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'e gear transmission system is widely used in high-speed centrifugal pump to improve the operating speed and hydraulic
performances of the whole pump. Vibration characteristics and the stability of these high-speed rotor systems with gear
transmission have great impacts on the stability of the whole fluid transmission system of the plant. Based on the lumped-mass
method and the principle of displacement equilibrium of the rotor system, a coupled lateral-torsional dynamic model describing
the gear-rotor-seal-bearing (GRSB) system of high-speed centrifugal pumps which has considered the nonlinear factors within the
gear pair, nonlinear forces of bearings, and those of the seals is proposed.'en, the stability and nonlinear vibration responses of a
model GRSB system under different gear transmission ratios (i) have been studied. 'e following conclusions are drawn from the
results: (1) 'e components with frequencies like fp, fg, fm, and 2fm have great impacts on the vibration responses of the gear pair,
especially the fm component; moreover, the amplitude of fm first increases and then decreases with the ratio increase and reaches
the maximum value under the ratio of 3. (2) A jumpmotion state will occur when the ratio i is 1.25 and the stability of the system is
obviously worse than the bifurcation state. Quite different from those under the other states, under this jump motion state, the
0.2fg component and 0.5fp component will appear in the vibration responses of both gears and become the most contributed two
factors to the responses of the driven gear. (3) In the design process, the transmission ratio of a high-speed centrifugal pumpwith a
simplified GRSB system should be specially designed to avoid the jump-point state and the maximum-amplitude-of-fm state to
ensure the stability of the system as well as reduce the mechanical impacts and noises.

1. Introduction

High-speed centrifugal pumps which are characterized by
high speed and low specific speed are widely used as the key
equipment of fluid transport in petrochemical and nuclear
energy fields [1].'e vibration characteristic analysis is a key
problem in the design and optimization of this kind of pump
and is also the key to ensuring the stable operation of the
pump. Generally, the rotor system of the high-speed cen-
trifugal pump includes gears, seals, bearings, and rotating
shaft; therefore, the system can be simplified to a gear-rotor-
seal-bearing (GRSB) system. Nonlinear factors, including
bearing forces, seal forces, andmeshing forces of gears acting
on the rotor system of these high-speed centrifugal pumps,

make the system show significant nonlinear vibration
characteristics. Previous studies showed that the nonlinear
bearing force, seal force, and inner flow directly induced the
instability problem in these pumps [2–4]. Beyond that, the
interactions of lateral vibration and torsional vibration make
the dynamic behaviors of the GRSB system more complex
and difficult to predict [5]. 'erefore, the vibration analyses
of these GRSB systems should be undertaken by combining
the studies of bearings, seals, gear pairs, and coupled lateral-
torsional vibration analyses.

As main supporting elements, rolling bearings are widely
used in centrifugal pump for the compact structure, low
friction resistance, and high mechanical efficiency. El-Sayed
et al. [6] proposed the method for calculating the bearing
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stiffness using Hertz’s contact theory and analyzed the de-
flections of the outer and inner rings caused by an applied
load. Harsha et al. [7–10] developed a dynamic model of a
bearing-rotor system based on the Lagrange equation and
examined the influences of the pretightening force, ball
number, bearing clearance, and wavy degree on the stability
of the system. Kankar et al. [11] derived a mathematical
formulation with consideration of the nonlinear springs and
nonlinear damping at the contact points of rolling elements
and races and investigated the effects of bearing running
surface waviness on the nonlinear vibrations of the rotor-
bearing system. Wang et al. [12] developed an analytical
model to investigate the effects of inhomogeneity in races on
the dynamic behaviors of rolling bearing.'e results showed
that the inhomogeneity in the inner race had greater in-
fluences than that in the outer race. Yang et al. [13] analyzed
the varying compliance resonance characteristics in a ball-
bearing-rotor system and compared the vibration responses
of the system in a large speed range with the consideration of
different ball numbers and different rotor eccentricities.

In addition to the investigations of rolling bearings and
rotor-bearing system, the characteristics of annular seals,
vibration performances, and stability of rotor-bearing-seal
systems are also research hotspots in recent decades.
Muszynska [14] introduced a fluid velocity ratio to describe
the whirling motion of the seal and proposed a model for the
rotor-bearing-seal system, which is proved to be of great
significance to the stability analysis of the rotor system by
experiments. Leung et al. [15] studied the Hopf bifurcation
behavior of a rotor-seal system under the unbalanced rotor
mass based on the Muszynska nonlinear seal force model.
Cheng et al. [16] investigated the nonlinear behaviors of a
rotor-bearing-seal system based on Muszynska’s nonlinear
seal fluid dynamic force model. 'e simulation results in-
dicated that the dynamic behavior of the system depends on
the rotational speed, seal clearance, and pressure difference
of the seals. Li et al. [17] established a new dynamic model of
a rotor system based on the Hamilton principle and finite
element method (FEM) and compared the dynamic be-
haviors of the system with different seal pressure differences
and mass eccentricity. Peng et al. [18] developed an exci-
tation method based on the Bently-Muszynska model and
discussed the optimum shape of the balancing drum to
reduce the excessive vibration under high rotational speed
operating conditions. Zhang et al. [19] derived the motion
equations of a rotor-bearing-labyrinth-seal system and an-
alyzed effects of the inlet pressure and seal length on the
stability of the system by spectrum cascades, bifurcation
diagrams, and Poincare maps. Zhou et al. [20] explored
nonlinear characteristics of the system under different seal
clearances, seal lengths, and seal radiuses based on the
nonlinear dynamic model and optimized the stability of the
rotor system through a genetic algorithm. Later, Zhou [21]
proposed a dynamic vibration model for the pump-turbine
rotor system and studied the nonlinear dynamic charac-
teristics of crown seal force and stability of the rotor system
with different seal channel clearance and air gap. Wang et al.
[22] developed a coupled dynamic model of multistage
pump rotor system based on FEM, whose maximum errors

were 5.5% compared to the experimental results. Recently,
Zhou et al. [23] proposed a novel axial dynamic model
considering transient forces of balancing drum seal and
analyzed the inner chamber pressure changes with the in-
crease of the axial gap and rotational speed. 'e results
showed that the inner chamber pressure was more sensitive
to the inlet pressure than the rotational speed. Bai et al. [24]
tested the vibration characteristics of a cantilever multistage
centrifugal pump under different flow rates and valued its
operating stability. 'e results showed that the vibration of
the unbalanced mass of the rotor was the most important
factor that induced excessive vibration.

As the gear transmission system and the interactions
between the lateral vibration and the torsional vibration
have a great influence on the stability and vibration
characteristics of the rotor system, researches on relevant
topics have been conducted in recent years. Kaharman et al.
[25] examined the nonlinear frequency response charac-
teristics of a spur gear pair with backlash under external
and internal excitation by harmonic balance method and
built a three-degree-of-freedom dynamic model for a gear-
rotor-bearing system [26]. Besides, the influences of
nonlinear modal interactions, internal static transmission
error excitations, and external torque excitations were
discussed. Rao et al. [27] studied the lateral response of the
gear-rotor system due to torsional excitation and the results
showed that the coupling mechanismmay be harmful to the
operation of geared turbine rotors. Stephanos et al. [28]
investigated the response and stability characteristics of the
gear-rotor system with external loads and gear meshing
loads. Vedmar et al. [29] analytically described the dynamic
gear tooth forces and bearing forces and found that the
dominant vibration mode for the gear contact is the one
where the gear tooth deformation appears. Lee et al. [30]
presented a calculation method for the unbalance response
orbit of a gear-coupled two-shaft rotor-bearing system and
observed bumps in the unbalance responses at the first
torsional natural frequency because of the coupling be-
tween the lateral and torsional dynamics due to gear
meshing. Anoshirvan et al. [31] formulated a generalized
nonlinear time-varying (NLTV) dynamic model of a spur
gear pair, where the backlash, external excitation, and static
transmission error are included, using Melnikov analysis.
'e global homoclinic bifurcation and the transition to
chaotic behavior of a nonlinear gear system were studied
based on the proposed model. Li et al. [32] established a
lumped-parameter nonlinear dynamic model of a helical-
gear-rotor-bearing system and obtained vibration response
of this system with different rotational speed and eccen-
tricity. Habibollah et al. [33] investigated the effects of tooth
profile modification on the nonlinear dynamic behaviors of
the straight-bevel-gear systems and employed the optimum
tooth profile to modify the dynamic response of the bevel
gear through a genetic algorithm. Jerzy et al. [34] proposed
a model describing the gear backlash which involved
polynomial functions of the third degree and the loga-
rithmic equation and investigated the numerical mapping
characteristics of the gear backlash. Tang et al. [35] dis-
cussed the fault diagnosis performances of gears and
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bearings in rotating machinery based on different CNN
methods.

It can be concluded that, in the previous studies, the
coupled lateral-torsional vibration dynamics analysis of the
system for high-speed centrifugal pump, especially the re-
search of gear parameters on the stability and vibration
characteristics of the high-speed pump rotor system, is
relatively rare.'us, in this paper, a coupled lateral-torsional
vibration dynamic model considering the nonlinear bearing
forces, seal forces, and dynamic meshing forces of the gears
and the forth-order-Runge-Kutta-based solution for this
model are established. And the effects of the transmission
ratio on the nonlinear vibration characteristics of the model
GRSB system are investigated based on the proposed model.

2. DynamicModel of aGear-Rotor-Seal-Bearing
(GRSB) System

Figure 1 shows the 3D structure diagram of the rotor system
of a high-speed centrifugal pump.'e system is composed of
driving gear, driven gear, rolling bearings, rotor, seal, and
elastic rotating shafts. 'e forces and torque acting on the
system are shown in Figure 2, including input and output
torque, meshing force, and nonlinear seal force and bearing
force. According to the lumped-mass method, the rolling
bearings, driving gear, driven gear, and rotor can be sim-
plified as 7 mass nodes represented by oj (j� b1, b2, b3, b4, p,
g, r, d), whose equivalent mass ismb1,mb2,mb3,mb4,mp, mg,
and mr, respectively. 'e driving torque of the rotor system
acts on node d. xj and yj (j� b1, b2, b3, b4, p, g, r) represent
the displacements of oj j� b1, b2, b3, b4, p, g, r, d in x and y
directions.

km(t) and cm(t) are time-varying meshing stiffness and
damping of the gear pair; δ(t) is the internal excitation error
in the meshing process of gears; ω1 and ω2 denote the
angular velocity of the driving and driven shafts, respec-
tively; φj (j� d, p, g, r) refers to the angular displacements of
oj (j� d, p, g, r); and φd refers to the angular displacement of
the node acted by input loads. 'e angular displacements
can be expressed as

ϕd � ω1t + θd,

ϕp � ω1t + θp,

ϕg � ω2t + θg,

ϕr � ω2t + θr,

(1)

where θj (j� d, p, g, r) are the torsional vibration dis-
placements of the nodes mentioned above.

2.1. Nonlinear Dynamic Meshing Force of Gears. As the
nonlinear forces due to gear meshing have great influences
on vibration characteristics of the rotor system, factors that
will affect the nonlinear forces are considered in the pro-
posed dynamic model of this paper, including tooth surface
friction, mass eccentricity, and gear backlash in the gear pair.

Figure 3 illustrates the forces and displacements within
the gear system the gear pair of the GRSB system. ep and

egare the mass eccentricity on the driving and driven gear;
Gp and Gg are the barycenters of the driving and driven gear;
rp and rg are the pitch radii of the driving and driven gears,
respectively; α1 is the angle between the center line of the
gears and the vertical direction; αt is the pressure angle of the
gear; Fm and Ff are the dynamic meshing force and friction
force of gear. Referring to the elastic theory, Fm can be
expressed as follows:
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Figure 1: Gear-rotor-seal-bearing (GRSB) system.
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Fm � km(t) · f(S) + cm(t) · dS, (2)

where km and cm can be described as equation (3); f(S) is the
function of the backlash and can be expressed as equation (4)
[36].

km(t) � kav + kam sin ω1 · zp · t􏼐 􏼑,

cm(t) � 2ξm
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(4)

where kav is the mean of the stiffness; kam represents the
amplitude of the stiffness; ζm is the damping ratio of the gear.

S represents the relative displacement produced by the
bending-torsional coupled vibrations of the driving and
driven gears. S can be obtained by equation (5) [32].

S � xp + ep cos ϕp􏼐 􏼑 − xg + eg cos ϕg􏼐 􏼑􏽨 􏽩cos α1 − αt( 􏼁

+ yp + ep sinϕp􏼐 􏼑 − yg + eg sinϕg􏼐 􏼑􏽨 􏽩

· sin α1 − αt( 􏼁 + rpθp − rgθg − δ(t),

(5)

where δ(t) can be described as follows:

δ(t) � δav + δam sin ω1 · zp · t􏼐 􏼑. (6)

δav and δam are the mean meshing error and fluctuation
amplitude, respectively; zp and zg are the number of teeth of
the driving and driven gear.

'e meshing force between gear teeth is decomposed
into the x and y directions, and it can be obtained as follows:

Fmx � Fm · cos α1 − αt( 􏼁,

Fmy � Fm · sin α1 − αt( 􏼁.
(7)

According to the force analysis of the gear meshing
process, the friction force Ff of gear can be approximately
expressed as

Ff � λ · fλ · Fm,

Ffx � Ff sin α1 − αt( 􏼁,

Ffy � Ff cos α1 − αt( 􏼁,

(8)

where Ffx and Ffy are the components of Ff in the x and y
directions, respectively; fλ is the equivalent friction coeffi-
cient; λ is the direction coefficient of the gear tooth friction,
which can be calculated by the following equations [37]:

λp � rp + rg􏼐 􏼑tan αt −

������

r
2
p − r

2
g

􏽱

+ rpω1t,

λg � rp + rg􏼐 􏼑tan αt − λp,

λ � sgn _θpλp − _θgλg􏽨 􏽩.

(9)

2.2. Nonlinear Rolling Bearing Force. 'e schematic diagram
of rolling bearing and the forces acting on it are shown in
Figure 4. Nb denotes the number of the rollers in the rolling
bearing; Fj is the force on the roller j; and the Fj position βj is
represented as

βj � ω · t +
2π(j − 1)

Nb
. (10)

Disregarding the axial force on the bearing, the lateral
vibration displacement at the journal position is assumed as
x and y. In accordance with Hertz contact theory, Fj and the
radial forces Fbx and Fby received from the roller can be
obtained using the following equations:

Δ � x cos βj + y sin βj,

Fj � KbΔ

3
2
+ ,

Fbx � 􏽘
Nb

j

Fj cos βj,

Fby � 􏽘

Nb

j

Fj sin βj,

(11)

where ∆ is the deformation of roller j and Kb is a constant
determined by the total deformation of the rolling body and
the inner and the outer rings under the actions among them.

2.3. Nonlinear Seal Force and Torque Excitation.
Muszynska’s [13] nonlinear fluid force model within the
seals is introduced in the dynamic model of the GRSB
system. In this model, a velocity ratio c is proposed to
describe the force-motion relations (shown in equation (12))
of the seal rotor and is used to solve the dynamic coefficients
including stiffness Kseal and damping Cseal [38]. [14].

−
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2ω2
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(12)

where Fsealx and Fsealy are the fluid forces of the seal in the x
direction and y direction, respectively.

'e input torque (Td) acting on the GRSB system can be
expressed by the following equation:
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Td � Tav + Tam

�
9550P

n1
+ 0.1 · Tav sin ω1z1t( 􏼁,

(13)

where Tav is static torque and Tam is dynamic torque.
Moreover, the torque acting on the driving gear Tp, the
driven gear Tg, and the rotor Tr can be simplified as

Tp � Td · η,

Tg � −Tp ·
η
i
,

Ts � Tg · η,

(14)

where η is transmission efficiency and i is the transmission
ratio of the gear pair.

2.4. Vibration Differential Equations of the GRSB System.
In this paper, the dynamic equations of the model of GRSB
system consider 18 degrees of freedom shown in equation
(15).

Z � θd, xb1, yb1, θp, xp, yp, xb2, yb2, xb3, yb3, θg, xg, yg, xb4, yb4, θr, xr, yr􏽨 􏽩
T
.

(15)

According to the principle of displacement equilibrium,
the motion differential equations shown in equation (16) for
the four bearings can be derived.

mb1 €xb1 + cs1 _xb1 − _xp􏼐 􏼑 + ks1 xb1 − xp􏼐 􏼑 � Fbx1,

mb1€yb1 + cs1 _yb1 − _yp􏼐 􏼑 + ks1 yb1 − yp􏼐 􏼑 � Fby1 − mb1g,

mb1€xb2 + cs2 _xb2 − _xp􏼐 􏼑 + ks2 xb2 − xp􏼐 􏼑 � Fbx2,

mb1€yb2 + cs2 _yb2 − _yp􏼐 􏼑 + ks2 yb2 − yp􏼐 􏼑 � Fby2 − mb2g,

mb1€xb3 + cs3 _xb3 − _xg􏼐 􏼑 + ks3 xb3 − xg􏼐 􏼑 � Fbx3,

mb1€yb3 + cs3 _yb3 − _yg􏼐 􏼑 + ks3 yb3 − yg􏼐 􏼑 � Fby3 − mb3g,

mb1€xb4 + cs4 _xb4 − _xg􏼐 􏼑 + ks4 xb4 − xg􏼐 􏼑 + cs5 _xb4 − _xr( 􏼁 + ks5 xb4 − xr( 􏼁 � Fbx4,

mb4€yb4 + cs4 _yb4 − _yg􏼐 􏼑 + ks4 yb4 − yg􏼐 􏼑 + cs5 _yb4 − _yr( 􏼁 + ks5 yb4 − yr( 􏼁 � Fby4 − mb4g.

(16)

Similarly, the motion differential equations of the input
load and driving gear can be expressed as

Id
€θd + ct1

_θd − _θp􏼐 􏼑 + kt1 θd − θp􏼐 􏼑

� Td,

Ip
€θp + ct1

_θp − _θd􏼐 􏼑 + kt1 θp − θd􏼐 􏼑

� Fmrp + Tp,

mp€xp + cs1 _xp − _xb1􏼐 􏼑 + ks1 xp − xb1􏼐 􏼑

+ cs2 _xp − _xb2􏼐 􏼑 + ks2 xp − xb2􏼐 􏼑

� Fmx + Ffx + mpepω
2
1 cos ϕp,

mp€yp + cs1 _yp − _yb1􏼐 􏼑 + ks1 yp − yb1􏼐 􏼑

+ cs2 _yp − _yb2􏼐 􏼑 + ks2 yp − yb2􏼐 􏼑

� Fmy + Ffy − mpg + mpepω
2
1 sinϕp.

(17)

'e motion differential equations of the driven gear can
be expressed as equation (18).

Ig
€θg + ct2

_θg − _θs􏼐 􏼑 + kt2 θg − θs􏼐 􏼑

� −Fmrg + Tg,

mg€xg + cs3 _xg − _xb3􏼐 􏼑 + ks3 xg − xb3􏼐 􏼑

+ cs4 _xg − _xb4􏼐 􏼑 + ks4 xg − xb4􏼐 􏼑

� −Fmx − Ffx + mgegω
2
2 cosϕg,

mg€yg + cs3 _yg − _yb3􏼐 􏼑 + ks3 yg − yb3􏼐 􏼑

+ cs4 _yg − _yb4􏼐 􏼑 + ks4 yg − yb4􏼐 􏼑

� −Fmy − mgg − Ffy + mgegω
2
2 sinϕg.

(18)

'e motion differential equations of the rotor can be
expressed as

Ir
€θr + ct2 θr − θg􏼐 􏼑 + kt2 θr − θg􏼐 􏼑 � Tr

mr€xr + cs5( _xr − _xb4 ) + ks5( xr − xb4 )

� Fsealx + mrerω
2
2 cos ϕr,

mr€yr + cs5( _yr − _yb4 ) + ks5( yr − yb4 )

� Fsealy − mrg + mrerω
2
2 sinϕr.

(19)

Ij (j� d, p, g, r) is the inertia moment of mass nodes od, op,
og, and or, respectively. kt1 and ct1 are the torsional stiffness
and damping of the driving shaft between nodes od and op; kt2
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and ct2 are the torsional stiffness and damping of the driven
shaft between nodes og and or; ks1 and cs1 are the bending
stiffness and damping of the rotating shaft between node op
and node ob1; ks2 and cs2 are the bending stiffness and damping
of the rotating shaft between node op and node ob2; ks3 and cs3
are the bending stiffness and damping of the rotating shaft
between node og and node ob3; ks4 and cs4 are the bending
stiffness and damping of the rotating shaft between node og

and node ob4; ks5 and cs5 are the bending stiffness and damping
of the rotating shaft between node or and node ob4.

Based on the proposed method above, the lateral-tor-
sional coupled differential equation of a high-speed cen-
trifugal pimp whose rotor system can be simplified as a
GRSB system is established utilizing equations (16)–(19).
Detailed parameters of the model GRSB system are provided
in Table 1. And the nonlinear vibration response charac-
teristics of the system can be obtained by solving the
equations with the fourth-order Runge-Kutta method. 'e
block diagram of the calculation program is illustrated in
Figure 5. In this study, the displacement responses in x
direction of node or, which is the mass node of the rotor, are
used to value the time-step independence. 'e calculation
results with different time steps from 0.001 s to 0.00001 s are
shown in Figure 6, and Figure 7 shows the amplitude of node
or in three crests with five different time steps. As is shown,
when ∆t is less than 0.0001 s, the responses curve changes
little with the time step.'us, to shorten the calculation time
as well as ensure the calculation accuracy, the time step is set
as 0.0001 s. Besides, the integral time step is π/200, and the
convergence error is set as 1× 10−6.

3. Vibration Responses Analysis of the
GRSB System

'e transmission ratio has an important influence on the
structure, layout, and overall design of the rotor system. And
the influence of transmission ratio on the nonlinear

dynamics of the GRSB system is analyzed by the spectrum-
domain diagram, time-domain responses, bifurcation the-
ory, and Poincare mapping.

3.1. Frequency-Domain Analysis of the GRSB System. 'e
spectrum waterfall diagrams of the driving and driven gear
in x and y directions are shown in Figures 8 and 9, in which
the transmission ratio i of the gear pair system is used as the
variable parameter. Due to the coupled motion between the
driving gear and the driven gear during the operation of the
system, the frequency-domain responses of the system
consist of the driving shaft rotational frequency fp (60/n1)
component, the driven shaft rotational frequency fg (60/n2)
component, the meshing frequency fm (z1 × 60/n1) com-
ponent, and the multiplicative frequency 2fm component,
while the amplitude of the multiplicative frequency 2fm
component is much lower than others.

In Figure 8(a), the frequency components of the driving
gear in x direction are mainly composed of fp and fm, which
means the characteristics and the motion state of the driving
shaft and the meshing parameters (such as time-varying
meshing stiffness/damping and internal excitation error)
have a major influence on the vibration responses of the
driving gear in x direction. With the transmission ratio
increases, the amplitude of fp component decreases first and
then increases, reaching its minimum value at the trans-
mission ratio of 2. Besides, as shown in the detail, the
amplitude diagram of fg component and the rotation of the
driven gear affect the vibration responses of the driving gear,
especially when the ratio is relatively small, and the am-
plitude of fg component decreases with the ratio increase.
Figure 8(b) shows the frequency-domain responses of the

ω

y

x

Fj

βj

2π/Nb

Figure 4: Schematic diagram of the rolling bearing system.

Table 1: Main parameters of the GRSB system.

Gear pair
M 3
Zg 17
mg (kg) 1.115
Ig (kg·m2) 3.6×10−4

ka (N/m) 4×108
k0 (N/m) 2×108
eg and ep (m) 1× 10−5

δm and δr (m) 1× 10−5

α1 and αt (°) 120, 20
Ζm 0.1
Seal and bearing
Cseal (m) 0.1× 10−3

Rseal (m) 50×10−3

Lseal (m) 50 × 10−3
mb1 and mb2 (kg) 2.329
mb3 and mb4 (kg) 1.348
Shaft and rotor
kt1 and kt2 (N/m) 1.54×105
ks1, ks2, ks3, and ks4 (N/m) 4×105
ks5 (N/m) 2.6×105
ζt and ζs 0.07
mr (kg) 2.7
Ir (kg·m2) 3.72×10−3
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driving gear in y directions at different transmission ratios.
Comparing Figure 8(b) with Figure 8(a), it can be obtained
that the amplitude of fm component of the driving gear in y
direction is much higher than that in x direction under the
same transmission ratio, which means that the vibration
responses of driving gear in y direction are more sensitive
with the change of the meshing factors.

Figures 9(a) and 9(b) are the frequency-domain responses
of the driven gear, respectively, in x direction and y direction.
As shown in the figures, there exist the fp component, the fg

component, the fm component, and the 2fm component in the

frequency-domain responses. Quite different from the effects
of the fp component on the vibration responses of the driving
gear shown in Figure 8(a), fg component basically remains
the same with the transmission ratio increase. Besides, as
indicated in Figure 9(b), the amplitude of the fp component is
higher than that of fg, which means that the characteristics
and the motion state of the driving shaft have much more
impacts than those of the driven shaft on the vibration re-
sponses of the driven gear in y direction.

Figures 8 and 9 illustrate that the meshing frequency fm
component has a great influence on the vibration responses of

Nonlinear meshing force of gear:
Fm, Ff (equation (2) and equation (8))

Nonlinear seal force:
Fsealx, Fsealy (equation (12))

Nonlinear bearing force:
Fbx, Fby (equation (11))

Vibration differential equations
of GRSBS (equation (16–19))

Fourth-order Runge-Kutta method

Convergence error: ε

Output results

Yes

No

Input parameters: rolling bearing, seal,
gear, rotor, sha� and operating conditions

Figure 5: Block diagram of the nonlinear global calculation program.
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both the two gears. And compared with the driving gear, in
both directions, the vibration responses of the driven gear are
more sensitive with the change of the meshing factors.
Moreover, the amplitude of the meshing frequency fm com-
ponent increases first and then decreases obviously with the
ratio increase.

Figure 10 presents the variation of fm component with the
ratio ranging from 2.5 to 3.5, and the variation shows that the
amplitude of fm component reaches the maximum value under
the ratio of 3 in all the four responses. Besides, as the value of fm
is more than 17 times bigger than the other frequencies like fp
and fg, fm component acts as the most dominant high-fre-
quency impact load and noise source. As shown in the figure,
the amplitude of fm component of the driven gear in y direction
is 5 times higher than the amplitudes of the other components,
which illustrates that the impacts and the noises of the system
mainly come from the driven gear motion in y direction.

3.2. Analysis of the Bifurcation Characteristics of the GRSB
System. Figures 11 and 12 show the bifurcation of the gear
pair in x and y directions with the transmission ratio as the
bifurcation parameter. Figures 11(a) and 12(a) indicate that
an obvious jump phenomenon appears in x direction when
the transmission ratio is 1.25. As the transmission ratio
increases, a bifurcation phenomenon occurs at the ratio of 4
at the driving gear. In Figure 11, the amplitude responses of
the driving gear with different ratio and the distance between
the highest amplitude and the lowest amplitude are almost
the same, which means that there is no obvious change in
fluctuation amplitude of the driving gear responses under
different transmission ratio.

Figure 12 is the bifurcation diagram of the driven gear,
with the increasing transmission ratio; the amplitude of the
driven gear system does not change significantly until the
transmission ratio is 3. When i is bigger than 3 but smaller
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Figure 8: 'e spectrum waterfall diagram of the driving gear: (a) in x direction and (b) in y direction.
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Figure 9: 'e spectrum waterfall diagram of the driven gear: (a) in x direction and (b) in y direction.
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than 4.5, the fluctuation amplitude of the driven gear
changed and a “lung-like” region is formed on the bifur-
cation diagram. In order to optimize the design of the rotor
system of the high-speed centrifugal pump, the nonlinear
dynamic characteristics of the driving gear and the driven
gear under different motion states are compared below,
including the jump states (represented by Q1) and the bi-
furcation states (represented by Q2).

3.3. Influence of the Jump Phenomenon on the Vibration
Responses of the GRSB System. Figures 13 and 14 compare
the dynamic vibration responses of the driving and driven
gear in x and y direction under the condition that the
transmission ratio is 1.25, where an obvious jump phe-
nomenon appeared as shown in Figure 11.

Figure 13(a) shows that the time-domain responses of xp
have no obvious periodicity; Figure 13(b)) shows that the
driving shaft rotation frequency (fp) component and the
meshing frequency (fm) component are the main frequency

components in the responses. Notice that there exist mul-
tiple combinations of frequencies within the frequency band
lower than the driven shaft rotation frequency (fg) com-
ponent, which is a challenge to the stability of the system.
Figure 13(c) shows that the Poincare scatter is concentrated
in five small separate areas. Combining Figure 13(a)) with
Figure 13(c), it can be concluded that the motion of the
driving gear in x direction is chaotic.

Figure 14 illustrated the vibration responses of the
driving gear in y direction. It is obvious from the vibration
responses curve that the vibration of the driving gear in the y
direction is more complex than that in x direction. As can be
seen from Figure 14(b)), the frequency-domain responses in
the y direction of the driving gear present obvious com-
ponents with frequencies of 0.2fp and 0.5fg. Moreover,
combining with the facts that the amplitude of fm compo-
nent in y direction is much larger than that in x direction, the
multiplicative frequency 2fm component appears in y di-
rection too, and it can be obtained that the impacts of the
meshing are stronger on the vibration in y direction. 'e
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Figure 10: 'e amplitude of the meshing frequency fm with the change of transmission ratio.
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scatter of Poincare map of yp shows that the motion state of
the driving gear in y direction is chaotic, and the stability in y
direction is worse than that in x direction.

Figures 15 and 16 are, respectively, the frequency-do-
main responses and Poincare mapping of the driven gear.
Compared with the driving gear, the amplitude of 0.2fp
component is particularly large, and it has become the most
contributed frequency in the vibration responses. 'e
meshing frequency fm has become one of the dominant
frequencies of the driven gear vibration responses. And
Figure 16(a) shows that the driving gear is more stable than
the driven gear in x direction. Comparing Figures 16(a) and
16(b), the scatter distribution in y direction shows better
stability than in x direction, which is quite different from the
distributions of the driving gear.

3.4. Influence of the Bifurcation on the Vibration Responses of
the GRSB System. To further analyze the response

characteristics of the GRSB system under bifurcation peri-
odic motion state, the frequency-domain diagram and the
Poincare map are used to describe the vibration responses of
the gears under the transmission ratio of 4.

Comparisons of the frequency-domain responses of the
gears shown in Figure 17 and the responses of the gears
shown in Figures 13 and 14 illustrate that the frequency
components under bifurcation periodic motion state are
simpler than that the jump state, which includes only fp (the
driving rotational speed frequency) component, fg (the
driven rotational speed frequency) component, fm (the
meshing frequency) component, and 2fm (the multiplicative
frequency) component but with no low-frequency compo-
nents like 0.2fp and 0.5fg. Moreover, the vibration responses
of the driving gear are heavily dependent on fp component.
In contrast, fm acts as the first dominating factor in the
driven gear responses.'e amplitude of fm component in the
driven is significantly higher than that in the driving gear in
both the two directions. And the meshing frequency fm
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component has more contribution of the gear responses in y
direction than in x direction. Figure 18 illustrates that the
gears under the bifurcation state with a transmission ratio of
4 are far more stable than in the jump state with a trans-
mission ratio of 1.25.

4. Conclusions

In this study, a coupled lateral-torsional vibration dynamic
model of a high-speed centrifugal pump rotor considering
the nonlinear bearing forces, nonlinear seal forces, the tooth
surface friction, mass eccentricity, backlash, and the internal
error of gears is established. Some conclusions that will help
the optimal design for high-speed centrifugal pumps can be
drawn as follows:

(1) Due to the coupling motion of the system, the fre-
quency-domain responses in both directions are
composed of fp (the rotation speed of driving shaft
frequency) component, fg (the rotation speed of
driven shaft frequency) component, fm (the meshing

frequency) component, and 2fm (the multiplicative
frequency) component. Moreover, fm component
has a significant influence on the vibration responses
of the driving and driven gears, and the amplitude of
fm component increases first, then decreases with the
ratio increase, and reaches the maximum value
under the ratio of 3.

(2) 'e motion state of the gears is sensitive to the
change of the transmission ratio of the GRSB system.
'e vibration responses of the gear system in x di-
rection will appear in the jump state when the ratio is
1.25 and bifurcation state when the ratio is 4.
Comparisons of the vibration responses and Poin-
care mapping show that the system is more stable in
the bifurcation state than in the jump state, and the
frequency composition of the responses is relatively
simpler.

(3) When the system is in the jumpmotion state, the low
frequencies of 0.2fg and 0.5fp will appear in both
gears in two directions, which are also the most
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contributed factors to the vibration responses of the
driven gear. Besides, the stability of the driving gear
and the driven gear is opposite in the two directions;
that is, the driving gear has better stability in x di-
rection, while the driven gear has better one in y
direction.

(4) In the design process of a high-speed centrifugal
pump with a simplified GRSB system, the trans-
mission ratio should avoid the jump-state design
(i� 1.25) to ensure the stability of the system and
avoid the maximum-amplitude-of-fm design (i� 3)
to reduce the mechanical impacts and noises.

Nomenclature

Subscripts

am: Amplitude
Av: Average
B: Node of rolling bearing
D: Node acted by input load
F: Friction of gears
G: Node of driven gear
M: Meshing processes
P: Node of driving gear
R: Node of rotor
seal: Node of annular seal
X: In x direction
Y: In y direction.

Symbols

backlash: Gear backlash
C: Damping
E: Mass eccentricity
f: Frequency
F: Force
G: Barycenter
i: Transmission ratio
I: Rotational inertia
k: Stiffness
ks: Bending stiffness
kt: Torsional stiffness
Nb: Number of the roller
m: Equivalent mass
M: Model of gear
n1/n2: Rotational speed of driving/driven shaft
o: Equivalent mass point
S: Relative displacement
T: Torque
x: Displacement of x direction
y: Displacement of y direction
z: Teeth of gear
α1: Angle between the center line and the axis of the

gear
αt: Pressure angle of gear
δ: Error
∆: Deformation of roller
ε: Convergence error
ζ: Damping ratio

θ: Torsional displacement
λ: Direction coefficient of the gear tooth friction
φ: Angular velocity
η: Transmission efficiency.
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