Hindawi

Shock and Vibration

Volume 2021, Article ID 6627740, 12 pages
https://doi.org/10.1155/2021/6627740

Hindawi

Research Article

Multiclass Incremental Learning for Fault Diagnosis in Induction
Motors Using Fine-Tuning with a Memory of Exemplars and
Nearest Centroid Classifier

Magdiel Jiménez-Guarneros (9, Jonas Grande-Barreto (),
and Jose de Jesus Rangel-Magdaleno

National Institute for Astrophysics, Optics and Electronics, San Andrés Cholula, Mexico

Correspondence should be addressed to Jose de Jesus Rangel-Magdaleno; jrangel@inaoep.mx

Received 12 July 2021; Revised 23 September 2021; Accepted 13 October 2021; Published 27 October 2021
Academic Editor: Wenxian Yang

Copyright © 2021 Magdiel Jiménez-Guarneros et al. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Early detection of fault events through electromechanical systems operation is one of the most attractive and critical data
challenges in modern industry. Although these electromechanical systems tend to experiment with typical faults, a common event
is that unexpected and unknown faults can be presented during operation. However, current models for automatic detection can
learn new faults at the cost of forgetting concepts previously learned. This article presents a multiclass incremental learning
(MCIL) framework based on 1D convolutional neural network (CNN) for fault detection in induction motors. The presented
framework tackles the forgetting problem by storing a representative exemplar set from past data (known faults) in memory. Then,
the 1D CNN is fine-tuned over the selected exemplar set and data from new faults. Test samples are classified using nearest
centroid classifier (NCC) in the feature space from 1D CNN. The proposed framework was evaluated and validated over two
public datasets for fault detection in induction motors (IMs): asynchronous motor common fault (AMCF) and Case Western
Reserve University (CWRU). Experimental results reveal the proposed framework as an effective solution to incorporate and
detect new induction motor faults to already known, with a high accuracy performance across different incremental phases.

1. Introduction

IMs support most of the production process in the modern
industry’s daily life due to their straightforward construc-
tion, reliability, and relatively low cost. However, IMs
operate for long uninterrupted working periods, are exposed
to the elements, and minimum preventive maintenance.
These operative conditions raise unexpected faults that can
show up at any time, causing lower productivity and eco-
nomic losses. Thus, early motor failure detection and cor-
rection are challenging problems that catch many
researchers’ attention.

From a general overview, motor fault analysis methods
split into signal processing and artificial intelligence ap-
proaches [1]. The first ones have been focused on analyzing
diverse physical magnitudes to find features that help

identify abnormal behavior in the motor’s performance
[2, 3]. For example, rotor vibrations [4], bearing faults [5],
and broken rotor bar [2]. Meanwhile, artificial intelligence-
based methods have been integrated to provide automatic
fault detection using a data-driven approach. These methods
base their performance on extracted features from raw
signals to be used as inputs. In past years, deep learning (DL)
architectures, such as autoencoders (AE) [6], convolutional
neural network (CNN) [5, 7, 8], and capsule networks
(CapsNet) [1], have been used in fault diagnosis due to their
potential applicability for the automatic feature extraction,
reported in several cases new state-of-the-art results. In the
literature, most works combine DL architectures with dif-
ferent handcraft features and feature extractors (e.g., Fourier
and Wavelet transform) [8]. Recently, some authors [9-12]
have shown some promising advances to eliminate the

mailto:jrangel@inaoep.mx
https://orcid.org/0000-0001-9675-7494
https://orcid.org/0000-0003-3789-1479
https://orcid.org/0000-0003-2785-5060
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/6627740

requirement of the handcraft features, where CNN archi-
tectures have demonstrated high effectiveness. Despite this
progress, classification models have been focused on
detecting a set of known patterns that characterize typical
faults on equipment from manufacturers. However, modi-
fications in the operative conditions can generate patterns
from new failures that differ from those detected by the
current model. This issue forces existing methods to learn a
new model considering unknown failure conditions.

To overcome the practical challenge mentioned above,
multiclass incremental learning (MCIL) arises a promising
solution by updating the current model on new data instead
of training once on a whole dataset. Indeed, MCIL aims to
learn new classes from previous ones, although none or a few
samples of old classes are retained. Unlike the conventional
classification setting, in MCIL, samples from different classes
come in different time phases, whereas incremental classi-
fiers aim to achieve a competitive performance overall seen
classes [13]. Motivated by this, only a few works have been
reported by traditional approaches to address multiclass
incremental learning. For example, Saucedo-Dorantes et al.
[14] trained a self-organizing map (SOM) every time that a
new detection occurs. However, this model does not retain
samples from previous classes, and the complexity of the
model increases when new faults are incorporated. Incre-
mental model transfer learning (IMTL) [15] follows a do-
main adaptation approach to allow a classification model to
detect new faults but requires all samples from past faults
during the subsequent incremental phases to achieve high
performance. Overall, these works are still limited because
they depend on an engineered data representation. In this
direction, deep learning approaches have certain advantages
by learning task-specific features and classifiers from raw
signals. However, deep learning models can suffer from
catastrophic forgetting [16] when they are trained incre-
mentally, i.e., the tendency of a neural network to underfit
past classes when new ones are learned.

This study presents an MCIL framework based on an 1D
CNN for fault detection in IMs. To tackle the catastrophic
forgetting problem, the presented framework employs a
memory containing representative exemplars from past data
and updates a 1D CNN model across incremental states,
using a fine-tuning procedure [16]. The representative ex-
emplars from past (known) faults are selected using the
Herding method [17]. Next, nearest centroid classifier
(NCC) is used to classify test samples in each incremental
phase. By doing this, the proposed framework maintains a
constant model complexity while new classes appear each
time. We evaluated and validated the presented model over
two different study cases: (1) motor common faults diagnosis
and (2) bearing fault diagnostics. Experimental results show
that the proposed MCIL framework effectively incorporates
new faults on an 1D CNN, achieving a high accuracy per-
formance across different incremental phases.

2. Convolutional Neural Network

Convolutional neural network (CNN) is a biologically in-
spired artificial neural network that processes data with a

Shock and Vibration

known grid-like topology [18]. CNN alternates convolution
and pooling layers, followed by a fully connected layer to
extract features and generate the desired output. Due to the
inherent one-dimensional signals obtained from a vibration
analysis in IMs, it has been preferable to deal with these
signals using one-dimensional models [9, 11]. Thus, we first
describe 1D convolution operators, which are used in the
presented work. Then, we describe the complement layers
that integrate a convolutional network.

In its standard approach, CNN performs a set of con-
volutions between an input signal and some finite impulse
response (FIR) filters. The convolution operation () is
described as a weighted average of an input signal x;:

s; =k * x;
-1
=) kijx,
j=0

where s; is called i-th feature map and k denotes a weighting
factor, called filter or kernel, with length L. The kernels are
built to identify spatial features on the input data. The output
from a convolutional layer defines the next layer’s activation
value. Then, the output si(l) of a convolutional layer (/) ati-th

feature map is defined as follows:

L
O < Y KO w x4 b;l>>, @
=1

where Ki(,lj) denotes each local weighting factor of the kernel,
x™ represents the j-th feature map at the layer I — 1, L is
the number of filters applied over xj(»l D, b7 is the bias, and &
is the activation function.

Most of the time, raw data contain noise and undesirable
spectral shapes that affect the feature extraction process [19].
Motivated from this issue, the SincNet layer [9, 20], an
extension of the standard convolution, applies a set of
temporal convolutions between a raw signal and digital
filters to boost the first convolutional layer output.

(1)

2.1. Sinc Convolution. Instead of learning the filters from the
data, as the conventional CNN, the SincNet [9, 20] performs
the convolution operation with a preset function g that
requires only a reduced set of learnable parameters @, as
defined in the following equation:

ylnl = x[n] = g[n, O], (3)

where g is a filter bank for band-pass filter in the frequency
domainy; it takes advantage of the Sinc function to convert to
time domain through the inverse Fourier transform [19]. The
use of rectangular filters represents a practical selection to
define g. The magnitude ® of a generic band-pass filter can be
described as the difference between two low-pass filters.

where O, = {f}, f;} the set of the trainable parameters; f,
and fp represent low and high cutoff frequencies,

Shock and Vibration

respectively, of the band-pass filter learned by the Sinc filters.
rect(-) describes the rectangular function at the instant ¢ as
follows:

1, |t|<0.5,
rect(t) = { (5)

0, otherwise.

Using the inverse Fourier transform, the reference
function g becomes

gln frful =2fy- sinc2nfyn) -2f, - sin c(2nfn),
(6)

where the Sinc function is defined as sinc(x) = sin (x)/x.
Finally, to achieve an approximation of the ideal band-pass
filter, a winnowing procedure is applied. This procedure
multiplies the truncated function g with a window function
w [21], intending to smooth out the abrupt discontinuities at
the ends of g:

golm fr- ful = gln fr. ful - wln fr, ful- (7)

Therefore, the succeeding layers learn the filter gain of
each actual layer.

2.2. Pooling Layers. These layers perform a downsampling to
reduce the spatial size of features, encouraging the input
data’s invariance to spatial translations. In particular, a max-
pooling layer reporting the j-th maximum element within a
rectangular frame for each feature map. Meanwhile, a global
average pooling (GAP) layer replaces the fully connected
layers in a CNN model [22], averaging the feature maps from
previous convolutional layers. GAP aims to force corre-
spondences between learned feature maps and classes in the
previous convolutional layers.

3. MCIL Methodology

Let & and % denote a feature and a label space, respectively.

Let D= (X,Y) = {(xj,yj)}il be a labeled dataset with N
samples, where (X,Y) € & x %. In a classification problem,
atask 7 consists in learning a labeling function G, such that
G: & — ¥. Notice that G represents a deep neural net-
work with parameters ®, so that Y = G(X; ®). Likewise, G
can be expressed as a composition of two functions,

G =G, oGy, where Gy & — Z is a feature extractor and
G,: Z — ¥ feature labeling with parameters ©; and ©,
respectively; here, Z is a latent feature space. The feature
extractor G takes X and produces a latent feature dataset Z.
Then, G, receives Z as input and produces label classifi-
cations Y, i.e, Y=G, (Gf (X; ®f); @)y).

We focus on multiclass incremental learning (MCIL)
where the model complexity is maintained constant during
N incremental states, while a reduced number of samples is
retained from past classes [13, 23]. We assume N + 1 phases,
that is, N incremental phases and one initial phase S,. A
model G, is learned on a dataset D, during the phase S;. Due
to this, we assume a memory limitation, all samples from D,
cannot be stored, so that exemplars E, are selected and

stored as a replacement of D, with |E,| < |Dyl. In the i-th
incremental phase, dataset D; from C; classes is streamed,
whereas exemplars E,,. ;_; from phases 0 to i — 1 are stored in
memory. The aim of MCIL is to learn a model G using
exemplars E. ;_; and data set D;.

Figure 1 shows the flowchart of the MCIL methodology
for fault detection in IMs. In the initial phase, a model G, that
is 1D CNN, is trained via cross-entropy loss & on the
dataset D, containing signals from different motor con-
ditions. Next, exemplars E; are selected using Herding
method [17] over D, in feature space, Z, = G;(D,). The
nearest centroid classifier (NCC) is used to classify test
samples in the current phase using E as training set. In the
i-th incremental phase, the output layer from the CNN is
extended with randomly initialized weights for each new
class. Then, the 1D CNN is fine-tuned over D; and E,, ;_,
using cross-entropy loss Z..; notice that imbalance data are
produced in D; UE, ;_; because E,. ; ; contains a reduced set
of exemplars from past classes. This procedure updates all
parameters @ of 1D CNN. The resulting trained model G in
phase i is used to extract features from D; and E ;.
Herding method is used to select the exemplar set E; over D;
in feature space. Then, NCC uses E,.; as training set in
feature space to classify test samples. This procedure is re-
peated over the different incremental phases.

3.1. CNN Architecture. The 1D CNN architecture is shown
in Figure 2. 1D time-domain signals are used as inputs to the
1D CNN. One Sinc layer [9, 20] and two standard convo-
lution layers were incorporated into the feature extractor.
Conv a x b — ¢ denotes the convolution layer of ¢ filters with
a size a and a stride b. For the lower layers, large size filters
were employed to deal with high frequencies present in data.
We added max-pooling layers to reduce the spatial feature
dimensions. Likewise, a global average pooling layer is used
to reduce the spatial dimensions of the learned features. The
output layer is extended for each new class with a random
initial value. The softmax activation function is used at the
output layer to perform motor fault classification.

3.2. Exemplar Set Selection. The exemplar set E, is adjusted in
each incremental phase i using the Herding method [17], as
shown in Algorithm 1. The exemplar selection is required
when training data are available. Feature representation from
dataset D; is obtained using the feature extractor G (line 2).
Each sample is normalized employing the L2 norm (line 3).
Notice that m exemplars are selected and stored iteratively for
each class (lines 5-7). One sample is added to the exemplar set
in each iteration, prioritizing that sample that makes the
average feature vector better approximate the mean vector.

3.3. Nearest Centroid Classifier. Nearest centroid classifier
(NCC) [24] is a nearest-neighbor classifier, which is used to
address the bias produced on new classes by training CNN
over imbalanced data. The procedure followed by NCC is
described in Algorithm 2. First, feature representations from
exemplars E,, ; are obtained using the feature extractor G

Phase 0

Phase 1

Phase 2

Phase i

Shock and Vibration

Phase N

Dataset 0, [T Dataset 0, [T Dataset D, [Dataset D, [T Dataset Dy

Train G (0) using cross-
entropy L., on D

Fine-tuno model G (8)
on D, and E,

Fine-tuno model G (6)
on D;and E;

Fine-tuno model G (0)
on Dyand Ej

v

Fine-tuno model G (0)
on D, and E,

v

v

v

Select m exemplars E

Select m exemplars E;

Select m exemplars E;

Select m exemplars Ey

Select m exemplars E, ’

using Herding method using Herding method using Herding method using Herding method using Herding method
Exemplars E, » Exemplars E Exemplars E,, .. —p| Exemplars E, . —p» Exemplars E\,

v v v v v

Classify test samples Classify test samples Classify test samples Classify test samples
using NCC and E using NCC and E, using NCC and E; using NCC and E

Classify test samples
using NCC and E,

FIGURe 1: Flowchart of the presented methodology in order to train an incremental classifier for the fault detection in IMs.

Label predictor G,
Feature extractor Gf
Induction Motor Monitioring 1
(. .) (Known
Vibration classes Fault
signals %I = prediction
= a
X S 3
B L z o Z =
New Of
Relu Relu Relu classes
|

F1GURE 2: Architecture of the 1D CNN model.

Inputs: X, = {xl, L. ,xn[}: dataset of class ¢; m: number of exemplars to select; G ik feature extractor
Output: E: exemplar set

(1) Initialize E to the empty set {}

(2) Z, <G ¢ (X.) \(>\) Get feature representations

3) Z,.—Z/Z], \(>\) L2 norm

(4) Ze1/n.Yy-€ ZCZ \(>\) Get mean feature vector

(5) for k = 1,...,n1do

(6) pre—argmin € Z |z - (1/k)[G; (2) + ¥'21G; (p)]ll,

(7) end for =

(8) E—{pi>-- -, P}

ALGORITHM 1: Herding method.

(line 1). The centroid is computed as the point from which
the sum of the distances of all exemplars that belong to that
particular class are minimized (lines 2-4). NCC assigns the
label of the most similar class centroid to the test sample x,
(line 5) as follows:

y" =arg min d(p,, Gy (x,)),

(8)

where p, is the centroid vector for the class ¢, obtained from
exemplars E. ;; meanwhile, d is the Euclidean distance.

Shock and Vibration

Inputs: E.; = {p,,..

1) Z«—Gf(E(,:) \(>\) Get feature representations
(2) forc=1,...,Cdo

8; ﬁc:i—?rg min >3 5 d(Pnp)
en or

., P;}: exemplar set from phase 0 to i; G : feature extractor; x,: sample to be classified
Output: y*: one hot vector of the class label; C: number of classes

ALGORITHM 2: Nearest centroid classifier.

4. Experimental Setup

This section first describes data from the different cases of
study used in multiclass incremental learning for motor fault
diagnosis. Next, the experimental protocol is described.
Finally, we present the implementation details of the MCIL
model.

4.1. Cases of Study. Our experiments were conducted on
two cases of study based on vibration analysis: (1) motor
common fault diagnosis and (2) bearing fault diagnosis.
For this, we used two public benchmark datasets: asyn-
chronous motor common fault (AMCF) [1] and Case
Western Reserve University (CWRU) [25]. Tables 1 and 2
present the description of the data acquisition and studied
faults for the AMCF and CWRU datasets, respectively. The
AMCEF dataset is composed of 8,000 samples from 8 motor
conditions (1,000 per class), where each sample contains
1,024 points. For the CWRU dataset, experiments were
performed under 1 hp workload. This dataset contains
three types of fault locations in bearing (balls, inner race,
and outrace), showing fault diameters of 0.007, 0.014, and
0.021 inches. CWRU contains 10,000 samples from 10
different motor conditions (1,000 per class), including
health bearings.

4.2. Experimental Protocol. For each dataset, we evaluated
the proposed MCIL model starting from a pretrained CNN
over initial data of motor faults; meanwhile, the rest of the
data coming in different phases are used to train CNN in a
class-incremental way. First, we fix the number of stored
exemplars to the smallest memory size allowed, and after, the
number of incremental phases is varied. Next, we fix the
number of incremental phases to 6 and 8 for AMCF and
CWRU, while the number of exemplars per fault is varied
considering m = 5 and m = 10. In each incremental phase,
faults are given in a fixed random order; 80% of the data
samples in each class are used for training, and the
remaining 20% for testing, performing a stratified sampling.
The final model in each incremental phase is used to classify
classes observed so far. Experiments were repeated five times
using different random initial weights, different partitions of
data, and a different fault order. We calculate the average
accuracy and standard deviation only for incremental states,
which are of interest for MCIL. Our comparison includes the
results of CNN employing all previous data available (Full)

and those using a fine-tuning procedure with a random
selection of exemplars (FT +R).

4.3. Implementation Details and Model Parameter Selection.
Table 3 presents the details of the 1D CNN model. We used
filters with a large (101), medium (51), and small (11) size to
learn features from raw signals. In addition, max-pooling
layers were used with a size and stride of 3 to reduce spatial
feature dimensions. The 1D CNN model employs a total of
56,281 trainable parameters. The 1D CNN model was
implemented in Pytorch 1.7.0, whereas NCC was obtained
from scikit-learn library (https://scikit-learn.org/stable/).
Experiments were performed using a PC Intel(R) Core (TM)
i7 with a graphic card GTX 1080 Nvidia on Ubuntu 20.04
LTS.

In our experiments, the 1D CNN model was trained by
Adam algorithm [26] during 40 and 30 epochs for the AMCF
and CWRU datasets, respectively. For both datasets, the
initial learning rate was set to 0.0001 at the initial phase,
whereas it was set to 0.001 for incremental phases. In ad-
dition, a learning decay of 0.1 was applied at 30 and 20
epochs. Likewise, a batch size of 30 was selected from {10, 30,
50} for both datasets. This hyperparameter setting was se-
lected after comparing different configurations across 6 and
8 incremental phases on AMCF and CWRU; 5 exemplars
from each past class (known faults) were stored in memory.
For model parameter selection, we used coordinate descent
[27], which changes only one hyperparameter at a time,
aiming the best configuration. Fine-tuning and Herding
selection (FT +H) were used for CNN retraining and ex-
emplar selection in each incremental phase. Experimental
results, as shown in Table 4, indicate that the batch size has a
lower negative impact compared with learning rate. For both
datasets, the 1D CNN model achieves its highest average
accuracy when the learning rate is 0.001 and the batch size is
10 and 30. This last value of batch size was selected because it
requires a lower number of iterations for data processing
during training. Finally, as shown in Figure 3, the 1D CNN
model stabilizes its training above 20 and 15 epochs on
AMCF and CWRU for the different incremental phases.
Using 40 and 30 epochs during training, we ensure a sta-
bilization of the 1D CNN model.

5. Results

5.1. Case 1: Motor Common Fault Diagnostics. Table 5 shows
the average accuracy and standard deviation (SD) on AMCF

Shock and Vibration

TaBLE 1: Description of the AMCF dataset.

Data acquisitions
Motor

Sensor type
Signal
description

4 hp YE2-100L2-4
CT1020 L accelerometer
Vibration signals were collected using an acquisition card PCI-1716 with a sampling frequency of 250 kS/s, high-
resolution of 16 bits, and 16 SE/8 DI channels

Fault description

The damages of the motors are as follows: short circuit of 2 turns (SC2T), short circuit of 4 turns (SC4T), short circuit of

Type of fault

4 turns (SC8T), air-gap eccentricity (AE), rotor bar broken (RBB), bearing cage broken (BCB), and bearing abrasion

fault (BAF)

TaBLE 2: Description of the CWRU dataset.

Data acquisitions
Motor
Sensor type

2 hp reliance electric
Accelerometers

Signal description Vibration signals were collected using a 16-channel DAT recorder. Digital data was collected at 12k samples/second

Fault description
Bearing

Fault location
Fault diameters

6205-2RS JEM SKF, deep groove ball bearing
Balls, inner race, and out race
0.007, 0.014, and 0.021 inch

TaBLE 3: Implementation details of the 1D CNN model.

Block Layer name Hyperparameters Number of trainable parameters
Sample input —
Input SincNet Filters = 30, size = 101, stride = 1 60
Activation function ReLU —
SincNet Max-pooling Size = 3, stride = 3 —
Convolution 1D Filters = 30, size = 51, stride = 1 45,930
Convl Activation function ReLU —
Max-pooling Size = 3, stride = 3 —
Conv2 Convolution 1D Filters = 30, size = 11, stride = 1 9,930
Activation function ReLU —
GAP Global average pooling — —
Output Fully connected C units 361
Activation function Softmax —

TaBLE 4: Accuracy results of 1D CNN on AMCF and CWRU datasets, using different batch sizes and learning rates.

Batch size Learning rate
AMCF 10 30 0.01 0.001 0.0001
1D CNN (FT +H) 94.97 + 3.40 94.24 + 3.96 91.20 + 07.06 80.05 + 08.33 94.24 + 03.96 58.67 + 14.14
CWRU
1D CNN (FT +H) 98.77 + 0.83 98.78 + 0.83 98.68 + 01.09 66.42 + 09.66 98.78 + 00.83 87.58 + 06.10

Best results are boldfaced for each setting.

using a different number of incremental phases and ex-
emplars. We observed that the most challenging scenario is
presented when one exemplar per fault is retained across
different incremental phases. Inversely, we can see that the
most straightforward scenario is presented when a greater
number of exemplars per fault is stored (m = 5 and m = 10).
Notice that the performance of FT +R (fine-tuning with a
random selection) dropped when m = 1 and the number of

incremental phases decreased. In this scenario, the proposed
MCIL framework (FT +NCC + H) obtained average accu-
racies beyond 94%, outperforming to FT +R at least 20
percentage points (pp). Moreover, we can see that
FT + NCC + H achieved average accuracies of 98.32% and
98.85% over 6 incremental phases and a number of exem-
plars m equal to 5 and 10, outperforming to FT + R by 5.07
and 3.79 pp.

Shock and Vibration

Accuracy (%)

10

Number of epochs

—— Initial —— Phase 4
—— Phase 1 —— Phase 5

Phase 2 —— Phase 6
—— Phase 3

()

0 5 10 15 20 25 30 35 40

100

— =
9
80
70t
X
= 60|
g
§ 50 |
< 40 |
30
20 -
10 ' ' ' ' '
0 5 10 15 20 25 30
Number of epochs
Initial ——— Phase 5
Phase 1 ——— Phase 6
Phase 2 —— Phase7
Phase 3 ——— Phase 8
Phase 4

()

FIGURE 3: Accuracy performance of 1D CNN (FT + H) across different epochs. We show the accuracy performance for the different

incremental phases.

TaBLE 5: Accuracies and standard deviations (SD) over AMCF using a different number of incremental phases and exemplars.

m=1 Phases = 6
1 phase 3 phases 6 phases m=5 m =10
FT+R 55.40 £ 03.85 68.96 * 14.63 75.66 £ 08.37 93.25 £ 03.67 95.06 = 03.53
FT+NCC+H 96.70 = 02.33 94.73 £+ 02.03 96.22 + 02.26 98.32 = 00.91 98.85 = 00.63
Full 99.38 + 00.31

Best results are boldfaced for each setting.

5.2. Case 2: Bearing Fault Diagnostics. Table 6 shows the
average accuracies and standard deviations (SD) on CWRU
using a different number of incremental phases and ex-
emplars. The most challenging scenario is presented when
m = 1, where the performance of FT + R dropped when the
number of phases increased. In this scenario, FT + NCC + H
achieved average accuracies beyond 93%, outperforming
FT + R at least 6.27 pp. On the other hand, we observed that
FT + NCC + H outperformed FT + R by only 0.48 and 0.39
pp across 8 incremental phases, while the number of ex-
emplars is 5 and 10.

5.3. Ablation Studies

5.3.1. Effect of Each Component. We analyzed the impact of
each component to determine its contribution over the final
accuracy on AMCF and CWRU. Figure 4 shows the accuracy
performance on AMCF and CWRU during 6 and 8 incre-
mental phases, although one exemplar is retained in
memory. Notice that accuracy results of FT without memory
also were included. For both datasets, we observed that FT
reduces its accuracy performance over incremental phases if

memory is not available, suggesting the presence of the
catastrophic forgetting problem. We can see that fine-tuning
results significantly improved when memory is incorporated
(FT + H), storing representative samples from past faults.
Finally, notice that NCC also had a positive impact on the
final accuracy (FT + NCC + H) by reducing the bias gener-
ated by incorporating new faults.

5.3.2. Effect of the Number of Exemplars. Figure 5 shows the
impact on accuracy performance by varying the number of
exemplars per fault. We observed that FT + R improved its
results when the number of stored exemplars increased,
while FT + NCC+H obtained results above 96% starting
from 1 exemplar per class. We can see that FT + NCC+H
achieved a competitive performance (98.32% vs. 99.38%)
than training on full data, storing at least 5 exemplars per
fault, while FT + R became competitive by using more than
20 exemplars.

Regarding the CWRU results, we can see that the worst
performance is obtained when the number of stored ex-
emplars per class is 1. Moreover, FT + R and FT + NCC+H

Shock and Vibration

TaBLE 6: Average accuracy and standard deviation (SD) for MCIL methods over CWRU, using a different number of incremental phases of

exemplars.
m=1 Phases = 8
1 phase 4 phases 8 phases m=5 m =10
FT+R 91.65 + 03.40 83.90 + 03.44 81.22 + 04.22 98.65 + 01.00 98.86 + 00.96
FT+NCC+H 97.92 + 01.18 94.77 + 00.88 93.36 + 01.96 99.13 + 00.54 99.25 + 00.39
Full 100.0 + 0.00
Best results are boldfaced for each setting.
100 4 7 AN.[CF : ; 100 CWRU
90k R o NG T T A
80 1 80\ . . S . - . 1
70 ¢ 70 +
g g
< 6ot < 60}
g g
§ 50 § 50
< <
40 + 40 +
30 F 30 +
20 | 20 |
10 i i i i i 10 i i i i i '
0 1 2 3 4 5 6 0 1 2 3 4 5 6 7 8
Number of exemplars Number of exemplars
—o— FT+H Full —o— FT+H Full

—A— FT+NCC+H —=— FT w/o memory

(a)

—A— FT+NCC+H —=— FT w/o memory

(b)

FIGURE 4: Impact of each component of FT + NCC+H on (a) AMCF and (b) CWRU across 6 and 8 incremental phases, retaining one
exemplar per fault. Accuracy results of FT without (w/0) memory also were included.

100 - AMCF -

95 |-

90 -

85 -

Accuracy (%)

80 -

75

70

0 2 4 6 8§ 10 12 14 16 18 20
Number of exemplars

—e— FT+R
—4— FT+NCC+H
Full (CNN)

(a)

Accuracy (%)

95 1

90

85 I

80 -

75 |

70

2 4 6 8§ 10 12 14 16 18 20
Number of exemplars

—e— FT+R
—4— FT+NCC+H
Full (CNN)

(b)

FIGURE 5: Impact of the number of exemplars stored in memory: (a) AMCF and (b) CWRU.

Shock and Vibration

increased their accuracy performance starting from 2
samples per fault. FT + NCC+H obtained an average ac-
curacy above 99%, storing at least 3 exemplars per fault,
while FT+R achieved the same performance above 5
exemplars.

5.3.3. Effect of the Herding Method for Exemplar Selection.
We studied the impact of the exemplar selection via Herding
and a random selection over the accuracy performance on
AMCF and CWRU. Figure 6 shows the accuracy perfor-
mances on AMCF and CWRU across 6 and 8 incremental
phases, while a different number of exemplars from past
faults are retained. For AMCF, we observed that the Herding
method (marked as+H) slightly improves the accuracy
performance over random selection (marked as + R) when 1
to 10 exemplars are retained. For CWRU, only improve-
ments can be seen when 2 to 5 exemplars are retained. We
observed that random selection obtained a similar or even
better performance than the herding method for the rest of
the cases.

5.3.4. Effect of Noise over the Proposed Framework. In order
to test the performance of the proposed framework under
different noise conditions, we applied additive white
Gaussian noise (AWGN) to the raw signals from the test
set; 6 and 8 incremental phases were used on AMCF and
CWRU, retaining 5 exemplars from past classes. Table 7
presents the classification results of FT + NCC + H under
three different noise levels; accuracy results of FT +H
(CNN trained incrementally) and the full model (CNN
using all data) were included as reference. As expected,
evaluated solutions reduced their average accuracy when
a lower noise level is applied. However, we can see that
FT + NCC + H obtained average accuracies beyond 92%
and 94% when an SNR=5 is applied on signals from
AMCF and CWRU, respectively. For AMCF and CWRU,
FT + NCC + H obtained the best average accuracies when
SNR is 5 and 10, while it obtained a similar accuracy
performance compared with the full model when SNR
is 15.

5.3.5. Comparison of Classification Time. We analyzed the
classification times of our proposed framework
(FT+NCC+H) across different incremental phases; we
included times of FT +H (CNN trained incrementally) as
reference. For this experiment, 6 and 8 incremental phases
were used for AMCF and CWRU, although 5 exemplars
from each learned class were stored in memory. Table 8
shows the classification times for evaluated solutions. We
can see that times increased when new classes are added to
the 1D CNN classifier. Also, we observed that the times of
FT + NCC + H did not significantly increase with respect to
FT + H (CNN as classifier). From this, notice that NCC uses

a reduced number of exemplars from past and current faults
as training set.

6. Discussion

In experiments, we evaluated and validated the proposed
MCIL framework on two different cases of study for motor
fault detection in IMs. The evaluation was performed under
scenarios where data from new faults are streamed in dif-
ferent time phases. From the results, we found that the MCIL
framework allows the incorporation and detection of past
and new motor faults from vibration signals with high ac-
curacy across different incremental phases. Unlike previous
works [14, 15], one or more faults can be added to the 1D
CNN model in each incremental phase. Notice that com-
putational requirements and memory should be bounded. In
this sense, the proposed MCIL framework maintains a
constant complexity while a few samples from past faults are
retained. To the best of our knowledge, this is the first work
that studies MCIL, based on a deep learning approach, for
fault diagnosis in IMs from vibration signals.

From ablation studies, we observed that a neural net-
work model tends to forget previously learned faults. This
problem is known as catastrophic forgetting, which is
produced by incorporating new faults into a pretrained
model in a sequential way. In this direction, we found that
the fine-tuning procedure with a memory of exemplars and
the NCC classifier provides an effective solution to tackle the
catastrophic forgetting problem [16] for fault diagnosis in
IMs. As expected, the average accuracies of evaluated so-
lutions significantly improved when the number of retained
exemplars in memory increased. Notice that results on
AMCEF showed that at least 5 exemplars per fault are re-
quired across 6 incremental phases to achieve a competitive
accuracy than training on full data. Also, we found that at
least 3 exemplars were required across 8 incremental phases
to obtain a similar performance using all data on CWRU.
Notice that this amount of stored exemplars per fault
represents approximately 1% of the size of the training set.
Moreover, AMCF results showed that a greater number of
incremental phases do not negatively impact the accuracy
performance of the 1D CNN model; CWRU results showed
that a greater number of incremental phases negatively
impact the MCIL model’s accuracy performance. Con-
cerning to the exemplar selection, we found that the herding
method slightly improved over the accuracy results than
using a random selection when a few exemplars are retained,
but similar or even worst results were obtained in other
cases. Regarding noise conditions, we found that
FT+NCC+H provides a robustness to disturbances in
signals, outperforming to the full model in accuracy per-
formance for SNRs with low values. In particular, we found
that NCC helps to face such disturbances in signals. Finally,
we found that NCC does not increase the classification time
because a reduced number of samples are used as training
set.

10 Shock and Vibration

CWRU
100 100 - -
95 95
g 9l g 9l
= >
3 s
- =
3 3
;d 85 - <8 85 I-
80 | 80 |
75 — 75 —
0 2 4 6 8§ 10 12 14 16 18 20 0 2 4 6 8§ 10 12 14 16 18 20
Number of exemplars Number of exemplars
—o— FT+R FT+H —o— FT+R FT+H
—4— FT+NCC+H —— FT+NCC+R —A— FT+NCC+H —— FT+NCC+R

(a) (b)

FI1GURE 6: Impact of the herding method for exemplar selection on (a) AMCF and (b) CWRU. Herding method is marked as + H, whereas a
random selection is marked as +R.

TasLE 7: Accuracy performances and standard deviations for evaluated solutions under different noise levels on AMCF and CWRU.

SNR
5 10 15

AMCF

Full 74.21 + 00.91 94.41 + 01.70 99.45 + 00.21
FT+H 85.68 + 03.37 93.55 + 04.14 94.96 + 03.32
FT+NCC+H 92.51 + 03.22 98.15 + 01.03 98.39 + 00.89
CWRU

Full 70.16 + 06.18 96.20 + 01.13 99.81 + 00.07
FT+H 77.74 + 07.08 93.25 + 02.84 97.33 + 01.62
FT+NCC+H 94.35 + 04.49 98.77 + 01.03 98.92 + 00.89

TaBLE 8: Classification time (seconds) across different incremental phases.

AMCF

Incremental phases FT+H FT+NCC+H
Initial 0.1092 0.1084

1 0.1173 0.1386

2 0.1340 0.1443

3 0.1403 0.1588

4 0.1652 0.1704

5 0.1677 0.1862

6 0.1905 0.2034
CWRU

Incremental phases FT+H FT+NCC+H
Initial 0.1087 0.1067

1 0.1129 0.1240

2 0.1308 0.1336

3 0.1462 0.1498

4 0.1555 0.1669

5 0.1590 0.1821

6 0.1836 0.2077

7 0.2011 0.2164

8 0.2093 0.2355

Shock and Vibration

7. Conclusions

This study presents a MCIL framework based on fine-tuning
with a memory of exemplars and the nearest centroid
classifier (NCC) over an 1D convolutional neural network
(CNN), to incorporate new motor faults from vibration
signals to already known. Specifically, 1D CNN is fine-tuned
over samples from new faults and exemplars from known
(past) faults, whereas NCC is used during testing phase to
classify samples from past and new faults. The proposed
framework was evaluated over two datasets for motor fault
diagnosis: AMCF and CWRU. Different experimental sce-
narios were considered, including different numbers of
incremental phases and stored exemplars. Experiments
showed that the proposed framework achieved an accuracy
performance beyond 93% and 94% on AMCF and CWRU,
retaining one exemplar per fault and varying the number of
incremental phases. We found that 5 and 3 exemplars per
fault across 6 and 8 phases on AMCF and CWRU are re-
quired to achieve competitive accuracy than training with
full data (98.32% vs. 99.38% and 99% vs. 100.00%). These
results suggest that the catastrophic forgetting problem can
be reduced by the proposed framework over AMCF and
CWRU. Another interesting finding is that NCC may help to
obtain a robust classifier when noise is presented in data.
Using this proposed framework, we showed that a classifier,
based on a deep learning model, may be trained incre-
mentally, achieving satisfactory diagnosis results for fault
detection in IMs and maintaining a constant complexity of
the model. As future work, we are interested in developing
an end-to-end MCIL framework, where the feature extractor
and the classifier can be trained jointly. Likewise, we are
planning to extend our study for the diagnostic of incipient
and electrical faults.

Data Availability

The data used to support the findings of this study are in-
cluded within the article.

Conflicts of Interest

The authors declare no conflicts of interest with respect to
the research, authorship, and/or publication of this article.

Acknowledgments

This research was financially supported by National Institute
For Astrophysics, Optics, and Electronics.

References

[1] Y. Liang, B. Li, and B. Jiao, “A deep learning method for motor
fault diagnosis based on a capsule network with gate-structure
dilated convolutions,” Signal Processing, vol. 17, no. 18, 2020.

[2] G. Adam, W. Glowacz, J. Kozik et al., “Detection of deteri-
oration of three-phase induction motor using vibration sig-
nals,” Measurement Science Review, vol. 19, no. 6, pp. 241-249,
2019.

11

[3] A. Omar, F. Alkahatni, M. Masadeh et al., “Sounds and
acoustic emission-based early fault diagnosis of induction
motor: a review study,” Advances in Mechanical Engineering,
vol. 13, no. 2, 2021.

[4] M. M. Rahman and M. N. Uddin, “Online unbalanced rotor

fault detection of an im drive based on both time and fre-

quency domain analyses,” IEEE Transactions on Industry

Applications, vol. 53, no. 4, pp. 4087-4096, 2017.

A. Y. Khodja, N. Guersi, M. N. Saadi, and N. Boutasseta,

“Rolling element bearing fault diagnosis for rotating ma-

chinery using vibration spectrum imaging and convolutional

neural networks,” International Journal of Advanced

Manufacturing Technology, vol. 106, no. 5, pp. 1737-1751,

2020.

F. Cipollini, L. Oneto, A. Coraddu, and S. Savio, “Unsuper-

vised deep learning for induction motor bearings monitor-

ing,” Data-Enabled Discovery and Applications, vol. 3, no. 1,

2019.

[7] J. Wu, T. Tang, M. Chen, Yi Wang, and K. Wang, “A study on
adaptation lightweight architecture based deep learning
models for bearing fault diagnosis under varying working
conditions,” Expert Systems with Applications, vol. 160, Article
ID 113710, 2020.

[8] J. R. R. Guillen, J. A. B. Hurtado, J. J. D. S. Perez,
D. G. Lieberman, and J. P. A. Sanchez, “Convolutional neural
network and motor current signature analysis during the
transient state for detection of broken rotor bars in induction
motors,” Sensors, vol. 20, no. 13, 2020.

[9] F. B. Abid, M. Sallem, and A. Braham, “Robust interpretable
deep learning for intelligent fault diagnosis of induction
motors,” IEEE Transactions on Instrumentation and Mea-
surement, vol. 69, no. 6, pp. 3506-3515, 2020.

[10] X. Li, J. Li, C. Zhao, Y. Qu, and D. He, “Gear pitting fault
diagnosis with mixed operating conditions based on adaptive
1d separable convolution with residual connection,” Me-
chanical Systems and Signal Processing, vol. 142, Article ID
106740, 2020.

[11] C. Wu, P. Jiang, C. Ding, F. Feng, and T. Chen, “Intelligent
fault diagnosis of rotating machinery based on one-dimen-
sional convolutional neural network,” Computers in Industry,
vol. 108, pp. 53-61, 2019.

[12] Y. Wang, J. Zhou, L. Zheng, and C. Gogu, “An end-to-end
fault diagnostics method based on convolutional neural
network for rotating machinery with multiple case stud-
ies,” Journal of Intelligent Manufacturing, vol. 32, pp. 1-22,
2020.

[13] Y. Liu and Y. Su, “An-an liu, bernt schiele and gianru sun.
“Mnemonics training: multi-class incremental learning
without forgetting™ in Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition,
pp. 12245-12254, IEEE, Seattle, WA, USA, June 2020.

[14] J. J. S. Dorantes, M. D. Prieto, R. A. O. Rios, and
R. D.J. T. Romero, “Industrial data-driven monitoring based
on incremental learning applied to the detection of novel
faults,” IEEE Transactions on Industrial Informatics, vol. 16,
no. 9, pp. 5985-5995, 2020.

[15] X. Wang, X. Liu, and Y. Li, “An incremental model transfer
method for complex process fault diagnosis,” IEEE/CAA
Journal of Automatica Sinica, vol. 6, no. 5, pp. 1268-1280,
2019.

[16] E.Belouadah, A. Popescu, and I. Kanellos, “A comprehensive
study of class incremental learning algorithms for visual
tasks,” Neural Networks: The Official Journal of the Interna-
tional Neural Network Society, vol. 135, pp. 38-54, 2021.

[5

[6

12

[17] S. Rebuffi, A. Kolesnikov, G. Sperl, and C. H. Lampert, “icarl:
incremental classifier and representation learning,” in Pro-
ceedings of the 2017 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 5533-5542, IEEE, Honolulu,
HI, USA, July 2017.

[18] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning,
MIT Press, 2016.

[19] H. Zeng, Z. Wu, J. Zhang et al., “Eeg emotion classification
using an improved sincnet-based deep learning model,” Brain
Sciences, vol. 9, no. 11, 2019.

[20] M. Ravanelli and Y. Bengio, “Speaker recognition from raw
waveform with sincnet,” in Proceedings of the 2018 IEEE
Spoken Language Technology Workshop (SLT), pp. 1021-1028,
IEEE, Athens, Greece, December 2018.

[21] L. Rabiner and R. Schafer, Theory and Applications of Digital
Speech Processing, Prentice Hall Press, NJ, USA, 2010.

[22] B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba,
“Learning deep features for discriminative localization,” in
Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 2921-2929, IEEE, Las Vegas, NV,
USA, June 2016.

[23] S. Hou, X. Pan, C. C. Loy, Z. Wang, and D. Lin, “Learning a
unified classifier incrementally via rebalancing,” in Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 831-839, IEEE, Long Beach, CA, USA, June
2019.

[24] R. Tibshirani, T. Hastie, B. Narasimhan, and G. Chu, “Di-
agnosis of multiple cancer types by shrunken centroids of
gene expression,” Proceedings of the National Academy of
Sciences, vol. 99, no. 10, pp. 6567-6572, 2002.

[25] W. A. Smith and R. B. Randall, “Rolling element bearing
diagnostics using the case western reserve university data: a
benchmark study,” Mechanical Systems and Signal Processing,
vol. 64, pp. 100-131, 2015.

[26] D. P. Kingma and B. Jimmy, “Adam: a method for stochastic
optimization,” in Proceedings of the International Conference
on Learning Representations, Cornell University Press, San
Diego, California, December 2014.

[27] G. Montavon, B. O Genevieve, and M. K. Robert, “Neural
Networks: Tricks Of the Trade,” Lecture Notes In Computer
Science, Vol. 7700, Springer, Berlin/Heidelberg, Germany,
Second edition, 2012.

Shock and Vibration

