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.e mechanical model of a two-degree-of-freedom vibration system with multiple rigid stops was established, and the effects of
the multiple rigid stops to dynamic characteristics of two mass blocks of the system were studied. .e judgment conditions and
differential equations of motion of the system masses impacting rigid stops were analyzed. Based on the multiparameter and
multiobjective collaborative simulation analysis, the correlation between the dynamic characteristics of the vibration system and
the model parameters is studied. .e basic periodic and subharmonic impact motions are analyzed with emphasis on the
influences of dynamical parameters on the mode diversity and the distribution characteristics, and the law of emergence and
competition of various periodic impact motions on the parametric plane is revealed. .e singular points, the hysteresis transition
domains, and the accompanying codimension-two bifurcations, caused by the irreversibility of the transition between adjacent
basic periodic impact motions in the low-frequency domain, are analyzed. .e reasonable parameter matching range, associated
with dynamic characteristic optimization of the system, is determined.

1. Introduction

.e typical nonlinear factors of mechanical systems in en-
gineering practice, such as the geometric relationships, stop
conditions, topology, and mode coupling, are considered in
this work. Examining nonlinear vibrations helps to describe
the dynamic characteristics of a mechanical system more
accurately. For mechanical systems with multiple non-
smooth mechanical factors, the interactions and influence of
nonsmooth switching points lead to complex dynamic be-
haviours of the system. .is increases the difficulty of
performing dynamics research, and the description of the
motion of the system becomes difficult with the increase in
the number of nonsmooth mechanical factors. For the
clearance and stop characteristics in the dynamic study of
piecewise smooth mechanical systems, more attention has
been paid to unilateral or symmetric constraints, but less
attention is paid to the effects of multiple rigid stops con-
tained in multiple mass. However, mechanical systems with
multiple rigid stops are common in engineering practice,

and their dynamic behaviours become extremely complex
due to the influence of multiple rigid stops. Shaw [1] laid a
foundation based on impact Poincaré mapping for the study
of the dynamics of mechanical systems with clearances and
constraints through qualitative analysis and numerical
simulation. Whiston [2] used singularity to study the
fragmentation mechanism of globally stable manifolds
caused by impact mapping discontinuities. Several studies
[3–6] analyzed the dynamic stability of vibration systems
with clearances and constraints. Li and Wen [7] studied the
bifurcation characteristics and control of a mass–spring–belt
friction self-excited vibration system. Scholars around the
world have conducted considerable research on the codi-
mension-two bifurcations of vibrating systems, including
double codimension-2 Hopf bifurcations [8], Hopf-flip bi-
furcations [9], codimension-two grazing bifurcations
[10, 11], flip-grazing bifurcations [12], and fold-grazing
bifurcations [12], and they have begun to study codi-
mension-three bifurcations with residual dimensions
[13–15]. Nordmark [16] found that a special bifurcation
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occurs during a stable periodic vibration with grazing in-
cidence in an impact oscillator under single parameter
control. Hu [17] detected numerous grazing phenomena and
the accompanying bifurcation characteristics caused by a
forced continuous, piecewise-linear oscillator. Chilling-
worth [18] studied the nondegraded grazing bifurcation
corresponding to the nondegraded chatter vibrations and
the microdegraded grazing bifurcation corresponding to
degraded chatter vibrations for the discontinuity during
low-speed rubbing of a single-degree-of-freedom impact
oscillator. Humphries and Piiroinen [19] described the re-
lationship between saddle node and grazing bifurcations
from a discontinuous geometric perspective. Budd and Dux
[20] determined the region where the chattering vibration of
a single-degree-of-freedom impact oscillator exists. Toule-
monde and Gontier [21] analyzed the sticking motion re-
sponses and characteristics of impact oscillators under
harmonic excitations based on the predictor–corrector
method. Wagg [22] discussed various nonsmooth events,
such as sliding bifurcations, which may occur in the low-
frequency domain during the chatter and sticking of two-
degree-of-freedom impact oscillators under low forcing
frequencies. Pavlovskaia and Wiercigroch [23] conducted
experimental and semianalytical studies on the dynamic
characteristics of linear oscillators supported by secondary
elasticity under scratching conditions. Smooth and non-
smooth bifurcations observed in the experiment were
explained by simulations based on mapping solutions of
local smooth subspaces. .e characteristics and transition
process of chattering-impact and complete chattering-im-
pact vibrations were further studied by numerical simula-
tions [24–26]. Luo et al. considered the low-frequency
vibration characteristics of a periodic forced vibration sys-
tem with unilateral [27] and symmetric rigid stops [28] and
found that the irreversibility of the mutual transfer of ad-
jacent fundamental periodic impact vibrations caused the
transition domain node to become a double grazing codi-
mension-two bifurcation. Wang [29] experimented with a
vibration system with symmetric elastic constraints and
verified the fact that the test results of the two electronic
circuits were basically the same and were consistent with the
numerical simulation results of the system. Along with the
development of engineering applications and the in-depth
study of nonsmooth dynamics, impact vibration dynamics
have been widely used in mechanical systems. Relevant
research results have revealed the basic dynamic charac-
teristics of various mechanical vibration systems and
broadened the knowledge of the nonsmooth characteristics
of such systems, such as the three-axle locomotive bogie
system [30, 31], groundmoling [32], the fly-wheel model of a
bouncing ball [33], ultrasonic percussive drilling [34], vibro-
impact capsule systems [35], pressure relief valves [36],
Jeffcott rotors with bearing clearance [37], impact dampers
[38], and gear drives [39].

A two-degree-of-freedom vibratory system with multi-
ple rigid stops is considered in this paper, which is similar to
the mechanical model with mutual impact stops between the
bolster side frame system and the vehicle body, as well as the
axle of the heavy-duty truck. .e characteristics and

occurrence mechanism of the basic periodic motion groups
and chattering-impact vibration in the low-frequency do-
main are analyzed. Based on the multiparameter and
multiobjective cosimulation analysis, the incidence relation
between dynamic characteristics of the vibration system and
the model parameters is studied. .e hysteresis transition
domains, singular points, and codimension-two bifurcations
induced by the irreversibility of the transition between
adjacent basic periodic motions in each group are discussed.
.e reasonable parameter matching range for dynamic
characteristic optimization of the system is determined.

2. The Mechanical Model

.emechanical model of amechanical vibration systemwith
multiple rigid stops is presented in Figure 1. .e two vi-
brating masses in the system are denoted by Mi (i� 1,2), and
the corresponding displacement is recorded as Xi. .e two
masses (Mi) are connected to the stops by a linear spring
with a stiffness of Ki and a linear damper with a damping
coefficient of Ci. .e harmonic exciting forces
(Pi sin(ΩT + τ)) of amplitude Pi, frequency Ω, and phase
angle τ act on the corresponding mass (Mi). When the
harmonic excitation force is small, the system shows a no-
impact forced vibration. .e mass will impact on the cor-
responding rigid stops when the displacement of the mass
moving towards the stops increases to the clearance
threshold with the increase of the harmonic excitation force.
.e impact recovery coefficient of the system is R.

.e dimensionless parameters, variables, and time are
defined as follows:

μm �
M2

M2 + M1
,

μk �
K2

K2 + K1
,

μc �
C2

C2 + C1
,

ζ �
C1

2
������
K1M1

􏽰 ,

f20 �
P2

P2 + P1
,

ω � Ω

���
M1

K1

􏽳

,

δi �
AiK1

P1 + P2
,

xi �
XiK1

P1 + P2
, (i � 1, 2),

t � T

���
K1

M1

􏽳

.

(1)
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.e dimensionless differential equation of motion is as
follows:

€x1 + 2ζ _x1 + x1 � 1 − f20( 􏼁sin(ωt + τ),

μm

1 − μm

€x2 + 2ζ
μc

1 − μc

_x2 +
μk

1 − μk

x2 � f20 sin(ωt + τ),

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

x1 > − δ1,

x1 − x2 < δ12,

x2 > − δ2.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(2)

According to the law of conservation of momentum and
the coefficient of restitution of impact, the following can be
deduced:

(1) When the displacement of the mass M1 is equal to
the clearance threshold − δ1 (i.e., x1 � − δ1), the mass
M1 impacts the bottom stop A1, and the velocities of
themass M1 immediately before and after the impact
are written by the impact law

_x1+ � − R · _x1− , (3)

where the subscript signs “-” and “+” denote the
states just before and after the impact, respectively.
If impact velocity _x1 � 0 and the external force acting
on mass M1 is (F1 < 0), then

F1 � 1 − f20( 􏼁sin(ωt + τ) − x1 − 2ζ _x1 < 0, (4)

.us, mass M1 completes the chattering-impact
vibration at stop A1. When external force F1 in-
creases to zero, then mass M1 is separated from
bottom stop A1.

(2) When the displacement of mass M2 is equal to the
clearance threshold − δ2 (i.e.x2 � − δ2), then the mass
M2 impacts the bottom stop A2, and the impact
equation of the mass M2 is given by

_x2+ � − R · _x2− , (5)

If impact velocity _x2 � 0, and the external force
acting on mass M2 is F2 < 0, then

F2 �
1 − μm

μm

f20 sin(ωt + τ) −
μk

1 − μk

x2 − 2ζ
μc

1 − μc

_x2􏼢 􏼣< 0,

(6)

.us, mass M2 completes the chattering-impact
vibration at stop A2. When external force F2 in-
creases to zero, mass M2 is separated from stop A2.

(3) When the relative displacement of the masses M1 and
M2 is equal to the clearance threshold δ12
(i.e.x1 − x2 � δ12), then the velocities of these two
masses are changed according to the conservation law
of momentum, and the impact equation is written as

A12

A1 A2

C1

X2X1

M1 M2K1

C2

K2

P 1
sin

(Ω
T 

+ 
τ)

P 2
sin

(Ω
T 

+ 
τ)

Figure 1: Mechanical model.
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1 − μm

μm

_x1+ + _x2+ �
1 − μm

μm

_x1− + _x2− ,

_x1+ − _x2+ � − R · _x1− − _x2−( 􏼁.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(7)

If relative impact velocity _x1 − _x2 � 0 and the combined
external force acting on the two masses is F1 − F2 > 0, then

F1 − F2 � 1 − f20( 􏼁sin(ωt + τ) − x1 − 2ζ _x1 −
1 − μm

μm

· f20 sin(ωt + τ) −
μk

1 − μk

x2 − 2ζ
μc

1 − μc

_x2􏼢 􏼣> 0.

(8)

.e two masses exhibit a complete chattering-impact
vibration at rigid stopA12, and when the combined external
force (F1 − F2) decreases to zero, the two masses separate.

In formulas (3), (5), and (7), _xi− and _xi+ are the re-
spective instantaneous velocities before and after the impact
of the mass Mi.

.e value ranges of some parameters in dimensionless
parameter (1) are μm ∈ (0, 1), μk ∈ (0, 1), μc ∈ (0, 1), and
f20 ∈ [0, 1]. In this way, the correlation and matching law
between the dynamic characteristics and model parameters
of the system are discussed globally. To systematically
analyse the mode types of periodic impact vibration and the
bifurcation characteristics, the periodic impact motions of
mass Mi are represented as n-p-q, where n is the ratio of the
vibration period (Tn � 2nπ/ω) to the period of the exci-
tation force (T0 � (2π/ω)) (n � 1, 2, 3, . . .), and p and q
represent the number of impacts of mass M1 or M2 and the
rigid stops, respectively (p, q � 0, 1, 2, 3, . . .). To calculate
the values of n, p, and q, Poincaré section σk

I (k � 1, 12, 2) is
selected as the system state variable at the moment of
impact at rigid stopsA1, A12, and A2 in the system, and
Poincaré section σII is selected as the system state variable
at the minimum displacement moment of mass M1 in the
period of excitation force. Four kinds of Poincaré section
are defined as follows:

σII � x1, _x1, x2, _x2, t( 􏼁R
4

× T|x1 � x1min, mod(t � 2π/ω)􏽮 􏽯,

σ1I � x1, _x1, x2, _x2, t( 􏼁􏼈 ∈ R
4

× T|x1 � − δ1, _x1 < 0􏼉,

σ12I � x1, _x1, x2, _x2, t( 􏼁􏼈 ∈ R
4

× T|x1 − x2 � δ12, _x1 − _x2 > 0􏼉,

σ2I � x1, _x1, x2, _x2, t( 􏼁􏼈 ∈ R
4

× T|x2 � − δ2, _x2 < 0􏼉.

(9)

For periodic impact vibration, the number of fixed
points on Poincaré section σII is the number of exciting force
periods n, the numbers of fixed points on Poincaré sections
σ12I and σ1I , respectively, represent the impact times (p and q)
of mass M1 at rigid stops A12 and A1, and the fixed points on
Poincaré sections σ2I and σ12I represent the impact times (p
and q) of mass M2 at rigid stops A2 and A12. .erefore,
according to the number of branches in the bifurcation map
corresponding to Poincaré sections σII and σk

I , the mode type
(n-p-q) of the periodic impact vibration of mass M1 or M2

can be determined. .e impact Poincaré mapping of the
system is expressed as

X
(i+1)

� f X
(i)

, υ􏼐 􏼑, (10)

whereX(i) � (τ(i), _x
(i)
1+ , x

(i)
2 , _x

(i)
2+)TX(i+1) � (τ(i+1), _x

(i+1)
1+ ,

x
(i+1)
2 , _x

(i+1)
2+ )T, X ∈ R4, and υ are the parameters; i.e., υ ∈ R8.

3. Periodic Motions and Bifurcations of the
Vibration System with Multiple Clearances

A two-degree-of-freedom forced vibration system with
multiple rigid stops was considered, and the correlations
between the dynamic characteristics and model parameters
of the system were revealed. .e effects of key parameters,
such as the clearance threshold (δ) and excitation frequency
(ω), on the dynamic characteristics of the system are dis-
cussed in this section. Dimensionless parameters μm � 0.5,
μc � 0.5, μk � 0.5, ζ � 0.1, R� 0.8, and f20 � 0 are selected as
the reference parameters. .rough the multiparameter and
multiobjective cosimulation analysis, the mode types, pa-
rameter domains, and bifurcation characteristics of the
periodic impact motions of masses M1 and M2 in the (ω,
δ)-parameter plane are calculated, as shown in Figure 2. In
the (ω, δ)-parameter plane obtained in this study, different
types of periodic impact motions are distinguished by dif-
ferent colours and the symbols (n-p-q). Furthermore, 70% of
the black domain marked with “C” in the two-parameter
figure indicates chaos or long-period multi-impact motions.
.is finding can be attributed to the small domains of these
kinds of long-period multi-impact motions, which are
consistent with the dynamic characteristics of the system
and therefore are not accurately identified further. .e
1 − p − q(p≥ 6 or q≥ 6) symbol indicates chattering-impact
vibration, and the overbars above the symbols 1 − p − q,
1 − p − q, and 1 − p − q indicate that the mass exhibits
complete chattering-impact vibration at this rigid stop.
Figure 2 shows that, in the large clearance threshold (δ)
domain, mass M1 mainly undergoes 1-0-0 and 1-1-1 peri-
odic motions, while mass M2 is mainly characterised by 1-0-
0 and 1-0-1 periodic motions and tongue-shaped regions on
the boundary of their adjacent periodic motion transitions.
In the small clearance (δ) domain, the system exhibits
abundant basic periodic impact motions (such as 1-1-1, 1-2-1,
1-2-2, 1-3-2, 1-3-3, 1-4-3, 1-4-4, 1-4-5, 1-5-5,. . ., 1 − p − q),
chattering-impact vibration, complete chattering-impact
vibration, and subharmonic motions in the nonhysteresis
transition domains (tongue-shaped regions). In the low-
frequency (ω) domain with a small clearance (δ), a series of
grazing-contacts occur between each mass of the system and
its corresponding rigid stops with the decrease in ω or δ. .e
1 − p − q basic periodic impact motion undergoes a grazing
bifurcation transition to 1 − (p + 1) − q (or 1 − p − (q + 1))
periodic impact motion, resulting in an increase in the
number of impacts (p (or q)) of eachmass during this period.
Furthermore, the system exhibits chattering-impact char-
acteristics when the number of impacts p (or q) is large
enough. As this dynamic characteristic persists, if (4), (6), or
(8) is satisfied at this time, then the two masses of the system
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exhibit corresponding complete chattering-impact vibra-
tion. Under the reference parameters, when the clearance
threshold (δ) is large, periodic impact motions such as 1-1-
0,1-0-1, 2-0-2, 2-0-1, 2-1-1, 2-1-2, 2-2-2, 2-2-1, 3-1-1, 3-1-3,
4-2-4, 4-3-2, and 4-3-3 occur in the mass M1, while mass M2
is accompanied by periodic impact motions such as 2-0-0, 2-
0-1, 2-0-2, 3-0-1, 4-0-2, and 4-0-3. In the parameter domain
of low frequency (ω) and small clearance (δ), mass M1 not
only exhibits basic periodic motions such as 1-1-1, 1-2-2, 1-
3-3, 1-4-4, and 1-5-5 of symmetrical impact number, but
also results in basic periodic motions such as 1-2-1, 1-3-2, 1-
4-3, 1-5-3, and 1-5-4 of asymmetrical impact number. At the
same time, themass M2 exhibits basic periodic motions such
as 1-0-1, 1-0-2, 1-1-2, 1-0-3, 1-1-3, 1-0-4, 1-1-4, 1-0-5, and 1-
1-5. According to the calculation results, many periodic
impact motions (n-p-q) occur with the asymmetric impacts
in the periodic impact vibration modes of the system due to
the influence of multiple rigid stops. In the low-frequency
(ω) domain with a small clearance (δ), the system exhibits
not only the basic periodic motions of symmetric impact
times (1-p-p) but also a large number of competitive basic
periodic motion groups with asymmetric impact times (1-p-
q) (p≠ q).

Figure 3 illustrates the local details of Figure 2(a). In the
small clearance (δ) parameter domain, the 1 − p − p(p> 0)
periodic motion of mass M1 transitions to 1 − (p + 1) −

(p + 1) periodic motion via a real-grazing bifurcation or to
subharmonic motion or chaos via a bare-grazing bifurcation
with decreasing frequency ω. As frequency ω or clearance δ
increases, the 1 − (p + 1) − (p + 1) motion changes from a
saddle-node bifurcation to 1 − p − p motion, or the period-
doubling bifurcation causes 2 − 2(p + 1) − 2(p + 1) motion.
On the grazing bifurcation boundary G1− p− p, mass M1
undergoes grazing contact with rigid stops at both ends (A12
and A1), and the (p + 1) impact velocity is zero ( _x1 � 0). At

this time, the number of impacts of mass M1 increases by
one, and the vibration period is unchanged, nearly moving
into stable 1 − (p + 1) − (p + 1) motion. .e grazing bi-
furcation of this feature is defined as a real-grazing bifur-
cation. Naturally, another kind of bifurcation exists, i.e., the
bare-grazing bifurcation [40], which is characterised by the
unstable 1 − (p + 1) − (p + 1)motion induced by the bi-
furcation, and the system then moves into subharmonic
motion or chaos. As the frequency ω decreases continuously,
the system experiences a series of real-grazing bifurcations,
increasing the number of impacts p and decreasing the
impact velocity _xi. When the number of impacts (p) is large
enough, the system exhibits chattering-impact vibration and
undergoes a further transition from a sliding bifurcation to a
complete chattering-impact vibration [41, 42]. .eoretically,
the complete chattering-impact vibration is characterised by
infinite impact sequences and successive impact velocity
attenuation in a one period vibration, resulting in a sticking
phenomenon of mass M1 or M2 at the corresponding rigid
stops. It can be seen from Figure 3 that when the clearance
threshold is small and excitation frequency is extremely
small, the system presents basic periodic motion groups,
chattering-impact vibration, and complete chattering-im-
pact vibration. In Figure 3, the clearance threshold is set at
δ � 0.6, and, as the excitation frequency decreases, the time
history diagram of the evolution of mass M1 from basic
periodic motions (1 − p − q) to complete chattering-impact
vibration (1 − p − q) is shown in Figure 4. .e clearance
threshold and excitation frequency of the system are δ � 0.6
and ω � 0.33, respectively, and mass M1 exhibits a 1-4-4
periodic impact motion. Mass M1 undergoes an increase in
the number of impacts caused by the real-grazing bifurca-
tion and exhibits a 1-5-6 periodic impact motion with the
decrease in the excitation frequency to ω � 0.295. When the
excitation frequency is further reduced to ω � 0.275, mass

1-p-q
1-p

_
-q 3-2-2

1-p-q
_

δ

0.05 1.05 2.05
ω

3.05

2.05

1.05

3.05

0.05

(a)

0.05 1.05 2.05
ω

3.05

δ

2.05

1.05

3.05

0.05

(b)

Figure 2: Under reference parameter conditions, the system presents dynamic characteristics in the(ω, δ)-parameter plane (a) mass M1 (b)
mass M2.
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0.8
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0.6

δ

ω
0.1 0.21 0.32 0.43 0.54 0.65
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δ

ω
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0.8
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(d)

1-6-5
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δ

ω
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0.6

(e)

δ

1.1

1.05

1

0.95

0.9

ω
0.32 0.39 0.46 0.53 0.6

(f )

Figure 3: Local detailed description of Figure 2(a) mutual transition characteristics between adjacent basic periodic
vibrations1 − p − pand1 − (p + 1) − (p + 1).
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Figure 4: Continued.
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M1 exhibits a chattering-impact vibration. When the ex-
citation frequency is ω � 0.20, mass M1 transitions to a
complete chattering-impact vibration (1 − p − q) due to a
sliding bifurcation, and sticking phenomena occur at both
ends of the rigid stops.

Figure 3 clearly shows the mode types and distributions
of the motions in the hysteresis transition domains and
nonhysteresis transition domains of mass M1. .e trajectory
in Figure 3(a) begins at coordinates (0.1, 0.6), the initial
values of the vibration are defined as
X(0) � ( _x

(0)
1+ , x

(0)
2 , _x

(0)
2+ , τ(0))T� (0, 0, 0, 0)T and x

(0)
1 � 0.6,

and the parameter domains and boundaries of the periodic
vibration of the system are obtained by continuous iterations
continuously increasing the parameter coordinate values in
the (ω, δ)-parameter plane. .e trajectory in Figure 3(b)

begins at coordinates (0.65, 1.2), the initial values of vi-
bration are defined as X(0) � ( _x

(0)
1+ , x

(0)
2 , _x

(0)
2+ , τ(0))T

� (0, 0, 0, 0)T and x
(0)
1 � 1.2, and the parameter domains of

the system and the boundaries of the periodic vibration are
computed iteratively as the parameter values in the (ω,
δ)-parameter plane are continuously decreasing. Figure 3(c)
presents a transition domain diagram obtained by over-
laying the calculated results of Figures 3(a) and 3(b) with
different initial conditions. .e numerical simulation results
show that the two types of transition domains are formed by
the saddle-node and period-doubling bifurcation bound-
aries of the 1 − (p + 1) − (p + 1) motion, which intersect
and enclose the two types of grazing bifurcation boundaries
of the 1 − p − pmotion. .e hysteresis transition domain is
defined by the 1 − (p + 1) − (p + 1) vibrating saddle-node
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Figure 4: Time history diagram of complete chattering-impact vibration transition process of mass M1, δ12 � δ1 � 0.6. (a) ω� 0.33,1-4-4
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bifurcation boundary (SN1− (p+1)− (p+1)) and the vibrating
real-grazing bifurcation boundary (G1− p− p); see the 40% of
black domains marked as HR1, HR2, and HR3 in Figure 3(c).
.e parameter domain marked as HR3 represents a hys-
teresis transition domain formed by the combination of
saddle bifurcation boundary SN1-3-4 for 1-3-4 period motion
and real-grazing bifurcation boundary G1-3-3 for 1-3-3 pe-
riod motion. Due to the different initial conditions of the
system, two adjacent basic periodic motions (1-3-3 and 1-3-
4) coexist in this parameter domain. .e phase portrait of
the mass M1 shows that the 1-3-3 periodic motion in the
hysteresis transition domain HR3 is transferred to 1-3-4
periodic motion by real-grazing bifurcation, as shown in
Figure 5. In order to clearly observe the evolution of real-
grazing bifurcation, local details of mass M1 at the A1 rigid
stop are superimposed in Figure 5. When the clearance
threshold is δ = 0.7 and the excitation frequency is ω
= 0.3149, the mass M1 exhibits a 1-3-3 periodic motion.
When the frequency is ω = 0.3147, the 1-3-3 periodic
motion of mass M1 makes grazing contact with the A1 rigid
stop. As the frequency ω continues to decrease, it evolves
into a stable 1-3-4 period motion. Similar phenomena
occur in adjacent periodic motions within various basic
periodic impact groups. .e nonhysteresis transition do-
main is a tongue-shaped region enclosed by the bare-
grazing bifurcation boundary of Gb

1− p− p and the period-
doubling bifurcation boundary (PD1− (p+1)− (p+1)) in the (ω,
δ)-parameter plane, and the subharmonic motions in the
nonhysteresis transition domain change with the excitation
frequency ω and clearance threshold δ, exhibiting either a
period-doubling or grazing bifurcation.

.e results in Figure 3 show the mode types of the
subharmonic motions within the nonhysteresis transition
domain on the boundary of the 1-4-4 and 1-5-5 periodic
motions. Based on the calculation results in Figure 3, the
mode types and bifurcation characteristics of subharmonic
motions in the nonhysteresis transition domain surrounded
by periodic doubling bifurcation boundary PD1-5-5 of 1-5-5
motion and bare-grazing bifurcation boundary Gb

1− 4− 4 of 1-
4-4 motion are further observed. .erefore, Figure 6 shows
the local description bifurcation diagram of mass M1 with
excitation frequency ω� 0.272 and clearance threshold
δ ∈ [0.77, 0.82]. Figure 7 shows the local description bi-
furcation diagram of mass M1 with the clearance threshold
δ � 0.61 and excitation frequency ω ∈ [0.296, 0.326].
Figure 6(a) corresponds to Poincaré section σII, and Y-
axis(x1mp) represents the minimum displacement of mass
M1 during the period of the excitation force T � (2π/ω).
Figure 6(b) corresponds to Poincaré section σ12I , and Y-
axis( _x1 − _x2) represents the relative impact velocities of the
two masses. Figure 6(c) corresponds to Poincaré section σ1I ,
Y-axis( _x1) represents the impact velocities of mass M1 and
its bottom stop A1, and X-axis represents the clearance
threshold (δ ∈ [0.77, 0.82]). .e number of branches in
Figures 6(a), 6(b), and 6(c) can determine the values of n, p,
and q in the periodic or subharmonic vibration type (n-p-q)
of the system at the corresponding clearance threshold (δ).
.e coordinate meaning of the bifurcation diagram in
Figure 7 is the same as that in Figure 6. Figures 6(d) and

6(g) are local descriptive periodic bifurcation diagrams of
Figure 6(a); Figures 6(e), 6(h), 6(f ), and 6(i) are local
descriptive impact number bifurcation diagrams of
Figures 6(b) and 6(c), respectively. From Figure 6, it can
be seen that when the clearance threshold δ decreases, the
1-4-4 periodic motion migrates into 3-13-12, 2-9-8, and 4-
19-16 subharmonic motions and chaos via periodic
doubling-grazing bifurcation and then evolves into 2-10-8
and 1-5-4 motions via inverse periodic doubling bifur-
cation. When the clearance threshold δ decreases con-
tinuously, the 1-5-4 period motion evolves into the
paroxysmal chaos, which induces subharmonic periodic
motions such as 6-31-24⟶C⟶5-26-20⟶C⟶4-21-
16⟶C⟶3-16-12⟶C⟶2-11-8⟶C. Alternatively,
as the clearance threshold δ increases, the 1-5-5 periodic
motion undergoes periodic doubling or saddle bifurcation
and then evolves into 2-10-10, 2-10-9, and 4-20-18 sub-
harmonic periodic motions and chaos. .erefore, there
are periodic impact motions, and subharmonic motions
n − (np + 1) − np and 2n − 2(np + 1) − 2np exist in the
nonhysteresis transition domain with the change in the
excitation frequency ω or clearance threshold δ; i.e., the
period-doubling bifurcation sequence evolves into chaos
or the bare-grazing bifurcation transitions to chaos. When
the clearance threshold value is δ � 0.61 and with the
increase in the excitation frequency ω (Figure 7), the mass
M1 evolves from stable 1-5-5 periodic motion to 2-9-10
periodic motion through doubling-saddle codimension-
two bifurcations. With the increase in the excitation frequency
ω, the mass M1 transforms into 1-4-5 periodic motion via a
saddle-inverse doubling bifurcation. When the excitation
frequency increases to ω� 0.3166, the mass M1 again evolves
into 2-8-9 periodic motion through a doubling-saddle bifur-
cation. .e excitation frequency ω increases continuously, and
the mass M1 moves into stable 1-4-4 periodic motion through
saddle-inverse doubling codimension-two bifurcations. .e
simulation results show that the irreversibility of the transition
between 1 − p − p and 1 − (p + 1) − (p + 1) modes of two
adjacent basic periodic motions results in an alternating dis-
tribution of the hysteresis transition domains and non-
hysteresis transition domains along their boundary lines and
the singularity is the node of the two types of transition do-
mains. .e singularity is the twofold-grazing bifurcation point
of the 1 − p − p periodic vibration, i.e., the codimension-two
bifurcation point of the saddle-node and the period-doubling
bifurcation of the 1 − (p + 1) − (p + 1) periodic motion
(Figures 3, 6, and 7).

Impact vibration experiments of flexible beams were
designed previously [43, 44], and the vibration system of a
mass’s relative collision and unilateral constraint was
studied. .e experimental results verified the types and
existence of basic periodic impact vibration groups in the
low-frequency domain, and the typical nonsmooth prop-
erties of the experimental system, such as grazing bifurca-
tions, mutation, and hysteresis, were tested. However, for
vibration systems with multiple rigid stops, basic periodic
impact vibration groups with various mode types exist in the
low-frequency domain.
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4. The Incidence Relation between Dynamic
Characteristics and Model Parameters

4.1. :e Influence of the Mass Ratio on Dynamic Character-
istics of the Vibration System. .e mass distribution ratio
(μm) of the two masses is discretised at equal intervals within
the range of its values, and the correlation between the
dynamic characteristics and mass ratio μm of the vibration
system in the (ω, δ)-parameter plane is obtained by nu-
merical calculation. Figure 8 shows four representative sets
of mass ratios (μm� 0.05, μm � 0.25, μm � 0.75, and
μm � 0.95), and other dimensionless parameters are selected
as references: μc � 0.5, μk � 0.5, ζ � 0.1, R� 0.8, and f20 � 0.
.e damping distribution ratio (μc), stiffness distribution
ratio (μk), and damping coefficient (ζ) in the dimensionless
parameters of the system are simulated with the same
method as mass ratio μm to reveal the relationship between
the system dynamic characteristics and the model param-
eters systematically. Figures 8(a) and 8(e) show that when
mass ratio (μm�0.05) is small, the system shows chattering-
impact vibration and complete chattering-impact vibration
(1 − p − q) in the small clearance (δ) domain. In the large

clearance (δ) domain, masses M1 and M2 of the system
exhibit a 1-0-0 no-impact free vibration. .e system shows
abundant mode types of periodic impact vibration in the
domain of ω ∈ [0.5, 1.2]. When the clearance threshold (δ)
decreases, the periodic motions of mass M1 exhibit 3-1-1, 2-
0-1 motions which move into 2-1-1, 2-2-1 motions via
grazing bifurcation sequence and chaos. Subsequently, the
mass M1 exits chaos and evolves into 2 − 3 − 2⟶ 2 − 2 −

2⟶ 2 − 1 − 2⟶ 2 − 0 − 2 periodic motions via saddle
bifurcation sequence and then undergoes inverse doubling
bifurcation to 1-0-1. Subsequently, it experiences real-
grazing bifurcation sequence and then shows basic periodic
impact motion groups such as
1 − 1 − 1⟶ 1 − 2 − 1⟶ 1 − 3 − 1⟶ 1 − 4 − 1⟶ 1 −

5 − 1⟶ · · ·⟶ 1 − p − 1 · · ·⟶ 1 − p − q. .e distribu-
tion law and bifurcation characteristics of the mass M2 are
also the same, and the mass M2 exhibits 3-0-q, 2-0- q, and 1-
0- q (q> 0) periodic impact motions with no-impact (p� 0)
at its bottom stop (A2). As mass ratio increases (μm>0.25),
the results reveal that the existing domain of the system
chattering-impact vibration decreases sharply and the basic
periodic impact motion groups (1 − p − q) move towards the
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low-frequency and small clearance domain. With the further
increase of mass ratio μm, the basic periodic impact motion
groups of the system show diversification and competition in
the low-frequency and small clearance domain (Figures 2 and
7). During the increase of mass ratio μm, the occurrence do-
mains of the two types of periodic impactmotions (1-1-1 and 1-
2-1) of mass M1 and the two types of periodic impact motions
(1-0-1 and 1-0-2) of mass M2 increase first and then decrease,
and the parameter domain of chaos increases significantly in
the (ω, δ)-parameter plane.

4.2. :e Correlation between Dynamic Characteristics and
Damping Ratio. Figures 2 and 9 show the mode types,

existence domains, and bifurcation characteristics of the
impact vibration of the system corresponding to the typical
damping ratio μc values in the (ω, δ)-parameter plane. .e
results show that, with the increase of damping ratio μc, the
occurrence domain of the basic periodic impact motion
groups (1-p-q) of masses M1 and M2 in the (ω, δ)-parameter
plane increases obviously and the existence domain of the
chatter-impact vibration and complete chattering-impact
vibration of the system expands to the direction of increasing
excitation frequency ω. However, with the decrease of
damping ratio μc, the system shows that the parameter
domains of chaos or periodic motions, such as 2-1-1, 2-1-2,
and 2-2-2, gradually increase. In the low-frequency ω and
small clearance δ domain, the existence domains of the basic
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periodic impact motion groups (1-p-q) exhibit a laminar
flow distribution. With the increase of damping ratio μc, the
boundary of the existence domains of the basic periodic
impact motion groups (1-p-q) becomes smooth gradually
and the chaos decreases. When the damping ratio is μc � 0.95
and the excitation frequency is ω ∈ [1.05, 2.70], the basic
periodic impact motion groups (1-p-q) of the system present
a series of stromatolite distributions existing. And the
boundary of the adjacent basic periodic impact motion in
the parameter domain is also composed of a series of sin-
gularities and alternately distributed hysteresis transition
and nonhysteresis transition domains, as shown in
Figures 9(d) and 9(h)..e calculation results show that small
damping ratio μc induces various types of subharmonic
motions and chaos, which results in more complex dynamic
system characteristics. However, a large damping ratio μc

shrinks the subharmonic motions and chaos domains, and
the existence domain of various basic periodic impact
motion groups of the system expands significantly. In ad-
dition, a complex competition law is observed in the small
clearance δ domain, and the mode types of the basic periodic
impact motion groups of mass M1 have shown diverse
characteristics.

4.3. :e Influence of the Stiffness Ratio on Dynamic Charac-
teristics of the Vibration System. .rough the multiobjective
coordination, multiparameter, and numerical simulation of
the discretisation value, four groups of representative
stiffness distribution ratio μk corresponding to the system
impact vibration mode types and distribution domains in
the (ω, δ)-parameter plane are selected, as shown in Fig-
ure 10. A smaller stiffness ratio μk indicates that the spring
stiffness (K2) of mass M2 is smaller than that (K1) of mass
M1 to the stop connection. When the stiffness ratio is small
enough (μk�0.05), the parameter domains of the chattering-
impact vibration and complete chattering-impact vibration
of mass M1 are much larger than those of mass M2. .e

system shows many subharmonic motions in the (ω,
δ)-parameter plane. Subharmonic motions, such as 2-1-2, 3-
1-1, 3-1-2, 3-1-3, 4-1-4, 5-1-4, and 7-1-4, and small domains
2-0-1, 2-0-2, 2-2-2, 2-1-3, 2-1-4, and 4-2-4 are induced by
mass M1, and mass M2 exhibits subharmonic motions of 2-
0-1, 3-0-1, 4-0-1, 5-0-1, and 7-0-1 and small domains 2-0-0,
2-0-2, and 4-0-2. As stiffness ratio (μk>0.25) increases
gradually, masses M1 and M2 show the distribution do-
mains of chattering-impact and complete chattering-impact
vibration which expand to the high-frequency ω direction in
the (ω, δ)-parameter plane. Furthermore, the existence
domain of the 1-1-q (q≥ 2) basic periodic impact group of
masses M1 and M2 decreases gradually until they disappear.
Meanwhile, the basic periodic impact motion groups 1-p-q
(p≥ 0q≥ 1) of mass M1 exhibit diversification and the
competition law, and the domains of the 1-0-q (q≥ 1) basic
periodic motion group of mass M2 expand and then shrink.
When the stiffness ratio is μk � 0.95 and, in the small
clearance δ domain, as shown in Figures 10(d) and 10(h), the
boundary of the adjacent basic periodic impact motion
distribution domain of the system is sharpened and the
chaos is obviously increased. .e system shows complex
bifurcation characteristics. .e system mainly exhibits a no-
impact free vibration of 1-0-0 in the high-frequency ω and
large clearance δ domain. .e calculation results show that
the number of impacts at mass M1 and bottom stop A1
increases with stiffness ratio μk and the number of impacts at
mass M2 and bottom stop A2 decreases.

4.4. :e Incidence Relation between Dynamic Characteristics
and theDampingCoefficient. Considering the dimensionless
damping coefficient in the range of ζ ∈ (0, 0.3], the nu-
merical calculation is carried out by using the value of equal
separation dispersion. Figure 11 shows the mode types and
occurrence domain of the periodic impact motions in the (ω,
δ)-parameter plane of the mechanical system obtained with
four different damping coefficients ζ. When the damping
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Figure 9: Under different damping ratios μc, the system presents dynamic characteristics in the(ω, δ)-parameter plane. (a) M1: μc � 0.05;
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coefficient is ζ � 0.25, in the large clearance δ domain, the
system mainly exhibits 1-0-0 no-impact periodic vibration,
and, in the small clearance δ domain, the mass M1 shows
various basic periodic impact motion groups (1 − p − q) and
the mass M2 shows basic periodic impact motion group
(1 − 0 − q). .e nonhysteresis transition domain appears in
the local parameter domain during the transition between
the 1-0-0 and 1-0-1 motions (transitions between the 1-1-1
and 1-2-1 motions or 1-2-1 and 1-3-1 motions are also
possible) of mass M1. Owing to the linear relationship
between the geometry of the mass M2 and the mass M1
(Figure 1), a nonhysteresis transition domain also appears in
the corresponding parameter domain. As the damping
coefficient decreases, the peak values of the 1-1-1 periodic
motion of system mass M1 and the 1-0-1 periodic motion of
the mass M2 gradually increase, along with the enlargement

of the hysteresis transition and nonhysteresis transition
domains of the system. As the damping coefficient ζ de-
creases continuously, in the small clearance (δ) threshold
and low excitation frequency (ω) region, the domains in
which chattering-impact vibration and complete chattering-
impact vibration of themass occur shift in the low-frequency
direction, and the mode types, existing domains, and bi-
furcation characteristics of various periodic impact motions
of the system are also extremely complex. In particular,
when the damping coefficient is small (ζ� 0.06), the system
has a large clearance threshold δ and the excitation fre-
quency range is ω ∈ (0.5, 1.55), mass M1 exhibits a large
number of subharmonic periodic motions, such as 2-0-1, 2-
1-0, 2-1-1, 2-1-2, 2-2-1, 2-2-2, 3-1-1, 3-2-2, 3-1-2, 3-1-3, 4-2-
3, 4-3-3, and 4-4-2 motions, and mass M2 undergoes 2-0-0,
2-0-1, 2-0-2, 2-1-1, 3-0-1, 3-0-2, 4-0-2, 4-2-3, and 4-1-4
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Figure 10: Under different stiffness ratios μk, the system presents dynamic characteristics in the(ω, δ)parameter plane. (a) M1: μk:� 0.05;
(b) M1: μk� μk 0.25; (c) M1: μk � 0.75; (d) M1: μk � 0.95. (e) M2: μk � 0.05; (f ) M2: μk � 0.25; (g) M2: μk � 0.75; (h) M2: μk � 0.95.
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Figure 11: Continued.
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motions, which results in complex dynamic characteristics
of the system as a whole. .e calculation results show that
increasing the damping coefficient ζ can restrain the typical
nonsmooth characteristics, such as grazing bifurcations,
catastrophes, and hysteresis of the system’s periodic impact
vibration.

5. Conclusions

In this study, a model of a mechanical vibration system with
multiple rigid stops is established. Using multiparameter and
multiobjective cosimulation analysis, the influences of themodel
parameters and the excitation frequency on dynamic charac-
teristics of the mechanical vibration system are revealed:

(1) In the parameter domain of low frequency and small
clearance, the irreversibility of the dynamic evolu-
tion of the adjacent basic periodic impact motion
results in the occurrence of hysteresis transition
domain, nonhysteresis transition domains, and
singular points. Given the different bifurcation
characteristics, two adjacent basic periodic motions
coexist in the hysteresis transition domain, and the
nonhysteresis transition domain contains n − (np +

1) − np and 2n − 2(np + 1) − 2np subharmonic
motions. Owing to rigid stops, the system exhibits
complex bifurcation characteristics, such as codi-
mension-twobifurcations (flip-saddle nodebifurca-
tion, doubling grazing bifurcation, and doubling
saddle node bifurcation) and sliding bifurcation; the
former are caused by the irreversibility of the
transition between adjacent basic periodic impact
motions, and, the latter leads to chattering-impact
sticking events. .erefore, when optimizing the
functional objectives of a mechanical system, it is
necessary to avoid the parameter domains that in-
duce complex dynamic characteristics.

(2) .e dimensionless mass ratio has a significant
influence on the pattern types and bifurcation
characteristics of the periodic impact vibration of
the system. .e results show that the smaller the
mass ratio is, the larger the parameter domains of
the chattering-impact vibration and complete
chattering-impact vibration of the system are. .e
larger the mass ratio is, the more diverse the basic
periodic impact motion groups and the more
complex the dynamic characteristics of the system
are in the parameter domain related to low fre-
quency and small clearance threshold. .e large
parameter domains of the dimensionless mass
ratio should be avoided as much as possible in the
optimization design of the mechanical system. .e
basic periodic impact motions of system mass M1
exhibit a competitive excitation with the increase
in the dimensionless damping ratio. Although
mass M2 does not induce new periodic impact
motions, the parameter domain of the basic pe-
riodic impact motions increases toward the high-
frequency domain. .e small damping ratio makes
the basic periodic impact vibration groups, and
pattern diversity of subharmonic impact motions
become more significant; that is to say, smaller
damping leads to an increase in the nonhysteresis
transition domain. As a result, the damping ratio is
larger and the nonlinear vibration of the system in
low frequency is simpler. Large damping ratio is
beneficial to suppress subharmonic impact motion
and basic periodic motions with multiple impacts
in the low-frequency domain, and the energy
consumption of the system increases accordingly.

(3) .e stiffness ratio has a significant effect on the mode
type, distribution domain, and bifurcation charac-
teristics of the various basic periodic impact groups
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Figure 11: Under different damping coefficientζ, the system presents dynamic characteristics in the(ω, δ)-parameter plane.
(a) M1: ζ � 0.06; (b) M1: ζ � 0.15; (c) M1: ζ � 0.20; (d) M1: ζ � 0.25. (e) M2: ζ � 0.06; (f ) M2: ζ � ; (g) M2: ζ � 0.20; (h) M2: ζ � 0.25.
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and subharmonic motions of the system in the (ω,
δ)-parameter plane..e calculation results show that
the stiffness ratio in the range of μk ∈ [0.25, 0.75] is
most beneficial to the optimum design of mechanical
system. With the increase in the dimensionless
parameter damping coefficient, the complex pe-
riodic motions of the system, such as subharmonic
motions and chaos, are significantly reduced, and
the parameter domains of the hysteresis transition
domain and nonhysteresis transition domain are
reduced accordingly. Furthermore, the existing
domains of the mass chattering-impact vibration
and the complete chattering-impact vibration shift
in the high-frequency direction and the typical
nonsmooth characteristics of the system are ef-
fectively suppressed. .erefore, the dimensionless
damping coefficient should be set slightly larger
when optimizing the design of a mechanical
system.

.e numerical results reveal the essential relationships
and matching behaviours between the dynamic character-
istics and model parameters of a vibrating system with
multiple rigid stops. .e reasonable matching ranges of the
parameters of the mechanical vibrating systems with dif-
ferent functions can be determined, and the collaborative
optimization of their dynamic characteristics and functional
objectives can be achieved.
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