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A novel fault diagnosis method of rolling bearing based on deep metric learning and Yu norm is proposed in this paper, which is
called a deep metric learning method based on Yu norm (DMN-Yu). In order to solve the misclassification caused by the
traditional deep metric learning based on distance metric function, a similarity criterion based on Yu norm is introduced into the
traditional deep metric learning. Firstly, the deep metric learning neural network (DMN) is used to adaptively extract the fault
feature parameters. Secondly, considering that the data samples at the boundary between different fault categories can be
misclassified, themarginal Fisher analysis method based on Yu norm is used to optimize the features. And then, BPNN classifier of
DMN-Yu method is used to fine tune the network parameters and diagnose the fault category. Finally, the effectiveness and
feasibility of the proposed DMN-Yu method is verified with the rolling bearing fault diagnosis test. And the superiority of the
proposed diagnosis method is validated by comparing its diagnosis accuracy with the deep metric learning method based on
Euclidean distance (DMN-Euc), traditional deep belief network (DBN), and support vector machine (SVM) combined with the
common time-domain statistical features.

1. Introduction

)e rolling bearing is one of the key components in rotating
machinery, and its running state has an important influence
on the health of rotating machinery. In order to prevent
production losses and casualties, it is very necessary to
monitor the running condition of rolling bearings and
identify their fault categories [1]. )e condition monitoring
system is an effective tool to ensure the normal operation of
the bearing. Owing to the long data acquisition time from
the beginning of service to the end of life, the relatively large
number of measuring points and the high sampling fre-
quency, the mechanical big data can be obtained to reflect

the health condition of bearings [2–4]. )erefore, it is of
great significance to study how to effectively use the big data
to diagnosis the bearing fault.

In recent years, many traditional intelligent diagnosis
methods based onmachine learning have been applied to the
field of fault diagnosis. KNN, Bayes network, and others
shallow-layer neural networks are all utilized to diagnose the
different fault categories of mechanical equipment [5–9], but
these ANN methods need the feature parameters which are
manually extracted by diagnosis experience and signal
processing method. Afterwards, deep learning [10, 11] is
developed and applied to the field of fault diagnosis because
of the ability of automatically extracting feature parameters
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and directly identifying faults from big data [2]. Some deep
learning models are also designed to diagnose bearing faults;
for example, deep belief network (DBN) is proposed to
diagnose faults of aircraft engine and power transformer and
rolling bearing [12, 13], and deep convolution neural net-
work (DCNN) is also used to identify outer ring raceway
faults and different severity degrees of lubricity faults [14].
Although these deep learning models have strong feature
extraction capability to diagnose the fault categories with
high accuracy, their diagnosis mechanism is unexplainable
in the process of diagnosis. In addition, they have a poor
ability to eliminate the overlapping region of different fault
categories and can misclassify the faulty data sample at the
boundary region between different fault categories [15].

Recently, metric learning has been proved to have the
capacity to reduce intraclass scatter and interclass similarity
within fault categories by measuring the distance or similarity
between different data samples [16]. In view of the advantages
of the deep learning and metric learning, deep metric learning
(DML) methods are developed to improve the classification
ability, which combines deep learning with metric learning to
map original feature parameters to discriminative feature space
by maximizing interclass variation and minimizing intraclass
variation [17, 18]. Many typical DML models have been also
proposed and applied to the field of pattern recognition. A
discriminative deep metric learning (DDML) method is pro-
posed for face recognition, which employed a fully connected
deep neural network to learn multiple nonlinear transforma-
tions to map face samples into a discriminative distance space
in which the similarity of each positive pair increased and the
similarity of each negative pair decreased [19]. Hu et al. [20]
suggested a deep transfer metric learning (DTML) method for
face recognition to learn the deep metric network by maxi-
mizing interclass variation andminimizing intraclass variation.
Song et al. [21] proposed a DMLmethod for vision recognition
and employed the lifted structure feature embedding to learn
semantic feature embeddings, and the similar samples are
mapped close to each other and dissimilar samples are far from
each other. An adaptive interval DML method is proposed for
video classification, which can adaptively allocate the distance
according to semantic distance between sample pairs [16].
Obviously, these DML methods can use the distance criterion
to classify these face images with high accuracy, but they have
not strong ability to discriminate between fuzzy face images.

In the field of fault diagnosis, some mechanical signals
are very difficult to be classified because of the complexity of
signal transmission path and insensitiveness to fault classes
of parameter features, and especially, some data samples in
the boundary region between different fault categories can
be misclassified [22]. Fuzzy operators have the ability to deal
with various fuzzy sets. A novel clustering method that
combines the adaptive resonance theory (ART) with the
similarity measure based on Yu’s norm is proposed to di-
agnose the faults of rolling element bearings, which can
recognize faulty data samples in the boundary region
through the fuzzy formalism [23]. But it needs to manually
extract feature parameters from original data samples.

As mentioned above, a deep metric learning method
based on Yu norm- (DMN-Yu-) based similarity measure is

proposed to diagnose mechanical faults, which use the Yu
norm-based similarity measure to calculate the similarity
between different data samples and use the deep network
architecture to extract the feature parameter and built the
nonlinear relation between data sample and fault category.
)e rest of this paper is organized as follows. Section 2
reviews the deep neural network and deepmetric learning. A
deep metric learning method based on Yu norm is depicted
in Section 3. Section 4 describes the details of DMN-Yu
algorithm, and the diagnosis analysis of bearing fault is
conducted in Section 5. Finally, the conclusions are drawn in
Section 6.

2. Theory of Deep Metric Learning

2.1. Deep Neural Network. Deep neural network is a deep
structure with multiple hidden layers, which can learn the
hierarchical feature representation by constructing the
network architecture from the low-level layer to high-level
layer. )us, some feature parameters can be extracted di-
rectly from the original data automatically. Generally, a deep
neural network consists of an input layer, multiple hidden
layers, and an output layer, and the network architecture is
shown in Figure 1. Assume that there is a deep neural
network with N + 1 layers and P(n) units in the nth layer,
where the parameters n ∈ [1, 2, . . . , N], (W, b) � (W1, b(1),

W(2), b(2), . . . , W(N), b(N)). Given a data sample set X ∈ Rd,
the input of the first layer is X, and its corresponding output
h(1) can be expressed as follows:

Z
(1)

� W
(1)

X + b
(1)

, (1)

h
(1)

� s Z
(1)

􏼐 􏼑 ∈ R
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where Z(1) is the weighted sums of the input of the first layer,
W(1) ∈ RP(1)×d is the projection matrix learned in the first
layer, b(1) ∈ RP(1) is the bias vector in the first layer, and s is
the nonlinear activation function of each layer, which can be
a sigmoid function or a tanh function.)e tanh function was
used as the nonlinear activation function in this paper.

)en, the output h(1) of the first layer is used as the input
of the second layer, and the output h(2) of the second layer
can be computed as
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where Z(2) is the weighted sums of the input of the second
layer andW(n) ∈ RP(2)×P(1), b(2) ∈ RP(2), and s are the projection
matrix, bias, and activation function of the second layer,
respectively.

Similarly, the output of the nth layer can be written as
follows:
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and the output of the top layer is

Z
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(N)

h
(N−1)

+ b
(N)

, (7)
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where mapping function f: Rd↦RP(N) is a parametric
nonlinear equation determined by the parameters W(n) and
b(n), n ∈ [1, 2, . . . , N].

2.2. Deep Metric Learning. Deep metric learning can map
original data sample into other feature spaces through a set
of hierarchical nonlinear transformations, which use the
deep neural network structure to integrate feature learning
andmetric learning into a joint learning framework [24] and
to explicitly built the nonlinear mapping function f, and f is
initialized by W(n) and b(n). If f(X) is the output of input X,
the Euclidean distance of the data points xi and xj in the
deep metric network space is written as follows:

df xi, xj􏼐 􏼑 � d f xi( 􏼁 − f xj􏼐 􏼑􏼐 􏼑 � f xi( 􏼁 − f xj􏼐 􏼑
�����

�����2
, (9)

where the goal of the deep metric learning is to establish the
mapping function f under some certain constraints.

3. Deep Metric Learning Model Based on
Yu Norm

Metric learning is mainly to measure the distance or sim-
ilarity between different data samples so that the data sample
of the same fault class is as close as possible to each other,
and the data sample of different fault classes is as far as
possible from each other by metric criterion. )erefore, it is
very important to select appropriate metric criteria before
conducting classification. However, most existing metric
learning methods can only map data samples into feature
space through a linear transformation, which makes it
difficult to capture the nonlinear relationship between data
samples [25]. In order to solve this problem, a kernel-based
nonlinear metric method is developed to map data samples
to high-dimensional feature space and to perform dis-
crimination distance metric in this high-dimensional feature

space [26, 27]. However, the nonlinear mapping function of
the nonlinear metric method based on kernel function is not
explicit, which is not conducive to understanding and de-
velopment. In addition, these two metric learning methods
need to extract the feature parameters manually. Different
from the above two metric learning methods, the Yu-norm-
based deep metric learning method can extract feature
parameters automatically and establish a set of hierarchical
nonlinear transformations through deep neural network and
map data sample pairs into a feature space for recognition.

3.1. Yu Norm-Based Similarity Measure Criterion. Yu norm
is proposed in 1985, which is composed of the T norm and
the S norm in the field of fuzzy mathematics [28], and the T
norm and the S norm are, respectively, defined as follows:

T(x, y) � max[0, (1 + λ)(x + y −1) − λxy], (10)

Sn(x, y) � min[1, x + y + λxy], (11)

where all x, y ∈ [0, 1], λ> −1. Because of the unique
mathematical property of Yu norm, an equivalence ex-
pression which is depicted as follows:

E(x, y) � T(Sn(x, y)), (Sn(x, y)), (12)

is suggested to compute the similarity between two different
data samples [29], and based on the similarity degree, the
data samples can be classified.

In the process of classification, the data samples in the
overlapping region of the different fault categories can be
misclassified easily by the traditional distance metric method
because of the nonlinearity of the classification boundary
line. However, the basis of classification of the Yu norm-
based similarity metric method depends on similarity be-
tween different data samples rather than the distance. )us,
the Yu norm-based similarity metric method can classify the
data samples in the boundary region of fault categories.

3.2. Marginal Fisher Analysis. Marginal Fisher analysis
(MFA) is a supervised descendent dimension algorithm that
measures the distance between every data sample and its
neighbor samples [30], which require the data samples of
every category to satisfy approximately the Gauss distribution
[31]. Based on the graph embedding framework, MFA can be
depicted by two graphs, as shown in Figure 2: an intrinsic
graph and a penalty graph. )e intrinsic graph characterizes
the intraclass compactness, and the penalty graph charac-
terizes the interclass separation. In the intrinsic graph, an
adjacency matrix P can be established by the data sample,
which is only connected with its k1-nearest neighbors of the
same class. In the penalty graph, an adjacencymatrixQ can be
also established by the sample, which is connected with its k2-
nearest neighbors of the different class.)ematrix P or Q can
be expressed as follows:

Pij or Qij �
1, x is connected toxj,

0, xi is not connected to xj.

⎧⎨

⎩ (13)

W(1), b(1) W(2), b(2) W(N), b(N)

X h(1) h(2) h(N)h(N–1)

Figure 1: )e network architecture used in the method. X is the
input of the network, h(1) − h(N−1) are the output of the hidden
layers, h(N) is the output of the top layer, and W(n) and b(n) are the
parameters of the network to be learned, 1≤ n≤N.
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)e separation rule of MFA can be described that each
sample is drawn close to k1-nearest neighbors of its similar
samples and pushed away from k2-nearest neighbors of its
dissimilar samples. Based on the graph embedding frame-
work, the intraclass compactness Sc described by the in-
trinsic graph and the interclass separability Sb described by
the penalty graph can be obtained, respectively.

Accordingly, after that the metric learning is introduced
into the deep neural network, the marginal Fisher analysis is
used to optimize the features extracted in the feature space of
top layer, which improves the feature representation ability
and the classification performance of the deep neural
network.

3.3. DMN-YuModel. For each pair samples xi and xj in the
training sample set X, the output of the nth layer of the
network can be represented as f(n)(xi) and f(n)(xj) as
mentioned above. )e similarity of the two samples can be
expressed by Yu norm-based similarity measure criterion as
follows:

df(n) xi, xj􏼐 􏼑 � S〈f(n)
xi( 􏼁, f

(n)
xj􏼐 􏼑〉, (14)

where S〈xi,xj〉 �max(0,(1+λ)(Sn(x1,xj) + Sn(xi,xJ) −1)

−λSn(x1,xj)Sn(xi,xJ)) Sn(xi,xj) �min[1,xi + xj +λxixj],
xI � 1− xi, and λ is a constant.

According to the graph embedding framework, the MFA
is performed on the output of all the training samples at the
top layer of deep neural network, and a strongly supervised
deep metric learning model is constructed correspondingly.
)e parameters of deep metric learning model based on Yu
norm (DMN-Yu) can be obtained by the optimization of the
following objective function.)ereinto, the parameters W(n)

and b(n) can be obtained by the gradient descent algorithm:

min J
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where α is the free parameter which balances the importance
between intraclass compactness and the interclass separa-
bility.)e larger the α is, the greater the interclass scatter is; c
is the adjustable regularization parameter, c> 0; ‖Z‖F

denotes the Frobenius norm of the matrix Z; S(n)
c and S

(n)
b

define the intraclass compactness and interclass separability,
respectively, and its formula can be written as follows:
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where M is the number of samples in the training set and P

and Q are adjacency matrixes. If Xj is one of the k1-
intraclass nearest neighbors of Xi, then Pij is set to 1 and
otherwise 0; if Xj is one of the k2-interclass nearest
neighbors of Xi, Qij is set to 1 and otherwise 0.

To solve the problem of parameters optimization in
equation (15), the subgradient descent method is used to get
the parameters W(n), b(n)􏼈 􏼉, where n� 1, 2, . . . , N. )e
gradient of the objective function J with respect to the
parameters W(n) and b(n) is computed as follows:
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where h
(0)
i � xi and h

(0)
j � xj are the original input samples

of the network, for all other layers n� 1, 2, . . . N−1, and the
updating equations are as follows:
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where the operation ⊙ denotes the element-wise multi-
plication and W(n) and b(n) can be updated by the following
gradient descent algorithm until convergence:
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zJ
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b
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zJ
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where τ is the learning rate.

3.4. Classifier Selection. Backpropagation neural network
(BPNN) is an effective classifier for multiclassification

Class 1

Class 2

(a)

Class 1

Class 2

(b)

Figure 2: )e adjacency relationship of the intrinsic graph and the
penalty graph of the marginal Fisher analysis (k1� k2� 3): (a)
intrinsic graph; (b) penalty graph.
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problems. )erefore, a BPNN classifier which is introduced
into the top feature output layer of the deep metric neural
network is utilized to further fine tune the parameters of the
network [32, 33] and classify data samples.

4. Fault Diagnosis Method Based on DMN-Yu

)e DMN-Yu model is trained by the backpropagation
algorithm, and the BPNN classifier is utilized to fine tune the
network parameter and to complete the classification of
faults. )e flowchart of the proposed method is shown in
Figure 3. )e corresponding algorithm is summarized as
follows:

Step 1: normalize a large number of labeled data
samples and divide them into the test set and training
set according to a certain proportion.
Step 2: construct the DMN-Yu model, set the pa-
rameters W(n) and b(n) to a number close to 0, and set
the iteration number T, the intraclass nearest neighbor
k1, the interclass nearest neighbor k2, and the learning
rate τ, λ, c, and α.
Step 3: Train the DMN-Yumodel, and the data samples
are nonlinearly transformed to the top layer and are
made by the marginal Fisher analysis to further con-
strain the extracted features so that the descriptive and
discriminative features can be obtained.
Step 4: Add a BPNN classifier to the feature output
layer at the top of the network to fine tune the network
and optimize the network parameters.
Step 5: use the trained network to classify the test
dataset.
Step 6: calculate the classification accuracy.

5. Case Analysis

5.1.ExperimentalDataset. In order to verify the effectiveness
of the proposed method, the DMN-Yu model was used to
diagnose the rolling bearing data [34] from Electrical En-
gineering Laboratory of Case Western Reserve University.
)e data are collected on the deep groove ball bearing
mounted on the motor drive end type SKF6205-2RS. )ere
are four types bearing faults, namely, normal state, inner
race fault, outer race fault, and ball fault, bearings were
seeded with faults using electrodischarge machining, each
fault has three different depths of damage, and Table 1 shows
the description of the bearing dataset. )e data are collected
by the accelerometer at a sampling frequency of 12KHz
under the operating condition of 0HP load and 1797 rpm,
and the dataset contains 10 fault types. )e number of
samples for each fault type is 700, a total of 7000 samples,
and a single sample has 512 sample points, where the
number of samples in the training set is 4900 and the
number of samples in the test set is 2100.

5.2. FaultDiagnosis andAnalysis. ADMN-Yumodel with 3-
layer (N� 2) network is constructed, and the number of
neural nodes in each layer was set as 512-100-100,

respectively. BPNN classifier was added to the top-level
feature output layer that the classification result output layer
nodes were set as 10. It is very important to select proper
model parameters for obtaining better diagnosis accuracy.
Here, α was set as 4.0, λ was 0.2, the maximum number of
iterations was 10, the regularization parameter c was 0.5, the
initial learning rate τ was 0.2, and the learning rate decay was
0.95. )e number of the neighbor points k1 and k2 has a
greater impact on the diagnosis ability of the model. If the
number of the neighbor points is too small, it is difficult for
DMN-Yu model to dig out the intrinsic fault information
from the high-dimensional data, and if the number of
neighbor points is too large, geometric information and
nonlinear information of data are easily ignored, so the
nearest neighbor values k1� 5 and k2�10 according to the
reference [30].

In order to obtain the specific diagnosis information of
the model for each fault category, the confusion matrix was
used to visualize the diagnosis results, and the diagnosis
results were quantitatively described using the precision P
and the recall R [35]. Figure 4 shows the diagnosis results of
the training samples. From Figure 4, it can be seen that the
diagnosis accuracy of each fault category is 100%. It indicates
that the proposed method can extract the fault feature pa-
rameter of bearing and diagnose the fault category effec-
tively, and there are no training errors.

In addition, to describe the diagnosis process of the
DMN-Yu model, t-SNE (t-distributed stochastic neighbor
embedding) algorithm is used to visualize the high-di-
mensional data in the 3D (3-dimensional) space by mapping
samples from the original feature space to 3D space. )e
fault features extracted from each layer of DMN-Yu model
are optimized and mapped to the 3D space by t-SNE [36].
And the corresponding 3D feature distribution scatter di-
agrams of the trained DMN-Yu model are obtained.
Figures 5–7 show the visualization of the original data, the
first hidden layer output feature, and the second hidden layer
output feature, respectively. It can be seen that the interclass
distance between the features of different fault categories
becomes larger and larger and the intraclass distance be-
comes smaller and smaller with the rising of layer number,
and at the top feature output layer, all fault categories can be
basically separated. All these indicate that the DMN-Yu
model can perform feature extraction through minimizing
the intraclass distance and maximizing the interclass dis-
tance, and the subsequent classification accuracy can get
higher and higher.

)e diagnosis result of the bearing fault test set samples is
shown in Figure 8. It can be seen that the classification
accuracy is 97% and error rate is only 3%.)e faults number
1 and fault number 10 are all classified correctly, and their
precision P and recall R are all 100%. For other fault
numbers, most of them are also correctly classified and
recognized, but 15 samples of the fault number 2 are mis-
classified. )ereinto, 4 samples are misclassified as fault
number 3, 2 samples were misclassified as fault number 4, 2
samples were misclassified as fault number 5, 5 samples were
misclassified as fault number 6, 2 samples were misclassified
as fault number 10, and the recall rate R is 92.9%. 2 samples
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of fault number 5 were misidentified as fault number 2, and
the corresponding precision P of fault number 2 is 99.0%.
For the samples of fault number 7, there was 1 sample

misclassified as fault number 10, 1 sample was misclassified
as fault number 6, and the corresponding recall R is 99.0%.
For fault number 9, there are 2 samples misidentified as fault

Collect and preprocess the bearing data

Construct training/test samples and create
sample labels

Determine the number of hidden layers of the
deep metric network N

Set the network hyperparameters

i ≤ N

Determine the output layer according to the
health of the rolling bearing

Use BP algorithm to fine tune the parameters of
the deepmetric network according to sample

health status type

Complete the training of the deepmetric
network

Output the diagnosis results

Data
acquisition

Yes
i = i + 1

No

Training
process

Fine tuning
process

Diagnosis
results

Compute te inter class compactness SN
b and

intra class separability SN
c

Network forward propagation

Initialize the weights and biases of all levels of
the netwok

Figure 3: Flowchart of the proposed method.

Table 1: Description of bearings dataset.

Fault number Fault condition type Depth of fault (mm) Training samples Test samples
1 Normal 0 490 210
2 Mild inner race 0.18 490 210
3 Moderate inner race 0.36 490 210
4 Severe inner race 0.54 490 210
5 Mild ball 0.18 490 210
6 Moderate ball 0.36 490 210
7 Severe ball 0.54 490 210
8 Mild outer race 0.18 490 210
9 Moderate outer race 0.36 490 210
10 Severe outer race 0.54 490 210
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Figure 4: Confusion matrix of fault recognition for rolling bearing training samples based on the DMN-Yu model.
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Figure 5: 3D feature scatter diagram of the raw data.
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number 7, and its precision P is 99.0%. Correspondingly, the
classification accuracies of other fault categories can also be
seen in Figure 8. All these can demonstrate that the DMN-
Yu model can diagnose the different fault categories of
bearings accurately.

5.3. Diagnosis Performance Comparison with Other Methods.
In order to evaluate the superiority of the DMN-Yu model,
the deep metric learning method based on Euclidean dis-
tance (DMN-Euc), the traditional DBN, and the traditional
support vector machine (SVM) combined with extracted

manually feature parameters are used to diagnose the fault
category of bearings. Without loss of generality, 10 test runs
are conducted by these methods and the average results are
shown in Table 2. It can be seen that the diagnosis accuracy
of the proposed DMN-Yu model is 96.76%. )e average
diagnosis accuracy of DMN-Euc model is 95.72%, which is
slightly lower than that of the DMN-Yu method. It is
demonstrated that diagnosis accuracy of the DMN-Yu based
on the Yu norm-based similarity measure criterion is higher
than that of DMN-Euc based on the Euclidean distance.
Meanwhile, the table shows that the average diagnosis ac-
curacy of the traditional DBN is 94.10%, and the accuracy of
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Figure 6: 3D feature scatter diagram of the first hidden layer.
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the SVM combined with nine time-domain statistical fea-
tures which are mean, standard deviation, root mean square,
skewness, kurtosis, crest factor, margin factor, shape factor,
and impact factor is 85.05%. It is obvious that the accuracies
of the DBN and the traditional SVM are lower than that of
DMN-Yu and DMN-Euc, and the accuracy of DMN-Yu is
the highest. All these demonstrated that the performance of
DMN-Yu and DMN-Euc is superior to DBN and SVM, and
the DMN-Yu is the best. In addition, the parameter value of
these methods is set as described in Table 3.

6. Conclusion

A novel deep metric learning based on Yu norm is proposed
to diagnose the fault of the rolling bearings, which can
measure the similarities as well as differences between data
samples and improve diagnosis ability by reducing intraclass
scatter and interclass similarity. Due to the fuzziness of the
boundary of the fault categories, the data samples at the
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Figure 8: Confusion matrix of fault recognition for the rolling bearing test set based on DMN-Yu model.

Table 2: Average diagnosis results of 10 experiments.

Method Average diagnostic accuracy (%)
DMN-Yu 96.76
DMN-Euc 95.72
DBN 94.10
Common statistical
features + SVM 85.05

Table 3: Parameter settings of several methods.

Method Parameter value

DMN-
Euc

)e number of neural nodes in each layer 512-100-100-
10; a � 4.0; themaximumnumber of iterationsT � 10;
c � 0.5; τ � 0.2; learning rate decay was 0.95; k1 � 5;

k2 � 10

DBN )e number of neural nodes in each layer 512-100-100-
10; learning rate τ � 0.0001

SVM Polynomial kernel function and the order is set as 2; 1
vs all classification mechanism
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boundary are easy to be misclassified. To solve this problem,
the similarity measure based on Yu norm is used to compute
the similarity between different samples, and the marginal
Fisher analysis method based on Yu norm was used to
optimize features. And in order to integrate feature ex-
traction and classification recognition into a model based on
the deep metric learning framework, BPNN classifier is used
to fine tune the entire network and complete the fault
classification. )e effectiveness of the proposed method was
verified by the diagnosis analysis of the bearing dataset. )e
results testify that the proposed method can diagnose the
bearing fault effectively and it is superior to the deep metric
learning model based on Euclidean distance (DMN-Euc),
DBN fault, and SVM.

Abbreviations

DMN-Yu: Deep metric learning method based on Yu
norm

DMN: Deep metric learning neural network
BPNN: Backpropagation neural network
DMN-Euc: Deep metric learning method based on

Euclidean distance
DBN: Deep belief network
SVM: Support vector machine
DML: Deep metric learning
DDML: Discriminative deep metric learning
DTML: Deep transfer metric learning
ART: Adaptive resonance theory
MFA: Marginal Fisher analysis
t-SNE: t-distributed stochastic neighbor embedding.
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