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Bearings are considered as important mechanical components in rotating machines. Bearing load is used as an indication of
monitoring rotor system health, but there are interval and probability uncertain parameters in the process of obtaining bearing
load from the rotor system. A bearing load strip enclosed by two bounding distributions is then formed, rather than a single
distribution that we usually obtain through the load identification method for a deterministic rotor system. In this paper, a
computational inverse approach that combines the interval and perturbation analysis method with regularization is presented to
stably identify bearing load strip. Using an interval analysis method, a calculated transient response of the rotor structure only
subjecting to the bearing load can be approximated as a linear function of the interval parameters in the rotor system. +e
perturbation analysis method based on Taylor expansion is used to transform the problem of the bearing load identification
involving in probability parameters into two kinds of certain inverse problem, namely, the bearing load identification combining
the mean value of uncertain parameters with calculated transient response function and the sensitivity identification of bearing
load to each probability parameter. Regularization is used to overcome ill-posedness of bearing load identification arising from the
noise-contaminated observed response. A rotor system with two bearings is investigated to demonstrate the effectiveness and
accuracy of the presented method.

1. Introduction

Safety and reliability of the high-speed rotating mechanical
equipment has attracted much attention with the increase in
rotational speed and power [1–3]. In order to reduce the loss
caused by mechanical equipment faults and achieve efficient
fault diagnosis, it is necessary to perceive and manage the
running status and health level of its key systems and
components in real time [4]. Bearing is the main basic
supporting structure of rotating machinery, and the running
state of the rotor system can be assessed by bearing load [5].
At present, the theoretical system mostly uses the sensor to
collect the fault characteristic signal of the bearing under
specific working conditions and uses it as the basic data of
the fault diagnosis model [6, 7]. Any deviations between the
referenced bearing load and the observed value can be
inferred as an indication of a change or damage in the rotor

system. +e approach for reliably monitoring the rotor
system health is to create a real bearing load from the rotor
system in its undamaged state [8]. However, in the actual
work site, the acquisition system to determine the real
bearing loadmay be affected by the noise in the environment
or the uncertain factors caused by the manufacturing and
service environment of the rotating machinery structure [9].
As a result, the bearing load identified by the collected
signals do not fully reflect the real operation of the rotor
system. Because of the existence of uncertain factors, the
bearing load distribution will form a strip enclosed by two
bounding distributions, rather than a single distribution that
we usually obtain through a deterministic rotor system. If
the observed bearing load is within the boundary of the
referenced bearing load, the rotor system runs without fault.

In general, the problem to determine the bearing load
strip from the collected output signals considering the
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uncertain factors is called an uncertain inverse problem.+is
type of inverse problem has recently attracted more and
more attention. As the most popular uncertainty modeling
strategy, probability [10, 11], interval [12, 13], and combined
method [14, 15] have been proposed to applied in engi-
neering for uncertain parameter identification and load
identifications. However, the probability method is a
quantitative description, which describes the uncertainty
parameters accurately but requires a lot of information
coming from many expensive experimental tests to con-
struct the probability density function; the interval method is
a qualitative description, which handles the uncertainty with
limited information, but it will lose the actual value of the
project due to the expansion of the interval estimation.+us,
while proposing a new uncertainty inverse analysis frame-
work for gaining the bearing load strip to evaluate uncertain
rotor system fault, a more efficient computing method needs
to be developed together.

In this paper, a hybrid method based on interval theory
[16], perturbation theory [17], and regularization method
[18] is proposed to construct the inverse analysis framework
to deal with the uncertainty with imprecise information;
utilizing Taylor expansion, the problem of bearing load
identification of the uncertain rotor system is transformed
into two kinds of deterministic bearing load identification
problems. One kind is the middle bearing load identification
taking the uncertain parameters as themean value, and other
is the reverse calculation of the sensitivity of the bearing load
with respect to the uncertain parameters; the regularization
method is used to treat the unstable solution coming from
the noise in the measurement response.

2. Bearing Load Identification Problem

+e transient response [19] coming from vibration analysis
of the bearing-rotor system is shown in the following:
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where O is the zero matrix; M, K, and C, respectively,
represent the mass, stiffness, and damping matrices of the
separate rotor structure; the index B denotes the node of the
rotor with the bearing support and the index I denotes the
node of the rotor without the bearing support; KB and CB
represent the bearing stiffness and damping matrices, re-
spectively; the transient displacement q, velocity _q, and
acceleration €q represent the structural response of the

bearing-rotor system under unbalanced force Fe with the
rotational speed ω.

Denoting FT � CB _qB + KBqB and moving FT from the
left side of equation (1) to the right side, the equivalent
kinetic equation of the rotor structure subjecting to the
unbalanced force Fe and the bearing load FT is shown in the
following:
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or simplified to

[M] €q􏼈 􏼉 + C2􏼂 􏼃 _q􏼈 􏼉 + K2􏼂 􏼃 q􏼈 􏼉 � ω2 Fe􏼈 􏼉 − FT
􏽮 􏽯. (3)

+e measurable structural response q can be thought to
be the superposition of responses of the rotor separately
subjecting to Fe and −FT. +e damping matrix C2 and
stiffness matrix K2 of the separate rotor in equation (3) do
not combine the effects of the bearing.

As the rotor structure is linear time invariant, the fol-
lowing relationship is obtained according to the superpo-
sition principle

[M] €qT􏼈 􏼉 + C2􏼂 􏼃 _qT􏼈 􏼉 + K2􏼂 􏼃 qT􏼈 􏼉 � FT
􏽮 􏽯, (4)

where qT � qe − q, qT represent the transient response of the
rotor structure only subjecting to the bearing load FT. +e

unbalance response qe only subjecting to the unbalance load
Fe can be numerically and accurately calculated by com-
bining the information of the unbalance load Fe together
with the matricesM, C2, andK2 into the forward solver [20].
+e calculated unbalance response qe together with the
measurable structural response q is combined into Green’s
function method and regularization operation [21] to re-
construct the bearing load FT.

3. Bearing Load Identification Method for
Uncertain Rotor Systems

When the parameters in the rotor system, such as material
properties and geometric structure, cannot be determined
completely, the Green kernel function in the load identifi-
cation used to characterize the dynamic characteristics of the
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rotor system will be uncertain. When this convolution in-
tegral in the time domain is discretized, the whole concerned
time period is separated into equally spaced intervals, and
the response qTonly subjecting to the bearing load FT can be
expressed by a matrix form:

qT � H(λ, η) · FT
(λ, η), (5)

where G is the Green function matrix coming from the
bearing load FT to the response qT.

In general, the Green function matrix H of equation (5)
is ill-conditioned, and the response qT calculated by the
measurable structural response q according to qT � qe − q
inevitably carries noise. If the inverse of the matrix H exists,
the bearing load FT can be obtained by using the following
equation based on regularization:

FT
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· qTδ � VDiag f α, σi( 􏼁σ−1
i􏼐 􏼑UqTδ

� 􏽘
m

i�1
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i UT
i qTδ􏼐 􏼑Vi,

(6)

where qTδ represents the response with noise, U� [u1, u2,
. . ., um] is the left singular vector ofH andV� [v1, v2, . . ., vm]
is the right singular vector of H, which are two normalized
orthogonal matrices, and f(α, σi) denotes a filter function to
attenuate the amplification effect of small singular value on
noise.

+e Green function matrix H(λ, η) is expressed as a set
of uncertain parameters containing interval and proba-
bility parameters, so the bearing load is no longer a so-
lution, but a solution set. In rotor system health
monitoring, the upper and lower boundaries of the so-
lution set are often concerned, and it is not necessary to
solve all the possible values. According to the interval
mathematics theory, when the uncertain parameter λ is in
the interval form, the corresponding response qT is also in
the interval form. In order to obtain the maximum and
minimum values of the bearing load, all the possible values
of the interval uncertain parameter λ should be selected in
turn, the bearing load should be identified based on the
response qT distribution strip, and the maximum and
minimum values of the bearing load should be searched in
the identification results. +e recognition process with a
traditional Monte Carlo simulation (MCS) [22] will in-
volve complex multilayer nesting solution, and the for-
ward problem calculation model needs to be called
repeatedly, which will inevitably lead to the inefficiency of
the solution. In this paper, the bearing load identification
problem involving interval and probability uncertain
parameters in equation (5) is transformed into a series of
deterministic problems utilizing the method of interval
analysis and matrix perturbation.

3.1. Boundary of Transient Response. According to the
monotonicity analysis theory [23], the maximum and
minimum values of bearing load must correspond to the
boundary of interval uncertain parameters. +e lower
boundary λL and upper boundary λR of n-dimensional

interval uncertain parameters can be described by the
midpoint λc and radius λw of the interval. When the un-
certainty level is small, the first-order Taylor expansion is
carried out at the midpoint λc of the interval. +e minimum
and maximum values of the response qT can be obtained
directly and explicitly.
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3.2. Boundary of Bearing Load. +e k-dimensional proba-
bilistic uncertainty parameter η can be expressed as the
mean value ηd and disturbance part Δηr. According to the
perturbation theory [24], the Green kernel function matrix
of the corresponding rotor system and the bearing load to be
identified contain disturbance parts.

η � ηd + Δηr,

ηi � ηdi + Δηri, i � 1, 2, . . . , q,

qT � Hd + ΔHr( 􏼁 · FT
d + ΔFT

r􏼐 􏼑,

(8)

where the subscript d and r represent the mean value and
disturbance part of the probabilistic uncertain parameters,
respectively.

qT � HdF
T
d ,

−ΔHrF
T
d � HdΔF

T
r .

(9)

+eGreen kernel function matrixHd in equation (8) can
be obtained when the probabilistic uncertain parameters are
taken as the mean value. Based on the response qT, the mean
value FT

d of the bearing load can be inversely calculated by
the deterministic bearing load identification method. +e
disturbance part ΔFr of the bearing load can be identified
through the reverse calculation of the sensitivity of the
bearing load with respect to the probabilistic uncertain
parameters. Among the solving the mean value FT

d and the
disturbance part ΔFr, the Green function matrix Hd in
equation (9) is the same, and only one matrix singular value
decomposition operation is needed in regularization.
+rough the above matrix perturbation analysis method, the
bearing load identification problem with k-dimensional
probabilistic uncertain parameters can be transformed into
the following k+ 1 deterministic problem. +e bearing load
with interval and probability uncertainty can be described
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using the Taylor expansion of first order regarding near their
means (λc, ηd).
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where the transient response qTm � qe − qm for identifying
the mean value FT

d is obtained from the measurable struc-
tural response qm to means (λc, ηd) together with the cal-
culated unbalance response qe, and he disturbance part ΔFr

centering on the qTmin and qTmax from equation (7) using the
deterministic bearing load identification method is com-
puted. +e first-order partial derivative (zFT(t, ηd)/zηi) to
the probabilistic parameters can be dealt by the difference
method [25], and the difference scheme is used to transform
the partial differential equation into an algebraic equation to
solve, for example, (zFT(t, ηd)/zηi) � (ΔFT(t, ηd)/Δηi), and
the increment ΔFT(t, ηd) of the bearing load is obtained by
small disturbance Δηri at the midpoint. With the mean value
FT

d and the disturbance part ΔFr, the minimum FT
L and

maximum FT
R of the bearing load can easily calculated based

on equation (10).

4. Bearing Load Identification Process of
Uncertain Rotor Systems

Based on the above discussion, the solution procedure to-
wards a bearing load identification of the rotor system in-
volving interval and probability uncertain parameters can be
described as follows (see Figure 1):

(1) Construct a forward solver to calculate the unbalance
response qe or structural response q utilizing the
mass, stiffness, and damping matrices and the cor-
responding load

(2) Construct an inverse problem solver for the deter-
ministic load identification algorithm, combining
the calculated or measured structural response qm

and the unbalance response qe with the known mass,
stiffness, and damping matrices into the inverse
problem solver to calculate the bearing load

(3) Assume the uncertain parameters (λ, η) from en-
gineering experience, combining the mean of un-
certain parameters (λc, ηd) together with the
measured structural response qm into the inverse
problem solver to calculate the mean value FT

d

(4) Calculate qTmin and qTmax from the forward solver
using the obtained FT

d and the known interval
parameters λ based on the interval analysis
method

(5) Combine the probabilistic parameters η together
with the obtained qTmin and qTmax into the inverse
problem solver to calculate the disturbance part ΔFr

based on the difference method
(6) Utilize themean value FT

d and the disturbance partΔFr

to calculate FT
L and FT

R, as shown in equation (10)

5. Examples

+e numerical model in reference [26, 27] is provided to
verify the feasibility of the proposed uncertain bearing load
identification algorithm. Figure 2 depicts a rotor system with
three discs supported by two fault predicted journal bear-
ings, the geometrical parameters of the rotor structure are
partly given in Figure 2(a), the transfer matrix model of the
rotor structure is established as shown in Figure 2(b), and
the rotor system is divided into 33 elements consisting of 34
nodes with three discs at element 9, 17, and 28. +e bearing
acts on the nodes 7 and 24. +e angular speed is 4000 rpm.
+e elastic modulus E of the rotor material is 210GPa, the
shear elastic modulusG is 80GPa, and the density is 7650 kg/
m3. +e disc weight is 14 kg, and the unbalance mass to
construct unbalanced force Fe of 14 kg at 0° is placed at 1mm
radii from the center of the middle disc. +e mass, stiffness,
and damping matrices of the rotor system are obtained by
the transfer matrix method.

5.1. Identification of Bearing Load under Determined
Structure. +e structural response q can be easily obtained
by using a forward solver (such as TMM) reported by Mao
et al. [27] with the information of the mass, stiffness,
damping matrices, and the corresponding unbalance load
and bearing load. For testing the inverse problem solver for
the deterministic load identification algorithm, the struc-
tural response at the nodes 3, 8, 20, and 25 used to identify
the bearing load is gained by noise-contaminated response
(a 3% Gaussian noise is directly added to the computer-
generated response coming from the assumed value of
bearing stiffness and damping coefficient in Table 1 into the
TMM forward solver), as shown in Figure 3.With the help of
regularization, the bearing loads are stably obtained and
shown in Figure 4. It is known that the load time histories of
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Figure 2: +e model of a rotor system: (a) a bearing-rotor system with three discs; (b) the TMM model.
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Figure 1: Solution procedure towards bearing load identification with uncertainty.
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the three cases are in good agreement, and in the acceptable
range, it shows that the accuracy of the deterministic bearing
load identification algorithm is feasible.

5.2. Bearing Load Identification under 3% Uncertainty.
For testing the proposed uncertain bearing load identifi-
cation algorithms, the unbalance parameters m, e,φ􏼈 􏼉 are
interval uncertain and the rotor material parameters E, G{ }

are probability uncertain. Assumed the probabilistic un-
certainty parameters are taken as the mean (that is,
E � 210GPa, G � 80GPa{ }), adjusting the interval uncer-
tainty parameters under 3% uncertainty (that is, 3% off from
the mean m � 14 kg, e � 1mm, ϕ � 0°􏼈 􏼉), and combining
them together with the obtainedmean bearing load as shown
in Figure 4 into the forward solver (TMM) to calculate the
response qT, the sensitivity curves of the response qT with
respect to the interval uncertainty parameters m, e, ϕ􏼈 􏼉 are
obtained, as shown in Figure 5(a). It can be seen from the
diagram that the response qT is more sensitive to the un-
balance parameters m, e, ϕ􏼈 􏼉 and the unbalance parameters
have great influence on the identification of bearing load.
Combining with the first-order derivatives to the unbalance
parameters together with the response qT(t, λ) coming from
the obtained mean bearing load FT

d into equation (7), the

bounds of the response, qTmin and qTmax, can be obtained,
shown in Figure 5(b).

Utilizing the obtained response, qTmin and qTmax, and the
probability uncertainty parameters under 3% uncertainty
into the inverse problem solver for the deterministic load
identification algorithm, the bearing load with respect to
each probability uncertain parameters is calculated and the
results are plotted in Figure 6(a). It shows that the sensitivity
curves vary greatly in the whole-time history, and the
probability parameters will have a relatively huge single
impact on the accuracy of the identified boundaries of the
bearing load. Combining with the disturbance part ΔFr

coming from the probabilistic parameters η together with
the obtained qTmin and qTmax together with the obtained
mean bearing load FT

d into equation (10), the bounds of
bearing load, FT

L and FT
R, can be obtained, shown in

Figure 6(b). +e identified bearing load boundary can ef-
fectively describe the time history of the bearing load change,
the upper and lower boundaries of the bearing load can
better contain the middle load, and the middle load is within
the upper and lower boundaries. In addition, at the peak of
the bearing load, the boundary of the identified bearing load
is wide, so the interval and probability uncertain parameters
have a great influence on the identification results of the
bearing load currently.

Table 1: Bearing dynamic parameters.

Bearing
Stiffness coefficients (MN·m−1) Damping coefficients (KN·s·m−1)

Kxx Kxy Kyx Kyy Cxx Cxy Cyx Cyy

Left 46.36 83.4 −64.33 41.27 70.28 71.63 71.63 88.57
Right 13.38 29.16 −21.78 8.36 69.67 19.98 19.98 79.93
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Figure 3: +e structural response at four observed point.
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Figure 5:+e rotor structure transient response: (a) the sensitivity curve of the transient response to the interval parameters; (b) the bounds
of the rotor structure transient response.
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Figure 6: Continued.
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6. Conclusions

Bearing load is the key factor that determines the lifetime
and reliability of the rotor system. Bearing load plays a
great role in health monitoring and fault diagnosis. Due to
the existence of uncertain parameters, bearing load is a
distribution strip. Based on the interval and perturbation
theory and the improved regularization method, this paper
proposes a new bearing load identification framework for
the bearing-rotor system with uncertainty and measure-
ment noise. +e problem of bearing load identification is
transformed into two kinds of certain inverse problems,
namely, the bearing load identification on the mean value
of uncertain parameters and the sensitivity identification of
bearing load with respect to each uncertain parameter. +e
improved regularization method can overcome the ill-
posedness of bearing load reconstruction for a determin-
istic rotor system. In the numerical example, the present
method can stably identify the bounds of the bearing load
only by knowing the bounds of the interval parameters and
the statistical characteristics of the probability parameters,
which has a certain practical value in engineering.
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