without
making any gap. First, the raw steel was cut into pieces of
80 ∗ 160mm by a pair of guillotine scissors, and then a rasp
was used to flatten its surfaces [23]. A specific fixer was
designed and manufactured to connect the steel plate to the
basal metal through FSW (Table 1) [24].

To find maximum and minimum linear and rotational
movement speeds, with the aid of experimental practices as
well as studied resources, an instrument 13 and 3mm in
shoulder and pin diameter was developed. A cylindrical
instrument possessing a shoulder at an interior angle of 15°
and a formless pin was applied (Figure 4). In the present
research, a fixture with the dimensions 20 ∗ 400 ∗ 600mm, an
entirely flatbed, and geometrical tolerance of 0.01mm was
utilized. 'e bed was first milled to achieve the desired form
and then colored [25]. Two entirely flat belts with the di-
mensions 300∗100∗15 were used to fasten the plates on the
bed. To fasten each belt on the bed, eight M10 bolts were
used (Figure 5).
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Figure 1: Use of double-sided tools for welding thick aluminum sheets [10].
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3. Results and Discussion

In this chapter, research results are discussed. First, findings
were studied, and the optimal FSW parameters were ob-
tained after carrying out 29 tests. 'en, predicted data and
research results were compared. Moreover, microstructures
of both basal metal and different areas of the welding point
were analyzed. In addition, tensile and hardness tests were
done to study the mechanical properties of the joint. Fur-
thermore, a dome limit height test was carried out, and

forming limit diagram was drawn for the ST14 plate of
1.5mm thickness to study the formation of welded plates.
Finally, the instrument’s rotation speed, as well as progress
speed on the joint, was analyzed, and a safety zone was
offered for welding ST14 plates of 1.5mm thickness.

3.1. Determining the Optimum Point. In this chapter, a
scheme is provided to explain the link between inputs and
outputs, and then the optimum strength was measured using

Table 1: Chemical composition of ST14 steel (weight percentage).

Grade C Si Mn P S Ni Mo Cu V W Co Al Sn Pb
St14 0.04 0.01 0.23 0.007 0.006 0.03 0.01 0.03 0.002 0.003 0.004 0.055 0.007 0.003

Figure 4: Fixtures made to fasten sheets during welding.
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Figure 5: 'e tools used in this research along with the parameters used.
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data of response surface methodology in optimization.
Having 4 independent variables and 1 dependent variable,
five aspects need to be studied. For the ease to show the
diagram of this function in 3-dimension, in each test, two
variables were considered constant, and then alterations in
the output variable were tested for the two other variables
through Design-Expert software (Figure 6).

By increasing the instrument’s rotational speed and
diameter of its shoulder, on one hand, and a decrease in the
linear speed, on other hand, friction increased, which itself
contributed to a rise in the input temperature. It is worth
noting that these parameters increase friction and input
temperature (Figure 7). Although the diameter of the pin has
a negligible effect on the objective function, it follows general
principles concerning the production of friction and heat. As
can be seen from the figures, friction resulting from these
parameters is not allowed to increase over the optimum
value. 'e more the friction is increased, the less strong the
welding line will be (Figure 8). 'e reason why this happens
will be introduced in the following chapters concerning
mythological properties. Data showed it is necessary to select
optimal FSW parameters to weld ST14 plates (Table 2).

Welded plates in the optimum state illustrated a final
strength (305MPa) after doing experimental tests according
to alternative, available parameters. Comparing research
results and predicted data with 1.09% error indicates an
accuracy of experiments and forecasted strength. 'e minor
error obtained from comparing predicted strength and re-
search results points out the efficiency of the model.

3.2. Evaluating the Microstructure of Welding Metal. It is
reasonable to expect ferrite grains to grow and become
larger. However, some thermodynamic operations occurred
in the region SZ due to rotation of pin and instruments’
shoulder which contributes to mechanical retrieval and
recrystallization of grains. As a result, grains grow 10–20
times, and finally, mechanical properties of the joint are
promoted. Findings showed grains were longer than those in
the basal metal in some regions, or at least, their size in the
region HAZ was as large as those in the basal metal (Figure
9). Fe-C diagram in Figure 10 shows the joint structure uses
different temperatures. When the input temperature is over
the optimal one, carbide-tungsten is disjointed due to high
friction and temperature, and then it enters into the stir
region, and by affecting joint properties, it contributes to a
fall in the strength of the welded point.

3.3. Evaluating Physical Properties of Connection Tensile Test.
It is a hard situation resulting from strain deformation which
initially occurs in the softer area, and then its counteraction
to the hard region will transfer the final collapse area to a
different place. 'e first finding obtained from the tensile
test is that all welded samples suffered refraction at the joint
with the basal metal because of stir created in the structure.
As can be seen from microstructure studies, steel ST14 is
composed of a heterogeneous structure, composed of ferrite
and a few amounts of perlite that is mainly due to low
austenite temperature as well as a decrease in cooling during

production. Sample A was welded using nonoptimal pa-
rameters out of the safe zone. Findings showed that the
welding line suffer refraction at stress-strain 132MPa. 'e
strength of sample A was 43.5% of the basal metal. More-
over, sample a suffered rupture without any increase in its
length where the sample and the basal metal welded together
because of undesirable parameters. Sample B was shown
with desirable parameters in the safety zone and welded
using parameters better or worse than the optimal welding
state. Findings showed that its tensile strength was 98.3% of
the basal metal. In addition, samples C and D were tested
using accepted parameters in the safety zone (Figure 11) and
welded in an optimal condition. 'en, its tensile properties
were evaluated compared to optimal parameters.

3.4. Hardness Test. 'e hardness distribution curve was
marked on the profile of welded samples in Figure 12. It is
worth noting that the average measure rigidity of the ST14
plate was 91.5. Four samples were welded according to the
parameters. Given high friction was created between the
instrument’s shoulder and pin, so the pin and the instrument
suffered an increase in input temperature. It also led to an
increase in the hardness of the stir region, and the plasticity
of the welding point decreased. Regarding sample C, the
input temperature was near the optimal value. 'e structure
of region SZ was fine-grained, and its hardness increased due
to thermodynamic operations. Concerning sample B, in-
sufficient stir was created between the sample and the basal
metal due to lack of heat. Finally, considering parameters of
friction stir welding, an optimal state was designed by DOE
software under the Montgomery process. A minimum
hardness (90–93HV) was found on the BM area between the
progressive region (AS) and where the sample was torn
throughout the tensile test (Table 3).

3.5. LimitDomeHeightTest. To draw a fair comparison, first,
a raw ST14 plate was tested. When the plate was torn, the
measurement clock showed 45mm. As it was expected,
plates welded by nonoptimal welding were torn where the
plate and the basal metal has been welded [26]. To compare
how to form welded and raw plates, these tests were done
(Figure 13).

3.6. Forming Limit (FLD) Diagrams. Forming limit tests
were carried out to study forming of welded plates of 1.5mm
thickness according to ASTM E 2218. It was reasonable to
expect the sample of thickness <0.77mm to show higher
forming than other ones (Figure 14). Moreover, findings
showed that samples of 1.17mm thickness had the least
forming. In addition, samples with different thicknesses
were placed between the thickest and the thinnest plates by
laser welding (Figure 15).

3.7. Investigating the Effect of Rotation Speed and Instrument’s
Linear Movement Speed. Data of the response surface
methodology, as well as 3-dimensional diagrams of the
strength of the welded metal based on different parameters
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of FSW, show the direct relationship between rotation speed,
linear movement speed, the diameter of the shoulder, and
diameter of the instrument’s pin as well as strength of the
welded plate (Figure 16).

On other hand, optimal welding parameters lead to a
higher strength welded plate, rather than an extended strong

plate. Given data reported by Teri, it is worth noting that
changes in the linear movement speed need to be along with
alterations in the rotation speed. As can be seen from Table 3,
experiments were carried out to study these two effective
parameters and achieve a strong welded plate. Data in Table 3
also show the final strength of each welding line that is an
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average of two samples. Figure 17 illustrates the welded plate
had the most strength in all studied rotational speeds when
the linear movement speed was 50–10mm/min. According to
data, the highest strength has seen when the rotational speed
ranged between 600 and 1000 rotations per minute. It is
because of the high temperature generated caused by friction
between the plate and the instrument in the mentioned ro-
tational speed (Figure 18). Generally, the plate welded by
taking some welding parameters into account cannot provide
sufficiently strong for studying plasticity. 'us, five samples

were selected and a combination of instruments’ rotational
speed and the linear movement speed causing the strongest
welded plates was selected for each group. Table 4 shows these
five tests exploited from Table 3.

Given diagrams, samples welded at the instrument’s
rotational and linear movement speeds ranging from 600 to
1000 rotations per minute, and 40–80mm/min, respectively,
are of the highest strength. It is worth noting that optimized
parameters mentioned in Table 2 are also in this range. Point
A shows these parameters. Results confirm the accuracy of

Table 2: Optimal values predicted by the response level methodology model and alternative parameters.

— Predicted Alternative and available

Criteria

Rotation speed (rpm) 39/866 800
Pin diameter (mm) 92/3 9/3

Linear velocity (mm/min) 74/78 80
Holder diameter (mm) 26/14 2/14

Results Tensile strength (MPa) 369/308 305

WC 

SZ 

BM 

180 μm

Figure 9: Microstructure of a welded specimen by nonoptimal parameters in the SZ and TMAZ region.
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Figure 12: Results of welded microhardness samples A, B, C, and D.

Table 3: Welded parameters for microhardness test (a) to (d).

Description Shoulder diameter
(mm)

Pin diameter
(mm)

Linear motion speed (mm/
min)

Rotation speed
(rpm) Sample

More inlet heat 14.2 3.9 50 1000 A
Less input heat 14.2 3.9 100 500 B
Welding with acceptable
parameters 14.2 3.9 100 1000 C

Welding with optimal
parameters 14.2 3.9 80 800 D

(A)

(B)

(C)

(D)

(E)

(F)

44 mm

47 mm

48 mm

49 mm

52 mm

57 mm

Figure 11: Welded tensile test specimens with acceptable parameters according to Table 2.
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Figure 13: Dome-limited height test specimens. (a) Raw sheet ST14. (b) Welded specimen with nonoptimal parameters. (c) Welded
specimen with optimal welding procedure parameters. (d) Welded sample with optimal welding root parameters.
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factors, experiments, resultant function, and, last but not the
least, results after optimization. In addition, selected samples
create an area consisting of rotational and linear movement
speeds that are in agreement with those studied in Figure 19.

4. Conclusion

'e FSW is used to connect ST14 plates of 1.5mm thickness.
By applying principles of friction stir welding, it is possible to
weld plates without any burst, tunnel holes, incomplete
penetration of the root into the welded surface, and pro-
trusion of material. Response surface methodology is con-
sidered an effective way to optimize studied factors. It
measures three-dimensional diagrams or the effect of the
response surface of each factor on the objective function.
Research findings showed that parameters such as rotational
speed, linear movement speed, the diameter of the shoulder,
and the diameter of the instrument’s pin have the most effect
on the strength of welded plates, respectively. Results
showed that rotational speed (866.39 rotations per minute),
linear movement speed (78.74mm/min), the diameter of the
instruments’ shoulder (14.26mm), and diameter of the pin
(3.92mm) serve as the optimal values for welding ST14
plates with the highest strength.

An error of 1.092 was found between optimization re-
sults and experimental data after carrying out experimental
tests on mechanical properties of samples using the normal
stretching test. Results suggest the efficiency of the model as
well as data on the optimization prediction. Findings showed
that the strength of stirred area is higher in welded plates
than the base metal. On both sides of the welding line, the
area influenced by the temperature has lower strength than

the base metal due to the presence of coarse grains. 'e least
strength was recorded for the base metal influenced by
temperature in the nonoptimal connection. 'e FSWmakes
it possible to achieve the optimal welded ST14 plates. In
other words, there is no difference between data obtained
from the height test of the dome section as well as the
forming limit diagram of a welded plate and a raw ST14
plate. Data of various experiments such as experiment de-
sign, stretching test, height test of the dome section, as well
as forming limit diagram all point out the effect of friction
stir parameters on the quality and properties of connections.
To put it simply, the value of one parameter depends on that
of others. As a result, there is a certain limit to developing an
efficient connection. Applying the FSW (FSW) for steel is
economic, providing that a steel plate of less than 10mm
thickness with a long connection area is welded or it is done
for a steel plate of high thickness.

Abbreviations

Angle of deviation: α
Compensation angle: Ɵ
Friction coefficient: μ
'ermal efficiency: α
'e main strain: Ε1
Substrain: Ε2
Input power: Q
Pressure: P
'e rotational speed of the tool: W
Linear motion speed of the tool: V
Shoulder radius: R
Melting point: Tm.
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Figure 19: Suitable area for selecting the rotational speed and linear velocity of the tool for the production of welded sheets.

Table 4: Five sets of samples selected.

Test number Classification
of tests

'e speed
of the era

Linear motion
speed (mm/min)

Pin diameter
(mm)

Shoulder
diameter (mm)

Ultimate
strength (MPa)

1 A 500 31.5 3.9 14.2 132
6 B 600 50 3.9 14.2 190
10 C 800 50 3.9 14.2 298
14 D 1000 100 3.9 14.2 294
18 E 1200 100 3.9 14.2 265
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