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Coal seam hydraulic fracturing (CSHF) has recently been applied to mitigate frequent regional rockburst risk in deepmines before
mining practice, as an effective substitute for conventional labor-intensive and time-consuming rockburst prevention measures.
Due to the complex nature of CSHF microseismic signals—e.g., nonstationary, transient, and low signal-to-noise
ratio—conventional denoising methods tend to yield undesirable results that may preclude reliable evaluation of hydraulic
fracturing performance using microseismic data. We propose an advanced denoising method MWPT-IHHT to achieve twice
denoising in a fine and adaptive manner. ,is method combines a multithreshold wavelet packet transform (MWPT) and an
improved Hilbert-Huang transform (IHHT), with each being improved compared to their conventional counterparts. A
quantitative comparison using synthetic signals suggests the outperformance of the proposed method over the commonly used
denoising methods in suppressing noises in terms of signal-to-noise ratio, signal similarity, and energy percentage. ,e desirable
denoising results of two typical real CSHF signals in a CSHF test at Huafeng Coal Mine further demonstrate the applicability and
effectiveness of the proposed MWPT-IHHT method.

1. Introduction

With coal resources being continuously extracted for decades,
a great number of coal mines in China have entered into deep
mining, and as a result, rockbursts have become one of the
most dangerous dynamic hazards, causing tremendous eco-
nomic losses and casualties [1–5]. To date, around 180
rockburst mines have been identified, with over 50 of them
currently mining at a critical depth of approximately 1000m
[4–6]. Even worse, some of these mines are being subjected to
complex geological and mining conditions, which cause more
frequent and intense rockbursts, e.g., faults, island longwall
mining, and inappropriate mine design. Conventional
rockburst prevention measures that involve a small volume,
e.g., destress drilling and destress blasting, have long been
applied and can effectively control local rockbursts in highly
stressed zones. However, these measures are both labor-

intensive and time-consuming, which renders them less
suitable for deep mines subjected to frequent rockburst
hazards. ,erefore, a cost-effective technique for regional
rockburst prevention is urgently needed.

To this end, hydraulic fracturing, initially used for oil and
gas stimulation and in situ stress measurement [7–9], has
recently been applied to mitigate frequent rockburst risk in
deep mines through preconditioning hard roofs and coal
seams before mining practice [6, 10–12]. However, further
development of this technique has been restricted due to the
absence of a mine-specific method for evaluating the hy-
draulic fracturing performance using microseismic moni-
toring data, and consequently, guidelines for determining
appropriate design parameters for hydraulic fracturing
treatment are underdeveloped.

Signal denoising is particularly crucial in signal processing
as extraction of clean and valid signals is a prerequisite for
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reliable evaluation of hydraulic fracturing performance. Valid
signals that are smeared in the ambient noises are often
neglected if no appropriate denoising methods are available.
Conventional denoising methods include short-time Fourier
transform, Wigner-Ville distribution, S-transform, wavelet
transform, wavelet packet transform (WPT), and Hilbert-
Huang transform (HHT) [13–17]. ,ese time-frequency
methods have demonstrated their desirable capabilities of
reducing noises in nonstationary signals, and currently WPT,
HHT, and their respective variations are most widely used for
processing signals in geotechnical, mining, oil and gas, and
seismic exploration fields. Zhu et al. [18] investigated the
energy distribution characteristics for two common types of
microseismic signals (i.e., blasting-induced and roof-break-
induced signals) in mines using WPT and proposed a quan-
titative method for distinguishing the two signals. ,e authors
in [19] employed artificial neural network andWPTto suppress
random noise in seismic signals. ,e authors in [20] applied
HHT to seismic reflection data to identify the instantaneous
attributes in order to develop a superior filter for enhancing the
signal-to-noise ratio. ,e authors in [21] examined the ra-
tionale of HHT for analyzing dynamic and earthquake motion
recordings in studies of seismology and engineering and
demonstrated its capability of extracting the time-frequency
energy distribution characteristics, whichmight not be exposed
effectively and efficiently by Fourier transform technique.
However, WPT-based and HHT-based methods are not well-
suited for more complex signals, even rendering signal dis-
tortion and damage in some cases, i.e., transient, nonstationary,
and low energy microseismic signals with low signal-to-noise
ratio from coal seam hydraulic fracturing (CSHF). ,erefore,
an advanced denoising method for this particular type of
complex signal is needed in order to properly evaluate CSHF
performance.

We previously developed a preliminary framework for
processing and interpreting microseismic monitoring data
obtained from a CSHF test at Huafeng Coal Mine in China,
including improved HHT signal denoising, automatic first
arrival picking, and four-channel combined source locating
[6]. Following this work, this paper aims to extend and
further develop the denoising method for CSHF signals by
combining a multithreshold wavelet packet transform
(MWPT) and an improved Hilbert-Huang transform
(IHHT), with each being improved compared to the con-
ventional methods and then combined for twice denoising.
A comparison using numerically synthetic data is made
between the proposed method MWPT-IHHT and the three
other commonly used denoising methods, and it shows the
outperformance of the MWPT-IHHT in reducing noises in
terms of signal-to-noise ratio, signal similarity, and energy
percentage. ,e application using real CSHF signals further
demonstrates the applicability and effectiveness of the
proposed denoising method for processing CSHF signals.

2. Characteristics of Microseismic Signals in
Coal Seam Hydraulic Fracturing

Figure 1 shows two typical microseismic signals with low
and high signal-to-noise ratio SNR observed in the CSHF

test at Huafeng Coal Mine, and more information on this
test can be found in [6]. In the time domain, the two valid
signals have peak amplitudes of 13.6mV and 131.8mVwith
a duration of only 150ms and 200ms, respectively. In order
to better understand the characteristics of CSHF signals,
the two signals are further displayed in the frequency
domain through Fourier transform technique. ,e fre-
quency domain is displayed into two parts corresponding
to the front waveform mainly containing noises and the
rear waveform containing the valid signal. For the signal
with low SNR in Figure 1(a), the frequency of the valid
signal mainly concentrates at roughly 75Hz, while two
regular frequency concentrations are observed in the
background noises at approximately 170Hz and 335Hz,
respectively.,e regular concentrations might be caused by
the pulse of high-pressure water in the tube. For the signal
with high SNR in Figure 1(b), the valid signal mainly
concentrates in the frequency band of 50–200Hz. Com-
bining the same analysis for many other observed signals,
the dominant frequency of valid CSHF signals in this test is
mainly distributed between 30 and 200Hz.

For the signal with low SNR, the peak amplitude is
13.6mV, while the background noises have comparable
magnitudes of approximately 3mV. In addition, its fre-
quency magnitude is even lower than that of background
noises. In this case, the valid signal appears to be smeared in
the background noises, and it is also observed that most
CSHF signals possess a low signal-to-noise ratio. ,is
renders accurate first arrival picking, source locating, and
further performance evaluation rather difficult and
challenging.

,rough the above analysis, it is found that the CSHF
signals are transient, nonstationary, low in energy, and low
in SNR with a dominant frequency band of 30–200Hz. For
this type of signals, the commonly used denoising meth-
ods—WPT and HHT—can cause signal distortion arising
from the lack of adaptivity and insufficient resolution in the
frequency domain, and this may yield undesirable denoising
results. ,erefore, to overcome the shortcomings of the
conventional methods in processing CSHF signals, a method
named MWPT-IHHT is proposed to achieve a twice
denoising, which combines a multithreshold WPT and an
improved HHT.

3. Combined MWPT-IHHT Denoising Method

MWPT-IHHT denoising method employs a multithreshold
wavelet packet transform to implement preliminary
denoising and an improved Hilbert-Huang transform for a
second denoising. ,e combination of MWPT and IHHT,
with each being improved compared to their conventional
counterparts, can significantly enhance the time-frequency
localization and allow complex signals (CSHF signal) to be
processed in a fine and adaptive manner.

3.1. Multithreshold Wavelet Packet Transform. Wavelet
packet transform (WPT) was proposed by [22, 23] as a gen-
eralization and improvement of wavelet transform, with the
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Figure 1: CSHF signal with (a) low signal-to-noise ratio and (b) high signal-to-noise ratio.
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capability of capturing detailed information with fine resolution
in both low-frequency and high-frequency bands. ,e wavelet
packet transform splits the frequency space of a signal into
roughly a low-frequency and a high-frequency component
using a pair of low pass and high pass filters and then repeats the
same splitting procedure for all the obtained components until a
specified level. ,rough this process, the whole frequency space
of a signal can be divided into various narrow bands and hence
allows better time-frequency localization and frequency com-
ponents containing low energy to be readily identified [24].

Assume that the initial signal gn
j(t) ∈ Un

J , and it can be
given by [22, 23]

g
n
j(t) � 􏽘

k

d
j,n

k un 2j
t − k􏼐 􏼑. (1)

,us, the decomposition algorithm for the next subspace
U2n

j+1 and U2n+1
j+1 can be expressed as

d
j+1,2n

l � 􏽘
k

hk− 2ld
j,n

k ,

d
j+1,n+1
l � 􏽘

k

gk− 2ld
j,n

k .

⎧⎪⎪⎪⎨
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(2)

,e reconstruction algorithm is

d
j,n

k � 􏽘
l

hk− 2ld
j+1,2n

l + gk− 2ld
j+1,2n+1
l􏽨 􏽩, (3)

where d
j,n

k are the wavelet coefficients at the level j, d
j+1,2n

l

and d
j+1,2n+1
l are the wavelet coefficients at the next level j+ 1

after decomposition, and gk − 2l and hk − 2l are a pair of low
and high pass filters.

After obtaining the wavelet coefficients at each decom-
position level, a threshold and thresholding function need to
be applied to the coefficients in order to identify and eliminate
the frequency components corresponding to noises. Since
threshold has a crucial influence on the quality of the
reconstructed signal, it is advisable to select an appropriate
thresholding criterion for the signals of interest. ,ere are
four commonly used threshold criteria for wavelet packet
transform: adaptive thresholding (Rigrsure), heuristic
thresholding (Heursure), minimaxi thresholding (Minimaxi),
and fixed-form thresholding (Sqtwolog) [25, 26]. ,e four
criteria are based on different rules and thus have their own
applicability in signal denoising. Rigrsure features adaptability
and uses the soft threshold estimator based on Stein’s un-
biased risk estimate; Sqtwolog uses fixed-form threshold
yielding minimax performance multiplied by a small factor
proportional to the signal length; Heursure is a mixture of the
two previous criteria; Minimaxi uses a fixed threshold chosen
to yield minimax performance for mean square error against
an ideal procedure. Minimaxi and Rigrsure tend to be con-
servative by setting a part of coefficients to zero, and this
cannot effectively eliminate all the noise components in the
signal of interest, while all the useful information is retained.
Heursure and Sqtwolog demonstrate a better capability of
identifying the noises components, but in some cases, useful
high-frequency components can be mistakenly removed.
,erefore, a single global thresholding criterion may not be
able to yield desirable denoising results. To illustrate this,

Rigrsure and Sqtwolog are applied and compared to the
original signal as shown in Figure 2.

Figure 2 shows that Rigrsure successfully suppresses the
background noise at the frequency of 166Hz, while it fails to
remove the noise component at 330Hz; although Sqtwolog can
identify both noise components, it causes distortion between the
frequency range of 0–200Hz. A single global thresholding
criterion applied to complex signals, e.g., CSHF signals, may
inevitably yield signal distortion or eliminate valid signal
components. To enhance the denoising performance for CSHF
signals, a multithreshold wavelet packet transform (MWPT) is
therefore proposed in this study as a preliminary denoising
method. ,e principles of MWPT are described as follows:

(1) Apply Fourier transform to a CSHF signal S, and
identify the valid signal’s dominant frequency dis-
tribution and the noise’s frequency distribution.

(2) Determine the optimal wavelet base function and
decomposition scale, and implement wavelet packet
decomposition with a series of wavelet coefficients
obtained.

(3) Apply different thresholding criteria to the wavelet
coefficients of different frequency bands: employ the
conservative criterion Rigrsure for the valid signal’s
dominant frequency band to ensure that useful in-
formation is retained, e.g., 30–200Hz for CSHF
signals; the frequency range where noise component
is overlapped with partial valid signal component is
dealt with using Heursure, e.g., 0–30Hz for CSHF
signals; apply Sqtwolog to the noise frequency range,
e.g., greater than 200Hz for CSHF signals.

(4) ,e denoised wavelet components are then input
into the IHHT for twice denoising.

3.2. Improved Hilbert-Huang Transform. Although MWPT
allows adaptive thresholding criterion for different frequency
bands, it is still incapable of appropriately dealing with those
signals whose noise and valid components are partially over-
lapped without explicit boundaries in the frequency domain.
For such signals, using MWPT solely may yield undesirable
signal-to-noise ratio or even signal distortion. ,erefore, it is
recommended to use an improved Hilbert-Huang transform
(IHHT) for a twice denoising based on the preliminary
denoising results. Hilbert-Huang transform (HHT) has been
widely used in analyzing nonlinear and nonstationary signals
for its strong adaptability and does not require a priori function
basis in the time and frequency domain.

,e HHT uses the empirical mode decomposition
(EMD) method to adaptively decompose a signal into finite
so-called intrinsic mode function (IMF) components that
can form a complete and nearly orthogonal basis for the
original signal. ,e obtained IMF components are then used
for computing their instantaneous frequency by means of
Hilbert transform. ,e EMD process can be represented as

x(t) � 􏽘
n

i�1
ci(t) + rn, (4)
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where x(t) is the input signal, ci(t) is the ith IMF com-
ponent, and rn is the final residue.

In the conventional HHTmethod, the stoppage criterion
of the sifting process (extracting IMF) is based on a single
prescribed threshold of energy ratio or a sum of the dif-
ference of IMFs. ,is type of criterion that selects the first
few IMF components in sequence and simply removes the
remaining IMFs and the residue maymistakenly “dump” the
valid components and retain those redundant IMF com-
ponents arising from external noises and interference sig-
nals. To effectively identify false and redundant IMF
components, an improved Hilbert-Huang transform
(IHHT) method is therefore introduced by combining the
waveform correlation coefficient Corr and the variance
contribution rate VCR as the IMF selection criterion.

,e waveform correlation coefficient Corr is used as a
measure of the correlation between the input signal
(denoised wavelet packet coefficient) and its decomposed
IMF components, and it can be expressed as

Corr(i, j) �
􏽐

N
k�1 xi(k)c(i,j)(k)􏽨 􏽩

������������������������

􏽐
N
k�1 xi(k)􏼂 􏼃

2
􏽐

N
k�1 c(i,j)(k)􏽨 􏽩

2
􏽱 , (5)

where xi(k) is the kth sampling point of the ith input wavelet
coefficient, c(i,j)(k) is kth sampling point of the jth IMF
component obtained from the ith input wavelet packet
coefficient, and N is the length of the input signal.

,e variance contribution rate VCR reflects the con-
tribution of an IMF component to the input signal, and it
can be expressed as

VCR(i, j) �
(1/N) 􏽐

N
k�1 c(i,j)(k)􏽨 􏽩

2
􏼒 􏼓 − (1/N) 􏽐

N
k�1 c(i,j)(k)􏽨 􏽩

2

􏽐
M
j�1 (1/N) 􏽐

N
k�1 c(i,j)(k)􏽨 􏽩

2
􏼒 􏼓 − (1/N) 􏽐

N
k�1 c(i,j)(k)􏽨 􏽩

2
􏼚 􏼛

, (6)

where M is the total number of IMF components obtained
from the input signal.

,e thresholding criterion can be defined as follows: an
IMF component is considered as valid when the average of its
correlation coefficient and variance contribution rate is greater
than a prescribed threshold value. It should be noted that the
determination of an appropriate threshold value should be
specific to different signal types, i.e., their respective distri-
bution pattern of the correlation coefficient and variance
contribution rate for IMF components. For example, for some
signals, the Corr and VCR of the first IMF are significantly
higher than those of the remaining IMFs, and therefore, a
relatively high threshold value should be chosen; if the Corr
and VCR concentrate in the first several IMFs, which are
moderately higher than those of the remaining IMFs, a
moderate threshold value is more appropriate to identify valid
IMFs. For the synthetic signals in this study, based on the
analysis of the IMFs for all the input wavelet components, 0.4 is
selected as the threshold value, whereas 0.95 is selected for the
real CSHF signals [6].
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Figure 2: Denoising results in the time-frequency domain: (a) original signal, (b) Rigrsure and (c) Sqtwolog
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Corr(i, j) + VCR(i, j)

2
≥ λ0. (7)

3.3.ProcedureofMWPT-IHHTDenoisingMethod. A specific
program is developed using MATLAB codes to implement
the MWPT-IHHTmethod, and its procedure is summarized
in a flow chart (Figure 3).

,e procedure of the MWPT-IHHT method mainly
involves the following steps: (1) wavelet packet decompo-
sition of the input signals; (2) application of the multi-
threshold criterion to the obtained wavelet coefficients based
on the frequency features of the input signal; (3) input of the
preliminary denoised wavelet coefficients into the IHHT
framework; (4) empirical mode decomposition (EMD) of
the input wavelet coefficients and obtaining a series of IMF
components; (5) identifying valid IMF components using
Corr and VCR; (6) repeating steps (3)–(5) for all the ob-
tained wavelet coefficients; (7) signal reconstruction using all
the valid IMF components.

4. Denoising Performance Evaluation of
MWPT-IHHT Using Synthetic Signals

In order to demonstrate the detailed procedure of the
proposed MWPT-IHHT methodو as well as its denoising
performance, synthetic signals that are generated based on
the Ricker wavelet and the white Gaussian noise are pro-
cessed by means of the MWPT-IHHTmethod and then by
three commonly used denoising methods for comparison,
namely, Hilbert-Huang transform (HHT), wavelet trans-
form (WT), and wavelet packet transform (WPT).

4.1. Generation of Synthetic Signals. ,e Ricker wavelet that
is often used in seismic analysis is introduced here to
generate synthetic signals in conjunction with white
Gaussian noise as an approximate representation of real
CSHF signals. ,e Ricker wavelet is defined in the time
domain as

f(t) � 1 − 2π2f2
pt

2
􏼐 􏼑exp − π2

f
2
pt

2
􏼐 􏼑, (8)

where f(t) is the amplitude, t is the time, and fp is the peak
frequency. Here, we choose fp � 35Hzfor the Ricker
wavelets to generate synthetic signals together with the white
Gaussian noise, as shown in Figure 4. It is shown that the
basic Ricker wavelet has a symmetric trough-crest-trough
shape in the time domain with a frequency range of 0–75Hz.
,e synthetic signals are then continuously monitored and
collected with a sampling frequency of 1000Hz for subse-
quent denoising processing.

4.2. Denoising Procedure of the MWPT-IHHT. To demon-
strate how the proposed MWPT-IHHT can be applied in
practice, the collected synthetic signals are used for
denoising as an example first, and the real CSHF signals
captured in field are then examined. ,e microseismic
monitoring system employed in this study has a sampling

frequency of 1000Hz with a geophone frequency range of
0–500Hz. Considering that the valid CSHF signals are
mainly distributed in the frequency range of 30–200Hz, the
original signals can therefore be decomposed into 5 levels in
this case through wavelet packet decomposition technique,
and 32 narrow frequency bands can be obtained accordingly
denoted by Si (i� 0,1,2, . . ., 31) with each breadth of
15.625Hz.

To evaluate the noise reduction performance of the
MWPT, the first eight frequency bands S0–S7 (0–125Hz) are
selected for denoising, and their frequency spectra before
and after denoising are analyzed and illustrated in Figure 5.
Blue and red lines represent the original and the denoised
frequency bands, respectively. Since the dominant frequency
of the Ricker wavelet signals is 35Hz, the first four frequency
bands S0–S4 (0–78.125Hz) can be considered as the possible
frequency range of the valid signals and should be denoised
using conservative Rigrsure criterion, while the remaining
frequency bands S5–S7 (78.125–125Hz) mainly comprise
noises using Sqtwolog criterion. Figures 5(a)–5(f) show that
the extremely small amount of noise in the S0–S4 is effec-
tively eliminated on a fine scale after the application of the
thresholding criterion of Rigrsure, and relatively smooth
frequency spectrum curves are obtained accordingly.
Figures 5(g)–5(i) show that all the frequency components in
the S5–S7 are practically removed by means of Sqtwolog
criterion, indicating that the frequency bands for the noise
components are successfully filtered. Hence, the use of
multiple thresholding criteria for different decomposed
frequency bands can considerably enhance complex signals,
whereas a global thresholding criterion may not be able to
simultaneously suppress noise components in all the fre-
quency bands. It should also be noted that, in Figures 5(c)
and 5(d), the presence of local frequency spectrum peaks at
the frequency of around 80Hz does not coincide with the
nature of the Ricker wavelet that should be of a slightly
skewed bell shape in the frequency domain. ,is is probably
caused by the nonadaptive splitting of the frequency space
during the wavelet packet decomposition, and therefore a
twice denoising using the IHHT is critically important.

After applying the MWPT to the input synthetic signal,
the obtained frequency bands continue to be processed for a
twice denoising using the IHHT. Here, we use the second
frequency band S2 (31.25–46.875Hz) as an example to
demonstrate how the IHHT can be applied to further
suppress noise in the input frequency bands that have al-
ready been preliminarily denoised.,e S2 is first sequentially
decomposed into 6 IMF components and a residue com-
ponent RES by means of EMD, as illustrated in Figures 6(a)–
6(g). For IMF1-IMF4 in Figures 6(a)–6(d), the Ricker
wavelets that are approximately represented by a symmetric
trough-crest-trough shape in the time domain can be dis-
tinctly identified, and their frequencies mainly concentrate
in the range of 0–50Hz, which is consistent with that of the
designed Ricker wavelet. However, the Ricker wavelets can
hardly be identified for the remaining IMF components with
their dominant frequency being approaching zero in the
frequency spectrum. ,us, IMF1-IMF4 can be intuitively
considered as valid.
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Figure 4: Synthetic signals: (a) Ricker wavelet, (b) white Gaussian noise, and (c) synthetic signal.
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Figure 5: Illustration of MWPT denoising performance for S1–S7 frequency bands.
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Figure 6: IMF components of the S2 frequency band.
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To eliminate the redundant IMF components in a
quantitative manner, the waveform correlation coefficient
Corr, the variance contribution rate VCR, and their average
are calculated using eqs. (5)–(7), respectively. Figure 7 shows
that the first two IMFs have substantially higher Corr and
VCR than those of other IMFs with their respective average
greater than 0.4 and are thus considered as valid and selected
for subsequent signal reconstruction.

4.3. Denoising Performance Evaluation of MWPT-IHHT.
To evaluate the denoising performance, the proposed
MWPT-IHHT method is compared with the three com-
monly used denoising methods—namely, HHT, WT, and
WPT—in the 3- dimensional time-frequency domain.

Figure 8 shows the denoising results of a synthetic signal in
the time-frequency domain using the three commonly used
denoising methods and the proposed MWPT-IHHT method.
,eoriginal signal in Figure 8(a) has a rather low signal-to-noise
ratio in the sense that a large amount of noise spreads over the
frequency band of approximately 200–500Hz. Intuitively, the
HHT has the poorest performance in suppressing the noise
components, whereas both the WT and WPT yield better
denoising results, with fewer noise components being observed
overall. However, for theWT, a frequency concentration out of
the dominant frequency range is observed in the high-frequency
band (300–500Hz) that is inconsistent with the original signal.
Additionally, the poor resolution in the dominant frequency
range has artificially led to an increase in the area of the valid
signals in the time-frequency domain, which may cause an
undesirable identification of nearby noise components. Due to
the lack of adaptivity of the WPT, the noise components in the
overlapping frequency range with the valid signal cannot be
effectively eliminated. ,e proposed MWPT-IHHT method,
from the display in the time-frequency domain, appears to have
the capability of overcoming these shortcomings in terms of
both retaining the valid signal in a fine manner and effectively
suppressing noise components.

To further demonstrate MWPT-IHHT’s outperformance
over the three methods in signal denoising, the signal-to-noise
ratio SNR, the root-mean-square error RMSE, and the energy
ratio ER are employed for quantitative comparison and eval-
uation. RMSE is a measure of the similarity between the
denoised signal and the original signal, and ER is a measure of
the contribution in the denoised signal from the original signal.
It should be noted that higher SNR, ER, and lower RMSE are
interpreted as more desirable denoising performance.,e three
indices of interest are given by

SNR � 10lg
􏽐

N
n�1

􏽢S
2
n

􏽐
N
n�1 Sn − 􏽢Sn􏼐 􏼑

2
􏼔 􏼕

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
, (9)

RMSE �

��������������

􏽐
N
n�1 Sn − 􏽢Sn􏼐 􏼑

2
􏼔 􏼕

􏽲

N
,

(10)

ER �
􏽐

N
n�1

􏽢Sn􏼐 􏼑
2

􏽐
N
n�1 Sn( 􏼁

2,
(11)

where N is the number of sampling points; Sn and 􏽢Sn rep-
resent the signal before and after denoising, respectively.

Table 1 shows the three indices for each denoising
method of interest. It is seen that both the SNR and ER for
HHT are significantly lower than those for other methods,
indicating a relatively poor denoising result that is consistent
with the intuitive interpretation from the 3-dimensional
display in the time-frequency domain. ,e WT exhibits its
advantages over the WPT in terms of the SNR, whereas the
WPT has a moderately better performance in terms of both
RMSE and ER. However, neither of them yields desirable
results for all the three indices. It can be readily concluded
that the proposed MWPT-IHHT has the most desirable
denoising performance that yields the highest SNR and
lowest RMSE with a relatively higher ER. It should be noted
that the SNR, an essential index for evaluating denoising
performance, has been significantly enhanced by approxi-
mately 3 times using theMWPT-IHHTmethod compared to
the HHT method.

5. Engineering Application of MWPT-IHHT for
CSHF Signals

,e purpose of mine microseismic signal (MMS) denoising
is to extract the effective signal from background interfer-
ence and can be further used in wave classification and
identification, time pickup, location calculation, mining
feature detailing, etc. To demonstrate the applicability of the
proposed MWPT-IHHT method for CSHF signals in
practice, the microseismic signals captured in the CSHF test
at Huafeng CoalMine in China are used for verification.,is
CSHF test was conducted in a longwall panel at a depth of
around 1000m with the purpose of regional rockburst
prevention.

5.1. Denoising Result of CSHF Signals. For brevity, two
typical CSHF signals with high and low SNR are selected for
demonstrating the applicability and effectiveness of the
proposed MWPT-IHHTdenoising method, as illustrated in
Figure 9. ,e left and right diagrams represent the original
and denoised signal in the time and frequency domain,
respectively. For signal #1, the noise components are ef-
fectively suppressed in the sense that the valid signals be-
come far more distinguishable in the time domain, and the
fake frequency components out of the dominant frequency
range are greatly reduced. For signal #2, the weak valid
component that is smeared in the relatively strong back-
ground noises can still be reasonably identified and
extracted, in which two prominent frequency peaks repre-
senting noises are appropriately eliminated. ,is demon-
strates the applicability of the proposed MWPT-IHHT
method for denoising real CSHF signals and thus can lay the
foundation for further high-precision source locating.
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Figure 8: Time-frequency comparison of the MWPT-IHHTand three commonly used denoising methods. (a) Original synthetic signal. (b)
HHT. (c) WT. (d) WPT. (e) MWPT-IHHT.

Table 1: Quantitative comparison of four denoising methods.

Method SNR RMSE (%) ER (%)
HHT 12.72 1.88 79.42
WT 30.00 3.45 84.47
WPT 24.71 2.26 93.54
MWPT-IHHT 31.53 0.40 92.20
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5.2. MS Mechanisms and Moment Tensors. ,e MS sources
locations visually correlated with crack initiation and ex-
tension inside the coal and reflected the variation of coal and
rock degradation and failure. MS parameter analysis can be
used to evaluate crack initiation and extension based on the
MS monitoring waveforms and parameters such as energy
(magnitude), count rate, event occurrence, and spatial
distribution. But event locations and magnitudes give lim-
ited insight into the processes that control the growth and
dynamics of hydraulic fractures. ,e reservoir behavior can
be enhanced by considering the seismic moment tensor
representations of these events, which serve as a direct
snapshot of the instantaneous deformation of the sur-
rounding rock by the seismicity. ,erefore, by using mo-
ment tensor (MT) analysis, the cracking and damage
mechanisms in the coal can be quantitatively estimated
during the CSHF process.

After denoising the signals, source locations were ini-
tially estimated using first compressional arrival times with a
constant, homogeneous, and isotropic velocity model. And
an optimized location algorithm was used to improve po-
sitioning accuracy (more details of this test can be found in
[6]). A typical CSHF signal after preprocessing and

associated parameters for MTs calculation are shown in
Figure 10.

Based on the data preprocess, moment tensor compo-
nents (MTs) were calculated [27, 28] and provided quan-
titative information on MS location of cracks, crack type,
crack orientation, and the direction of crack motion. A
source-type diagram (Hudson plot) was introduced as a
helpful way to display the results of MTs. Hudson et al. [29]
introduced a diamond τ-k plot of source-type, which is the
diamond CLVD-ISO plot described in the previous section
but with the opposite direction of the CLVD axis and a
skewed diamond u − v plot. ,e latter plot is introduced in
order to conserve the uniform probability of moment tensor
eigenvalues. ,e data generated by the CSHF test at Huafeng
CoalMine in China is being studied.,eMSmonitoring was
undertaken for the whole process. During that time period,
hundreds of MS events were records. In Figure 11, the result
solutions were decomposed following Hudson’s method,
and results could be observed on Hudson’s plot.

As shown above, the occurrence mechanisms of frac-
turing-induced, natural, and mining-induced microseismic
events are different. ,e failure mechanisms in different
stage have high disparities. In stage of crack extension stage
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Figure 9: MWPT-IHHT method applied to real CSHF signals. (a) Signal #1 with high SNR. (b) Signal #2 with low SNR.
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Figure 11: Scatter and density source plots of theMS events with Hudson diagrams (T-k plot). (a, c) Scatter plot of MS events. (b, d) Density
source plot of MTs from MS data (colored according to relative seismic event density). (a) Scatter plot (crack extension stage). (b) Density
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(Figures 11(a) and 11(b)), diamond-shaped plots show MS
events around the central axis. ,e majority of the selected
events show positive Explosive and Implosive components,
which are correlated with each other.,is pattern indicated
that the failure mechanisms were primarily explosive and
implosive, coupled with pure shearing. In the stage of crack
open/close (Figures 11(c) and 11(d)), MS events can be
found on the upper-left and lower-right of the plot. Such
pattern in the source-type plot agrees with the theoretical
modeling of the shear-tensile source mechanisms and
indicates the influence of massive fluid injection in this
area. In hydraulic fracturing, microseismic events are
mainly generated once the effective tensile stress induced
by high-pressure water reaches the coal’s tensile strength.

It can be seen from the above analysis that the source-type
plot can show a major failure mechanism of CSHF. ,is
procedure allowed us to determine the proportion of shear
and tensile crack contributions on the MS sources and to
classify cracks by types of dominant motion. ,us, it can be
used to provide many important information and support
applications aimed at providing operators with tools to op-
timize production. In the next step, we will use this method
focusing on description and evaluation quantitatively of
CSHF.

6. Conclusions

,e conventional denoising methods—HHT, WT, and
WPT—are not well-suited for CSHF signals due to their
transient, nonstationary, low energy, and low SNR char-
acteristics. ,erefore, combining the multithreshold WPT
method and the improved HHTmethod, the MWPT-IHHT
method for twice denoising is proposed, with each being
improved compared to their conventional counterpart.
Several conclusions can be drawn from this study as follows:

(1) In the MWPTmethod, multiple thresholding criteria
applied to the wavelet coefficients of different fre-
quency bands can avoid the deficiency of a single
global thresholding criterion, which, in some cases,
may inevitably eliminate valid signal components.

(2) In the IHHT method, the introduction of the
waveform correlation coefficient and the variance
contribution rate combined as the IMF selection
criterion can effectively overcome the deficiency of
the conventional HHTmethod that may mistakenly
“dump” valid IMF components and retain redun-
dant ones.

(3) ,e combination of the MWPT and IHHT signifi-
cantly enhances the time-frequency localization and
allows CSHF signals to be processed in a fine
manner. ,e MWPT-IHHT method can thus over-
come each submethod’s deficiency—lack of adap-
tivity and insufficient resolution in the frequency
domain.

(4) ,e quantitative comparison using synthetic signals
suggests the superiority of theMWPT-IHHTmethod
over the commonly used denoising methods (HHT,

WT, and WPT) in suppressing noises in terms of
SNR, RMSE, and ER.

(5) ,e desirable denoising results of two typical real
CSHF signals with high and low SNR demonstrate
the applicability and effectiveness of the MWPT-
IHHTmethod for processing CSHF signals. And the
source-type plot shows a major shear-tensile
mechanism using denoising signals.

Data Availability

,e data used to support the findings of the study are
available from the corresponding author upon request.

Conflicts of Interest

,e authors declare that they have no conflicts of interest.

Acknowledgments

,is work was supported by and financed fromNational Key
Research and Development Program of China (Nos.
2017YFC0804603 and 2018YFC0808402), the National
Natural Science Foundation of China (No. 51604115), and
the Foundation of Hebei Higher Education Institutions
(Z2020124).

References
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