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The safe and stable operation of roadheader is of great significance to the efficient and rapid production of a coal mine. Health
diagnosis based on vibration signals has been studied in bearings and motors. Complex geological conditions and bad working
environment lead to the characteristics of nonlinear and time-varying vibration signals of a roadheader. In this paper, a health
state analysis method based on reference manifold (RM) learning and improved K-means clustering analysis was proposed; the
method was verified by using the real-time collected roadheader cutting reducer fault signal. Firstly, the comparison signal and
analysis signal were extracted from the actual collected vibration data of the roadheader, and the referential analysis samples were
constructed through time domain and wavelet packet energy analysis. Then, the characteristic structure of the low-dimensional
space of the referential analysis samples is obtained by Locally Linear Embedding (LLE), which is a method of manifold learning.
Through the improved K-means clustering analysis method, the low-dimensional structure parameters were analyzed and the
clustering effect index was obtained, which was used as the health evaluation index (HEI). Finally, the normal distribution model
of the health evaluation index is established, and the confidence interval of the health evaluation index is determined, so as to
realize the health state analysis of the roadheader and realize the fault warning function. Through the analysis of data of three
sensors, the results show that the roadheader failed on the 15th day, which is consistent with the actual working condition.
Through practical analysis, the effectiveness of the method was verified and provided a kind of fault analysis idea and method for
equipment working under complex working conditions and the theoretical basis for fault type analysis.

1. Introduction

In the past 20 years of coal mining in China, the develop-
ment of roadheader has experienced the introduction of
foreign technology, the self-development of small road-
header, the application of high-power multiauxiliary func-
tion roadheader, and the research and development of
intelligent roadheader [1, 2]. After years of experience ac-
cumulation, the reliability and automation of the roadheader
has reached a certain height. However, due to the different
physical characteristics of coal seams in different regions of
China, the different geological conditions, and the different
operating habits of operators, there will still be some failures
in the process of using the roadheader: hydraulic system
blockage and heating, electrical equipment failure,

transmission parts, and hydraulic pump and motor damage,
which lead to reduced excavation efficiency and increased
the excavation time and economic cost. In order to ensure
the normal use of the roadheader, the important parts of the
roadheader will be replaced and periodically overhauled
regularly in the coal mine, which leads to the transition
maintenance of the roadheader and the waste of resources.

The working environment of the coal roadway heading
belongs to group operation in the narrow and closed space,
and the working conditions are complicated and changeable
[3]. The cutting head of the roadheader directly cuts the coal
rock, so its load has the characteristics of nonlinear, time-
varying, and strong coupling, coupled with the physical
characteristics of the coal seam, roof pressure, and other
factors of uncertainty so that the actual load is often
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fluctuating violently, and the predictability is very low.
Therefore, under the complex impact and forced vibration of
the tunneling machine, the pick gear will accelerate the wear
and tear, the fatigue life of the cutting reducer and the
supporting parts of the machine body will be reduced, and
even lead to the fuselage swing, the wrong action of the
electronic control system, and other situations, affecting the
normal production. The health status assessment of the
roadheader should take full account of the structural damage
caused by vibration and carry out multiangle assessment [4].
So, it has become an important research content of tunneling
production to evaluate the health status of the roadheader
effectively.

At present, some research has been done on the per-
formance analysis of the roadheader at home and abroad.
Piotr Cheluszka designed a method for the vibration
identification of tunneling machine cutting head using a
high-speed camera. The effectiveness of this method is
verified by the data collection [5]. Acaroglu compared and
analyzed the vibration characteristics and stability of the
cutting head of the roadheader under different cutting
modes. According to stability analysis for the roadheader
with point attack cutters, there might be a stability problem
at turning around the vertical axis stability state in arcing the
cutting mode [6]. Huang established a nonlinear dynamic
model and carried out vibration analysis of the bearing
under time-varying loads in order to study the dynamic
characteristics of the cutting head and the cantilever beam
system [7]. Sadi Evren Seker focuses on roadheader per-
formance prediction using six different machine learning
algorithms and a combination of various machine learning
algorithms via ensemble techniques. Algorithms are ZeroR,
random forest (RF), Gaussian process, linear regression,
logistic regression, and multilayer perceptron (MLP). As a
result, MLP and RF give better results than the other al-
gorithms. Also, the best solution achieved was the bagging
technique on RF and principle component analysis (PCA)
[8]. Qiang Liu used four machine learning tools (the back-
propagation neural network based on genetic algorithm
optimization, the Naive Bayes based on genetic algorithm
optimization, the support vector machines based on particle
swarm optimization, and the support vector machines based
on dynamic cuckoo) to analyze the vibration data of the
tunneling machine and complete the incipient fault detec-
tion and identification [9].

The analysis of the vibration signal of the roadheader is
carried out on the basis of theoretical analysis and simu-
lation test. Although it provides some theoretical support for
the fault analysis of the roadheader, it lacks the actual data of
tunneling operation as support. Zhang analyzes the vibra-
tion of a rotary table by combining the finite element model
with tested data from an underground coal mine. The vi-
bration mode, frequency, and damping ratio of the actual
results are consistent with the simulation results, which
verifly the validity of the simulation data [10]. Yang pro-
posed a roadheader anomaly detection method based on
VSAPSO-BP under single class learning, aiming at the
problem of missing fault data and fault degree division in
abnormal detection of the roadheader turntable [11]. Qu
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analyzed the measured vibration data of the roadheader
turntable by DTCWT and obtained the natural frequency of
the turntable under the actual working state of the road-
header, which verified the feasibility of applying the modal
recognition theory to the vibration signal processing of the
roadheader under complex working conditions [12].

To sum up, the common analysis methods of roadheader
vibration were time-frequency analysis and wavelet analysis.
The characteristic parameters of roadheader were extracted
by these methods and then compared with the simulation
data to realize fault identification of roadheader. These
analyses can only be carried out on the roadheader working
under a single working condition, which cannot meet the
nonlinear and time-varying characteristics of the roadheader
load. They were not very universal on the other condition. In
order to deeply understand the relationship between the
vibration and running state of the roadheader, the problem
of resource waste caused by excessive maintenance in the
actual production of the roadheader was solved, the low-
production efficiency caused by faults was reduced, and a
feasible fault state evaluation method of the roadheader was
explored; in this paper, health vibration data and analysis
data are fused, and the relationship between the health data
and the analysis data is compared through reference man-
ifold learning, and the structural characteristic parameters of
the samples in the low-dimensional space are mapped out.
Then, the clustering effect of low-dimensional characteristic
parameters was obtained through the improved K-means
analysis, and the clustering effect was taken as the health
evaluation index (HEI) of the roadheader to complete the
evaluation of the health state of the roadheader.

2. Analysis Scheme

The technical scheme of this health state analysis method is
shown in Figure 1. First, the health data and analysis data of
different time periods are separated from vibration data of
the roadheader, and characteristic parameters are extracted
by time domain analysis and wavelet packet analysis. The
characteristic parameters of health data and the character-
istic parameters of analysis data were fused into the reference
analysis samples. After that, dimensionality reduction
processing by manifold learning (ML) was carried out on the
referential analysis samples. Then, improved K-means
clustering analysis was carried out on the dimensionality
reduction data, and the clustering effect was used as the
health evaluation index of the samples. Finally, the normal
distribution model of the evaluation index was established
by using the Gaussian model, and the confidence interval of
the evaluation index is determined.

3. Constructing the Reference Analysis Sample

3.1. Vibration Signal Collection. The vibration signal col-
lection site of the roadheader is Xingdong Mine in Hebei
Province, China. The coal in this mine is mainly gas-fat coal
with high calorific value, and the coal seam is deep between
580 and 1200 m underground. The roadway is 1100 lane in
the southern mining area of the Xingdong mine; the
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FIGUre 1: The technical scheme of this health state analysis method.

roadway section and the coal seam section are the same, as
shown in Figure 2. The tunneling length is 200 m, and there
is no geological change such as fault and gangue in the
tunneling process. The roadway trend is shown in Figure 3.

The experimental object is the EBZ160 boom-type
roadheader with the largest cutting surface of
5300 x 4850 mm. The Boom-type roadheader is a com-
prehensive tunneling equipment with cutting, shipping,
and walking, which is composed of cutting section,
loading section, frame, walking section, back support,
electric cabinet, and other sections, as shown in Figure 4.
And, the cutting section is mainly composed of cutting
head, telescopic section, cutting motor, reducer, lifting
cylinder, rotary cylinder, and turntable, as shown in
Figure 5. The reducer is a two-stage planetary gear re-
ducer, which drives the cutting head to rotate through the
output shaft to realize its function, and its transmission
ratio is 31.03. [17].

According to the working environment and load conditions
of the roadheader, a total of 5 measuring points are arranged
near the cutting part of the roadheader, and each measuring
point has 2 vibration sensors in different directions, thus with a
total of 10 sensors. The specific location of the sensor is shown in
Figure 6 and Table 1. The sampling frequency of the vibration
data is 10kHZ, and the sampling time is 32 days.

Roadheader cutting section is not only the main working
part of the roadheader but also the main vibration impact
bearing part. Sensor 3 is the closest to the failure part of this
experiment. Therefore, Sensor 3 was selected as the data
analysis point, as shown in Figure 7.

As shown in Figure 8, it shows the vibration data of the
roadheader sensor 3 working for 3 hours on the 16th day.

3900
3500
3100

4500

FI1GURE 2: Schematic of section.

FIGURE 3: The roadway shape.

3.2. Constructing Samples. According to the working records
of the roadheader, a mechanical failure occurred in the
cutting-arm of the roadheader during the 32-day data
collection process, and the gear of the reducer of the cutting-
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FIGURE 5: Cutting section of the roadheader.

arm was worn and the teeth were broken due to long-term
overload. The fault caused the roadheader to be unable to
run, so it was reused after replacing the reducer.

In traditional vibration signal analysis, the sensitive
characteristic is extracted from vibration signals for com-
parison and experience summary, based on some data
processing methods and statistical methods [18-20]. In this
paper, the characteristic extracted by the traditional analysis
(time-frequency characteristic frequencies and band energy)
is used as the original analysis data.

The time-frequency characteristic parameters of the
vibration signal are extracted, including peak-to-peak, ef-
fective value, absolute mean value, impulse factor, kurtosis
value, margin factor, peak factor, waveform factor, and 8
frequency band energy eigenvalues of three-layer wavelet

packet analysis (as Table 2), which are composed into the
characteristic parameter set of the vibration signal.

The steps of frequency band energy feature extraction for
wavelet packet decomposition are as follows:

(1) 3-layer wavelet packet decomposition are performed
for each group of vibration data, and the wavelet
packet decomposition coeflicients of 8 subbands
from low frequency to high frequency of the 3rd
layer are obtained:

(X31’X32’X33’X34’X35’X36’X37’XSB)' (1)

(2) The wavelet component analytical coeflicients are
reconstructed, and the signals in each subband range
are extracted:

S=831 +S5 + S35 + S35 + S35 +S36 + S35+ S35. (2)

(3) The energy of each subband is calculated:
Qs = j |85 (B dt = > il (3)
h-1

where i=1,2,...7,8 is the subband and

h=1,2,...,nis the data of S;;
(4) The energy of each subband is normalized:
_Qy

.
'7Q

(4)

where Q = Y% Q..
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FIGURE 6: Arrangement drawings of the roadheader’s measuring point.

TaBLE 1: Corresponding relation of vibration sensor.

}I:/i??lsturmg Measuring point position Sensor direction Sensor Coordinate
Perpendicular to the 1
1 Lifting cylinder support cutting arm (X)
point Horizontal to the )
cutting arm (Y)
Perpendicular to the 3
. cutting arm (X)
2 Cutting gearbox Horizontal to the 4
cutting arm (Y)
Perpendicular to the 5 Establishing the coordinate system according to the

Hinge point between

cutting part and turntable

cutting arm (X)
Horizontal to the

roadheader: X: perpendicular to the side of the cutting part;
Y: horizontal to the heading direction of the roadheader;

cutting arm (Y) 6 Z: perpendicular to the upper plane of the roadheader
Perpendicular to the 7
Fixed points of lifting cutting arm (X)
cylinder and turntable Horizontal to the 3
cutting arm (Y)
Horizontal roadheader
T bl direction (Y) ?
urntable center Vertical roadheader 10

upper plane (Z)

Vibration signal
acquisition point

Sensor direction

FIGURE 7: Arrangement drawing of vibrating sensor.
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TaBLE 2: Characteristic parameters.

Time-frequency characteristics Markup symbols

Energy ratios of wavelet analysis Markup symbols

Peak-to-peak pk
Effective value st
Absolute mean
Impulse factor
Kurtosis value
Margin factor
Peak factor
Waveform factor

vor-Zs 8

Ratio 1 El
Ratio 2 E2
Ratio 3 E3
Ratio 4 E4
Ratio 5 E5
Ratio 6 E6
Ratio 7 E7
Ratio 8 E8

On the first day, the vibration signal was collected, and
the roadheader ran normally. On the 20th day, a broken
tooth occurred, which led to the roadheader could not run,
and the reducer was replaced.

According to the running condition of the roadheader and
the work log, 3rd, 6th, 9th, 11th, 13th, 14th, 15th, 16th, 17th
day, and AM 18th day, BM 18th day, and AM 19th day were
taken as the health state analysis time points of the roadheader.
9 segments of vibration data with a length of 180 seconds were
extracted from each time point as the analysis samples.

Through signal analysis, the characteristic parameter
sample of each segment of data is obtained:

17, (5)

where t = 1,2, 3,...,12 are the analysis time points and i =
1,2,3,...9 are the 9 segments vibration data of a point.

Then, 9 characteristic parameter samples of the analysis
time point composed the analysis sample:

x, = [ pky» sty mey;, ... E7,;, E8,;

X, :{xtl’xt2>xt3>"'xt9}‘ (6)

According to the above method, the sample of the 1st day
is obtained, which was used as the comparison sample:

Xy = {xopxoz’xoy --~x09}- (7)

Finally, the reference analysis sample is constructed,
which is the analysis object of LLE:

N, ={Xp, X;t = (1,2,3,..., 11, 12). (8)

4. Reference Manifold Learning

The manifold learning method can be divided into linear
learning and nonlinear learning [14]. Its essence is that the
sample points in the high-dimensional space are a manifold

stretched by a few major independent variables simulta-
neously acting on the measurement space, and the manifold
learning is to pick up the low-dimensional manifold em-
bedded in the high-dimensional observation space and to
find the essential characteristics of the data in the obser-
vation space and establish a new mapping relationship
[14, 21]. Manifold learning will maintain the local structure
of the high-dimensional original data to the maximum
extent and realize the learning and enhancement of data
characteristics and essential information, when it obtains the
low-dimensional embedded feature data that is most similar
to the original data, which is different from other feature
extraction methods and the greatest advantage in the process
of mining and enhancing the essential information of data
[22-24].

Linear manifold learning is mainly to extract the
mechanism modal response of long-order signals, remove
the interference of irrelevant noise, learn the signal
modal information, and mine the feature information of
low-dimensional manifold embedded in high-dimen-
sional space. Its analysis pays more attention to the global
changes and ignores the local relationships of samples.
Nonlinear manifold learning can express and reconstruct
the local information of samples globally and express
better the internal relationship of small data space.

Considering the following aspects, the paper adopts a
nonlinear manifold learning method—Locally Linear Em-
bedding (LLE) to mine the inherent characteristic of the two
kinds of data embedded in the sample species:

(1) In this paper, a reference comparison analysis
method is used to analyze a comparison model
composed of the analysis samples and health
samples in local space.The nonlinear manifold
learning method is more suitable for the clustering
distribution law of the feature space of the
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referenced model. The local structure relationship
of the original sample can be maintained to the
maximum extent.

(2) The complexity and diversity of load lead to the
nonlinear of the vibration signal of the roadheader.

(3) In this paper, the reference analysis sample is 18 x 16
small sample, which is more suitable for the non-
linear analysis method.

Therefore, in this paper, Locally Linear Embedding
(LLE) is used to analyze the referential analysis samples and
find the low-dimensional mapping relationships. LLE de-
scribes the local geometric features of the data by the locally
linear projection information, taking advantage of the dif-
ference of the local neighborhood of each point and the
weight information of the neighboring points, and finally
realizes the expression and reconstruction of the local in-
formation of the sample on a global scale.

LLE constructs the weight subspace of the data group by
relying on the neighborhood of each group data, by using the
weight information of data, which is different at different lo-
cations or in different periods of time on the same equipment.
Then, through dimensionality reduction analysis of dataset, the
information of multidimensional dataset can be expressed and
reconstructed in a low-dimensional space [25-27].

For the high-dimensional feature set,

N ={n;,ny,ns,...,m},n, € RP*" D =16,m =18 sen-
sitive features are manifested in a low-dimensional
(d-dimensional) space:

Y ={y1 ¥ 5 0ib v e R, 9)

LLE is divided into three steps [28, 29] and is discussed in
the below sections.

4.1. Construction of Neighborhood Space. According to the
high-dimensional features and the Euclidean distance be-
tween each sample point n; in N, m nearest neighbors of
each sample point is found as follows:

N; = knn(n,m), N; = [ny, ... ny]. (10)

4.2. Calculation of Local Weight. The nonlinear relationship
between each sample and its neighbor’s subspace is calcu-
lated. The local error function ¢ (W) is minimized, and the
local weight matrix W is constructed as follows:

k
ni—Zwijnj

2
m

eW)=)

: (11)

where N is the high-dimensional feature set, N; is the m
neighbor of n;, W is the weight between ; and n; if they are
not neighbors, then w;; = 0. And the weight of neighbor’s
subspace of n; meets the following:

M=

wij =

n
w; = 1. (12)
& ‘

1

Il
—

Setting
S;=(N-N) (N-N,), (13)
and substituting equation (13) into equation (11),
e(W) = w] Sw,. (14)

In order to get the optimal weight matrix, according to
the population dimension reduction analysis method, the
Lagrange multiplier method is adopted. So,

L(w) = ) w/Sw, + A(w] 1, - 1). (15)
i=1
Taking the derivative of equation (15)
oL (w;
OL(wy) _ 2Sw; + M, = 0. (16)
ow;
Therefore,
S
w, = (17)
1781,

where 1,, is m x 1 column vectors with all 1.

4.3. Embedded Coordinate Projection. Embedded coordinate
projection is to solve the mapping of the low-dimensional
space. W is an n x n matrix. And for the sake of clarity, we
expand the matrix w as w™".

T
W ={w; = [wy, wp, ... w,]} - (18)
Set:
n k
Z wjy i = Z Wiiyii = YW, (19)
j=1 j=1

After calculation, we obtain
v =Y | @ -wl’ (20)
i=0

According to the matrix equation
Z (a;)" = Za,-Ta,» = tr(AAT). (21)
1 1

Substituting equation (21) into equation (20),
y(V) =tr(Y(I-W)(T-W)'Y")
(22)
=tr(Ymy"),

where M = (I-W)(I-W)T.



By the Lagrange multiplier method, equation (22) is
simplified as follows:

L(Y) = tr(YMY") + M(YMY" = nI). (23)
Taking the derivative of equation (23)
oL
— =2YM +2AY =0. 24
3y + (24)
Therefore,
MTY" = a7, (25)
where MT = M.
So, we can obtain
My" =" (26)

So, matrix YT is composed of eigenvectors of the matrix
M. In order to reduce the dimension of data to d, we only
need to get the eigenvectors corresponding to the smallest d
nonzero eigenvalues of M. In LLE analysis, the smallest
eigenvalue is generally discarded because it is too close to 0.
Therefore, the eigenvectors of [2,...,d + 1] eigenvalues
from small to large are selected.

Through the above methods, 12 reference analysis
samples of 12 time points were analyzed by LLE, where
d = 2,k = 6. The analysis results are shown in Figure 9.

The results of LLE analysis show that

(1) The analysis results of the comparison samples and
the analysis samples show that the dimension re-
duction features at the 3rd, 6th, 9th, 11th, 13th, and
14th day were crossed together without segmenta-
tion. It indicates that the roadheader runs normally
and is not damaged.

(2) The analysis results of the comparison sample and the
analysis sample began to separate from each other on
the 15th and 16th day, and the data of the comparison
sample and the analysis sample appeared obvious
segmentation phenomenon on the 17th day.

(3) As can be seen from the analysis results on the 16th,
17th, 18th, and 19th day, as time goes by, the separation
distance between the health comparison samples and
the dimension reduction characteristics of the analysis
samples is getting farther and farther, indicating that the
roadheader faults are becoming more and more serious.
And as the fault becomes more and more serious, the
gap within the class becomes smaller and smaller, and
the gap between the classes becomes larger and larger.

Through the analysis, the roadheader failed on the 15th
day, and with the passage of time, the failure became more
and more serious, and eventually led to the damage of the
roadheader reducer.

5. Clustering Analysis

Cluster analysis is one of the important research fields of
data mining and pattern recognition. It plays an extremely
important role in identifying the internal structure of data.

Shock and Vibration

Commonly used clustering analysis algorithms include
K-means, K-modes, PAM (partitioning around medoid),
and CLARA (clustering large applications) algorithm.
K-means algorithm is a classical algorithm used to solve
clustering problems. Compared with other algorithms,
K-means is simpler and faster. In terms of data processing,
the K-means algorithm has better scalability. Meanwhile, the
K-means algorithm tries to find K partitions that minimize
the squared error function value. When the difference be-
tween clusters is obvious, its clustering effect is better.

5.1. Improved K-Means Analysis. The basic idea of K-means
clustering is as follows: the sample set is divided into K
clusters according to the size of the sample distance, so as to
ensure that the points within the cluster are closely related to
each other, and the distance between the clusters is as large
as possible. The degree of density within clusters and the
degree of dispersion between clusters can evaluate the
clustering effect [30-32].

In the construction of referential analysis samples,
comparison samples and analysis samples have been sepa-
rated, so when K-means clustering processing is carried out,
there is no need to divide samples into clusters. Through the
improved K-means data processing, the clustering center U
of comparison samples and analysis samples and the Cal-
inski-Harabasz (CH) index of the K-means clustering were
finally obtained [33-35].

CH index is a parameter to evaluate the effect of clus-
tering. The effect of clustering the evaluation can be reflected
by the degree of density within clusters and the degree of
dispersion between clusters. The number of analysis samples
or comparison samples in each time period is i = 9, and the
data category K=2. Therefore, the CH index of K-means
clustering is used as the Clustering effect indicator (CEI) in
this paper, which is used as the health evaluation indicator
(HEI) of the roadheader.

The improved K-means algorithm is as follows:

(1) The comparison data and analysis data in dimen-
sionality reduction space (result of LLE) are divided
into two clusters C = (Cy,C,)

(2) The centroid of sample C, is calculated

(3) The centroid matrix for sample C is obtained:

U = (uy, u,). (27)
(4) Calinski—-Harabasz (CH) index is calculated:

trB(k)/ (k-1)

CHWO = W (i (n— ky

(28)

where n = 18 is the number of sample points, k is the
cluster of samples, trB(k) is the trace of the class
deviation matrix, and trW (k) is the trace of the in-
class deviation matrix.

After the improved K-means clustering analysis, the
centroid of the two clusters in the dimensioned reduced
space is shown in Figure 10 and Table 3. Calinski-Harabasz
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TaBLE 3: Centroid of the two clusters.
Day 3rd 6th 9th 11th 13th 14th 15th 16th 17th  AMI18th BMI8th AMI9th
Health data -0.0107 0.0115  0.0232 0.01 0.0203 0.0352 -0.101 -0.139 -0.355 -0.603 -0.454  -0.727
0.0366  -0.0221 -0.0898 -0.0131 -0.0559 0.129 0.0999 -0.0451 -0.586 —0.586 -0.892 -1.053
Analvsis data -0.0069  0.0567 0.098 0.0496  0.0857 0.0465 0.404 0.552 0.230 0.326 0.381 0.509
4 -0.105  0.0267 0.0163 0.0199 0.0112  -0.03 0.0864 0.178 0.648 0.624 0.604 0.875
TaBLE 4: Health evaluation indicator (HEI) of each time point.
Day 3rd 6th 9th 11th 13th 14th 15th 16th 17th AMI18th  BMI18th  AMI19th
HEI (CH) 13.28 14.41 18.98 22.97 15.45 24.34 29.08 38.15 50.43 99.2 143.17 297.87
(CH) index, namely, health evaluation indicator (HEI), is
shown in Table 4 and Figure 11. _ 300
After the improved K-means clustering analysis, we 2 50l
found that 5
, 5 200
(1) When the roadheader was faultless, the distance 5
between the centroid points of the healthy sample 5 150
and the analysis sample was very close, and the value g
of the HEI (health evaluation index) was also g 100
maintained within a stable value range. £ 50l
[+
(2) After the failure of the roadheader, the distance T, . . : . . . . . .
between the centroid points of the healthy sample 2 4 6 8§ 10 12 14 16 18 20
and the analysis sample became farther and farther Time (day)

with the severity of the failure, and the HEI increased
exponentially.

5.2. Health Assessment Based on SGM. Generally, the dis-
tribution of health status assessment parameters of equip-
ment conforms to the normal distribution, and the
nonhealth data will deviate from this distribution by the
degree of failure [36]. In this paper, the single Gaussian
model (SGM) is used to analyze the HEI distribution of the
roadheader. In the SGM model, HEI conforms to the normal
probability distribution function (pdf), and the equation is

1 (s— u)2
s exp[ 25 ], (29)
where s is the HEL, u is the mean value of HEI of health
signal, and § is the variance of HEI of health signal [37].

According to the normal distribution, the 95% confi-
dence level of the model was selected as the health interval.

P of normal distribution corresponding to the HEI of the
equipment at each time point can indicate the close level of
the equipment status with the health status. The corre-
sponding value of the equipment failure status signal will
exceed the given health confidence level interval.

When the equipment fails, P of the vibration signal will
exceed the given health confidence interval.

Health assessment indicators (HEI) of the roadheader at
3rd, 6th, 9th, 11th, 13th, and 14th day were selected as
normal distribution parameters of the health data.

By calculation, u = 18.2436; § = 17.8799.

Subsituting it into equation (29),

p(s/u,d) =

FiGure 11: The trend of HEL ¢: low-dimensional spatial charac-
teristics of health comparison signals after LLE processing; ¥: low-
dimensional spatial characteristics of analysis signals after LLE
processing; M: the center of low-dimensional characteristics of
health comparison signals; @: the center of low-dimensional
characteristics of analysis signals.

(s — 18.2436)
= . 30
P 44.807eXp[ 639.3835 (30)
The 95% confidence interval corresponds to

s, = 25.8627. When the HEI value §>5,, the roadheader
failure occurs. If the value s —s,, is larger, then the fault is
more serious.

6. Data Analysis

In order to verify the noncontingency and effectiveness of
the method, we analyze the vibration signals of sensors 1 and
5, which are more advanced in the distance cutting reducer,
according to the above method. Finally, HEI of the two
sensors was obtained, as shown in Figure 12 and Table 5, and
the corresponding confidence interval of two sensors is
shown in Table 6.

Based on the above analysis results, it can be concluded
that the HEI of the two sensors exceeds the confidence
interval on the 15th day of the roadheader operation, and the
HEI increases with the severity of the fault. The results are
consistent with those of sensor 3. It is proved that this
method can evaluate the health status of the roadheader.
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FiGure 12: The HEI trend of two sensors, (a) the HEI trend of sensor 1, and (b) the HEI trend of sensor 5.

TasLE 5: HEI of two sensors in each time point.

Day 3rd 6th 9th 11th 13th 14th 15th 16th 17th  AM18th  BMI18th  AMI19th
HEI of sensor 1 6.29 8.41 7.99 10.98 11.45 15.20 21.31 30.25 37.59 67.41 120.51 198.62
HEI of sensor 5 9.48 15.58 10.82 13.54 11.54 14.85 24.09 28.15 36.43 70.20 113.28 207.16
(3) The normal distribution model of the HEI on healthy
TasLE 6: The confidence interval of two sensors. condition is established, and the warning line of HEI
S S I S s is determined by confidence interval, which can
cnsor cnsor cnsor judge whether the roadheader fails.
Confidence interval Sp1=15.2765 Sps=16.5844

7. Conclusion

Through the analysis results of sensors 1, 3, and 5, it was
concluded that from the 15th day: s>s , which mean the
roadheader was starting to malfunction. And with the ag-
gravation of the failure, the HEI increased exponentially.
Eventually, the reducer was scrapped and could not be used
at all. The analysis results of the three sensors were con-
sistent. The research shows that the low-dimensional sen-
sitive features characteristics based on reference manifold
learning can reflect the health status of roadheader, and the
health evaluation index (HEI) by cluster analysis can identify
the roadheader faults.

(1) In view of the characteristics of nonlinear and time-
varying vibration signals of the roadheader caused by
unstable loads, the health data and analysis data were
fused. Through LLE learning, the characteristic pa-
rameters of data in the low-dimensional structure
were constructed by taking advantage of the different
weight of data in the local neighborhood. It solves the
difficult problem that some or several characteristic
parameters cannot identify the health state of
equipment.

(2) Since the number of clusters and the data in each
cluster has been determined, the CH value judging
the clustering effect was used as the evaluation index
to judge the health data and analysis data of the low-
dimensional characteristic parameters of the vibra-
tion signal of the roadheader and take it as the health
evaluation index (HEI) of the roadheader.

Through the analysis of this paper, it not only provides a
new diagnosis idea for roadheader health diagnosis but also
provides a technical support for fault diagnosis of large
equipment. At the same time, it also provides reference value
for the identification of equipment fault types [2, 13, 15, 16].
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