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In order to effectively extract the characteristics of nonstationary vibration signals from hydropower units under noise inter-
ference, an adaptive stochastic resonance and Fourier decomposition method (FDM) based on genetic algorithm (GA) are
proposed in this paper. Firstly, GA is used to optimize the resonance parameters so that the signal can reach the optimal resonance
and the signal-to-noise ratio (SNR) can be improved. Secondly, FDM is used to process the signal and the appropriate frequency
band function is selected for reconstruction. Finally, Hilbert envelope demodulation analysis was performed on the reconstructed
signal to obtain the fault characteristics from the envelope spectrum. In order to prove the effectiveness and superiority of the
proposed method, comparative experiments are designed by using the simulated signal and the measured swing signal of a
hydropower unit.-e results show that this method can effectively remove the noise interference and improve the SNR and extract
the characteristic frequency of the signal, which has the extensive engineering application value to the fault diagnosis of
hydropower units.

1. Introduction

Hydropower has been playing an important role in the supply
of energy due to its advantages of being clean and envi-
ronmentally friendly, not consuming fossil fuels, and flexible
operation. Hydropower units are the core components in
power station operation [1, 2], and their safe and stable
operation is of great significance to the benefits of a power
station and even the stability of an entire power system. In
order to ensure the stable operation of hydropower units, it is
necessary to evaluate the operating status of hydropower units
timely and effectively. -e status assessment of hydropower
units specifically includes signal acquisition, signal pre-
processing, feature extraction, and fault diagnosis, among
which feature extraction is the most critical step [3]. Research

shows that more than 70% of hydropower unit faults are
reflected in the form of vibration.-erefore, fault analysis and
feature extraction methods based on vibration signals are
crucial for improving the safety of hydropower units and
extending the life of equipment. However, due to the com-
plexity in the operating condition of hydropower units, the
vibration signals collected contain not only environmental
noise interference but also mixed fault information. From the
perspective of vibration source, the fault information can be
divided into three aspects: hydraulic factor, mechanical factor,
and electromagnetic factor. -erefore, it is worth studying
how to extract the weak characteristics of the early faults of
hydropower units from the complex operating conditions.

Due to the complexity of unit structures and operating
environment, the vibration signals collected often show
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strong nonstationary and time-varying characteristics, which
make it difficult to extract the fault characteristics of units
under the background of noise. Moreover, although the
hydrodynamics of hydraulic machinery has been widely re-
ported [4–7], the related diagnostic methods are seldom
studied [8].On this basis, many time-frequency analysis
methods have been proposed to extract signal characteristics.
In these methods, EMD is a new adaptive decomposition
method proposed in [9], which can adaptively decompose
nonlinear and nonstationary signals without being disturbed
by complex environment [10, 11]. -erefore, it has been
widely applied in various fields of engineering. However, this
method is prone to mode mixing during the decomposition
process, resulting in the failure of signal decomposition and
the loss of useful frequencies. In order to solve the problem,
scholars have successively proposed some modified versions
of the algorithm such as EEMD [12, 13] and CEEMD [14, 15].
In order to extract mechanical fault features effectively, a fault
feature extraction method combining EEMD and multiscale
fuzzy entropy was proposed and applied to motor bearing
vibration signals so as to accurately diagnose the fault type
and severity of inner ring faults [16]. For the sake of im-
provement in the effectiveness of early identification of rolling
bearing faults, a rolling bearing fault diagnosis method
combining CEEMD and correlation theory was proposed and
utilized for the vibration signal collected from the rolling
bearing fault test [17]. -e results showed that the presented
method can accurately detect the abnormal state of bearings
in the early stage of operation and has high computational
efficiency. However, the above modified algorithms not only
add white noise to solve the mode mixing but also lead to
white noise residue, which deteriorates the decomposition
effect of signals. Fourier decomposition method (FDM) is an
adaptive decomposition method based on the theory of the
Fourier transform, in which the mode mixing will not appear
in that extreme value points are not required. Moreover, due
to that white noises are not added in signals, there is no
residual of white noises [18–20]. In order to solve the difficulty
in extracting fault characteristics of rotating machinery under
the environment with a lot of noise, a method combining
FDM, robust independent component analysis (RICA), and
multipoint optimal minimum entropy deconvolution ad-
justment (MOMEDA) is proposed and applied to the analysis
of actual bearing fault signal, and the effectiveness of sup-
pressing noise and accurately extracting fault characteristic
information is obtained, which shows its practicability in the
fault diagnosis of rotating machinery [21].

For the sake of eliminating the noise interferences in the
feature extraction of the weak fault signals of hydropower
units, various signal processing methods to eliminate noise
are developed to analyze the fault signal, such as intrinsic
time-scale decomposition (ITD) [22], wavelet thresholding-
based denoising (WTD) [23, 24], and singular value de-
composition (SVD) [25, 26]. Gang et al. [27] combined ITD
and neural network to conduct fault diagnosis for rotating
machinery vibration signals, where the anterior cruciate
ligament (ACL) signals are first decomposed by ITD and
then classified using a neural network. -e results showed
that themethod can be used as the potential auxiliary tool for

defects automatic detection of ACL in the clinical applica-
tion. Fan and Zhu [28] used EMD and SVD to process
vibration signals and achieved a satisfied effect in removing
noise interference. Considering the unstable operating
condition in industrial applications and the noise, Li et al.
[29] put forward a new method for planetary gear box fault
diagnosis, using the singular value decomposition (SVD) to
enhance the resolution of the TFD obtained by the
Wigner–Ville distribution (WVD). -e results showed that
the proposed method can not only reduce the influence of
the cross terms of WVD but also eliminate noise and im-
prove the accuracy of fault diagnosis. Unlike the conven-
tional denosing methods, stochastic resonance (SR) is a
method that reduces noise interference by transferring noise
energy to fault signals. -rough using a nonlinear system,
part of the noise energy is transferred to the low-frequency
signal, and the resonance of the weak signal submerged in
the noise is strengthened so as to reduce the noise inter-
ference and extract the signal features effectively [30–32]. In
order to solve the feature extraction and fault diagnosis of
rolling bearings under a large amount of noise, Li and Shi
[33] proposed a signal processing method that combined
EEMD and adaptive stochastic resonance and applied it to
the rolling bearing vibration signal, effectively enhancing the
weak fault features and extracting them. Considering that
the weak fault characteristics of mechanical equipment are
usually difficult to be extracted from strong noise, the new
SR method that utilized the classical potential energy is
applied to the fault vibration signal of rotating machinery,
achieving an effective fault feature extraction for the analog
signal with heavy noise [34].

Based on the abovementioned analysis, considering the
environmental noise interference during early weak fault
feature extraction, a feature extraction method for hydro-
power unit vibration signal based on optimal SR and FDM is
proposed in this paper to realize the accurate feature ex-
traction for early weak fault, which is beneficial for the result
of subsequent fault diagnosis. Firstly, the original vibration
signals are processed by stochastic resonance with the
system optimized by genetic algorithm, which strengthens
the weak characteristic frequency component of the fault
signal of the hydropower units. -en, FDM is used to
adaptively decompose the resonant fault enhancement
signal, and a series of modal functions are obtained. Next,
the spectrum diagram of each modal function is therefore
computed, respectively, and the fault frequency is deter-
mined through observation. Finally, the frequency calcu-
lated by the spectrum diagram is compared with that
calculated by empirical formula, and the fault frequency
contained in the spectrum diagram is found so as to
complete the fault identification and diagnosis.

2. Adaptive Stochastic Resonance Based on
Genetic Algorithm

By adjusting the parameters a and b of the first-order
nonlinear system to achieve the optimal match between the
system, the noise, and the periodic input signal, a stochastic
resonance can be generated. -rough the stochastic
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resonance, the energy of the noise signal is transferred to the
input signal, realizing the detection of weak fault signals with
strong noise.

2.1. Stochastic Resonance System. For a stochastic resonance
system, the most fundamental components are the input
signal (e.g., periodic signal) and the noise (e.g., white noise).
Generally, the input signal and noise are integrated to obtain
the mixed signal, which is then processed by the nonlinear
system, so as to obtain the output signal with enhanced SNR.

A nonlinear system commonly used for stochastic res-
onance is a nonlinear bistable system, whose Langevin
equation is presented as follows:

dx

dt
� − U′(x) + f(t) + Γ(t). (1)

Where U(x) is the potential function, U(x) � − (ax2/2)

+(bx4/4), and a and b are the system parameters, while f(t)

is the input signal, Γ(t) is the input noise signal, and x is the
output signal of the system.

For a stochastic resonance system to produce resonance
phenomenon, the input signal needs to meet the adiabatic
approximation theory; specifically, the input signal fre-
quency, amplitude, and noise intensity should be less than 1.
However, the vibration signals to be analyzed, which are
collected in the practical application of rotating machinery
engineering, are generally signals with high frequency (large
parameters), where stochastic resonance processing cannot
be directly applied to the actual signals.-erefore, a variable-
scale processing is first proposed to process the vibration
signals to be analyzed.-e basic principle of the method is to
compress the linear signal by setting the compression ratio,
so that the signal can meet the small parameter conditions to
generate stochastic resonance phenomenon. Finally, the
signal after resonance processing is restored to the original
signal by scale transform.

-e main steps in the process are as follows: a fre-
quency compression ratio R is first defined and the
compressed sampling frequency is defined as fsr � (f/R)

according to the frequency compression ratio. -e
timeline is redefined as t′ � Rt. -e step length and the
driving frequency of the signal are set to h′ � (1/fsr) and
f′ � (f/R), respectively. Finally, the output signal of
stochastic resonance is solved according to the fourth-
order Runge-Kutta algorithm and then is restored based
on scale transform. Since the measured signal is com-
pressed according to a certain frequency and not changed
in its any property, the frequency characteristic analysis is
not affected for the signal.

2.2. Genetic Algorithm (GA) Optimized Adaptive Stochastic
Resonance System. Since the values of the parameters a and
b in equation (1) and the noise intensity can affect the SNR
and thus determine the denoising effect of the resonance
system, one can deal with the problem from the system
parameter and noise intensity to find the optimal SNR. In
practical engineering applications, the noise intensity is
generally determined and cannot be changed. -erefore, the

optimal solutions of a and b are usually adopted to ensure
that the SNR reaches the maximum value and the resonance
system can achieve the optimal resonance effect.

Genetic algorithm (GA) is an algorithm that simulates
evolutionary processes in nature to search for optimal so-
lutions. -e basic principle is that by constructing an ob-
jective function as fitness function and using genetic
operators (selection, crossover, and mutation), a subsequent
generation is selected based on the principle of “survival of
the fittest,” producing individuals with high fitness. After
several generations of evolution, the fitness of population
gradually enhanced, finally converging to an optimal solu-
tion. GA is now widely used in engineering because of its
robustness and implicit parallelism.

In this paper, GA is applied to the parameter optimi-
zation for stochastic resonance systems. Based on the
multiparameter optimization ability of GA and the use of the
output SNR as fitness function, the parameters of stochastic
resonance system, i.e., a and b, are optimized, and then the
best parameters are found. In this manner, the best reso-
nance between the input signal and the noise is formed and
the best SNR is obtained. .

-e optimization steps of GA are as follows:

(1) Binary coding:
-e aim of binary coding is to transform the feasible
solution of optimization problem from solution
space to search space that GA can handle. -e search
ranges of system parameters are set as follows:
aε[Amin, Amax], b ∈ [Bmin, Bmax]，-en, according to
equations (2) and (3), the corresponding code length
l and k of the parameters are determined as

2l
− 1 �

Amax − Amin

δ
, (2)

2k
− 1 �

Bmax − Bmin

δ
, (3)

where δ is the accuracy that the code can represent.
-en, perform binary coding, and get the codes
corresponding to the individual as clcl− 1, . . . , c1,
dkdk− 1, . . . , d1.-e corresponding system parameters
can be obtained according to the decoding formula:

a � Amin + 􏽘
l

i�1
ci2i− 1

⎛⎝ ⎞⎠
Amax − Amin

2l
− 1

,

b � Bmin + 􏽘
k

i�1
di2

i− 1⎛⎝ ⎞⎠
Bmax − Bmin

2k
− 1

.

(4)

(2) Initial population:
Set the population size and randomly select indi-
viduals to form the initial population. -e higher the
population size, the better the quality of the solution.
However, if the population size is too large, the
calculation cost will increase. Hence, it is usually
chosen in a compromise in practical application.
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(3) Calculated fitness:
-e selection of fitness function is the basis of al-
gorithm optimization. Here, SNR is selected as the
fitness function for GA. -e system parameters
corresponding to each individual are put into the
stochastic resonance system, and the fitness is
therefore calculated by applying fourth-order Run-
ge–Kutta algorithm.

(4) Genetic process:
Genetic evolution can be divided into three parts:
selection, crossover, and mutation. -e selection is
based on the law of “survival of the fittest,” making
the individual with good fitness value involved in the
next generation of the reproductive process, elimi-
nating the individuals with worse fitness value.
“Crossover” is the process of exchanging and
recombining parts of genes from two fathers to
create a new individual. Mutation is the process of
changing certain gene positions of an individual with
a certain probability. -rough the abovementioned
genetic evolution process, a new population can be
produced from the old.

(5) Termination condition:
-e whole evolutionary process is terminated when
it reaches to the maximum iterations, and then the
current optimal solution is outputted, that is, the best
system parameters are obtained.

3. Fourier Decomposition Methods (FDMs)

FDM is based on the premise of defining Fourier intrinsic
band functions (FIBFs), adaptively searches for FIBF
components in the Fourier frequency domain, and
minimizes the number of decomposed components.
Nonlinear nonstationary signals can be decomposed into
FIBFs and a residual component using FDM. Unlike
traditional adaptive time-frequency domain analysis
methods, FDM has the attributes of orthogonality, lo-
cality, and adaptability and can effectively avoid end effect
in the decomposition process and mode mixing in the
decomposition results.

First, the FIBF component, denoted as yi(t), must meet
the following conditions:

(1) FIBF is a zero mean function, that is,

􏽚
b

a
yi(t)dt � 0. (5)

(2) FIBFs satisfy orthogonality, namely,

􏽚
b

a
yi(t)yj(t)dt � 0, i≠ j. (6)

(3) -e instantaneous frequency a(t) and instantaneous
amplitude (dΦi(t)/dt) of the analytical functions
AFIBFs of FIBFs are always not less than 0, that is,

yi(t) + j􏽢yi(t) � ai(t)exp jΦi(t)( 􏼁,

ai(t)
dΦi(t)

dt
􏼠 􏼡≥ 0.

(7)

Next, FIBF is searched by using the following two
methods:

(1) LTH-FS algorithm (Fourier spectrum from low
frequency to high frequency):

Step 1: For complex signal x(n), Fourier transform
is performed to obtain X(k),

X[k] � FFT x(n){ }. (8)

Step 2: Let the i-th AFIBF component of the signal
x(t) be

AFIBFi � 􏽘

Ni

k� Ni− 1+1( )

X[k]exp
j2πkn

N
􏼠 􏼡

� ai[n]exp jφi[n]( 􏼁.

(9)

In order to obtain the AFIBFs with the least
number, the i-th AFIBF is obtained by cumulative
increase starting from Ni− 1 + 1 to Ni that satisfied
the condition, and the phase φi[n] that meets the
i-th AFIBF is a monotonically increasing function,
that is,

ωi[n] �
φi[n + 1] − φi[n − 1]

2
􏼠 􏼡≥ 0. (10)

Step 3: Calculate the residual component r(n),

r[n] � X[0] + X
N

2
􏼔 􏼕 + X

N

2
􏼔 􏼕(− 1)

n
. (11)

(2) HTL-FS algorithm (Fourier spectrum from high
frequency to low frequency):

Step 1: For the complex signal x(n)，perform
Fourier transform to obtain X[k]，namely,

X[k] � FFT x(n){ }. (12)

Step 2: Set the i-th AFIBF component of the signal
to be x(t),

AFIBFi � 􏽘

Ni− 1− 1

k�Ni

X[k]exp
j2πkn

N
􏼠 􏼡

� ai[n]exp jφi[n]( 􏼁.

(13)

In order to obtain the AFIBFs with the least
number, the i-th AFIBF is obtained by the cu-
mulative decrease starting from Ni to Ni− 1 − 1 that
satisfied the condition, and the phase φi[n] that
meets the i-th AFIBF is a monotonically increasing
function, that is,
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ωi[n] �
φi[n + 1] − φi[n − 1]

2
􏼠 􏼡≥ 0. (14)

Step 3: Calculate the residual component r(n),

r[n] � X[0] + X
N

2
􏼔 􏼕(− 1)

n
. (15)

Finally, the signal is decomposed into a finite
number of AFIBFs and a residual component,
namely,

x(t) � 􏽘
M

i�1
yi(t) + r(t). (16)

In the formula, r(t) is the residual component.

4. Vibration Signal Feature Extraction for
Hydropower Units

Under the condition of strong noise, the early fault signal of
hydropower units is weak and the SNR is low, which brings
challenges for fault diagnosis. In view of the abovementioned
problems, a method combined with GA-SR-FDM is proposed
for extracting fault features of hydropower units. -e flow-
chart is shown in Figure 1. -e specific steps are as follows:

(1) In order to meet the small parameter condition of
SR, subsampling frequency scale transform is con-
ducted for the early fault signal x(t).

(2) -e objective function is set as the output SNR of the
system and genetic algorithm is utilized to optimize
the structural parameters of SR, and the optimal
values a0 and b0 of the parameters can be obtained.

(3) a0 and b0 are substituted into the SR system for
Runge–Kutta calculation, which increases the SNR
of the vibration signals of hydropower units and then
the signal obtained after GA-SR is recorded as x1(t).

(4) x1(t) is adaptively decomposed by FDM to obtain a
number of FIBFs with different frequency bands and
a residual component. -e correlation coefficients
are adopted as a reference index to select the FIBFs
that meet the parameter requirements to reconstruct
vibration signal, denoted as x2(t), of units.

(5) According to the empirical formula of hydropower
unit faults [35], x2(t) is analyzed with Hilbert
transform to determine fault features.

5. Simulation Analysis

Under complex operating conditions, the vibration signal of
hydropower units has nonlinear and nonstationary char-
acteristics. Before applying the GA-SR-FDM method to the
actual vibration signal for fault feature extraction, the
method is first verified by simulation analysis.

First, the vibration simulation signal is generated on the
basis of the operating characteristics of hydropower units.
-e rotational speed of a real unit considered in this paper is
120 r/min, and the rotational frequency is 2Hz. Since the

early fault features of hydropower units are weak, usually
including low-frequency components that are generally 1/
5∼1/3 times rotational frequency and 5 times rotational
frequency, the low frequency 0.008Hz and 0.1Hz is selected
as the fault feature frequency to generate the simulation
signal with noise, as shown in

x
s

� x
s
1 + x

s
2,

x
s
1 � 0.01 sin(2π × 0.008 × t) + 0.008 sin(2π × 0.1 × t).

􏼨

(17)

In equation (17), xs
1 is a fault signal,xs

2 is a noise signal
that generates a noise set with the same length as that of xs

1,
and t is time.-e amplitude of the simulated signal is based
on the actual signal.

-e simulated signal xs to be processed is shown in
Figure 2(a). It can be seen from the figure that the fault signal
xs
1 is drowned in the simulated noise signal xs

2 due to its
small amplitude, which cannot be clearly distinguished from
either the waveforms or the frequency spectrum. In order to
extract the fault feature from noise and prove the advantage
of the proposed method, GA-SR, FDM, EMD, ITD, and GA-
SR-FDM are applied to the simulation signal, respectively,
and the results are shown in Figures 2(b)–2(f). As shown in
the figure, there is a lot of noise frequencies mixed around
the fault feature frequency after the signal is processed by the
aforementioned methods. -e feature frequency with
0.008Hz and 0.1Hz cannot be accurately extracted. Com-
paring the results among these methods, it is found that the
feature frequency in the spectrum obtained by GA-SR-FDM
is clear, without almost noise interference. -erefore, GA-

Start

Input a signal

Scale
transformation

Define system
parameter ranges

GA-SR

Feature
extraction

Hilbert transform

Dimension
reduction

Reconstruct
the signal

FDM
decomposition

Figure 1: Flowchart of signal feature extraction for hydropower
units.
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Figure 2: Continued.
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SR-FDM is more suitable for the feature extraction of weak
fault signals than other methods.

In order to more scientifically reflect the performance of
the aforementioned methods, the SNR and the root-mean-
square (RMS) of the difference between the processed signal
and original signal are calculated, as shown in Table 1. -e
SNR and RMS obtained by GA-SR-FDM are − 5.8816 and
0.0117, respectively, much lower than that of the other
methods, which shows that the signal processed by the GA-
SR-FDM contains less noise signals and more complete
feature signals. -erefore, the proposed method can reduce
noise interference and effectively extract weak fault features.

6. Case Analysis

A domestic hydropower unit is taken as an example to carry
out the case analysis. -e unit parameters are as follows: (1)
the type of the hydro-turbine is HL-702-LJ-410; (2) the
designed output power of the unit is 63MW; (3) the rated
speed n is 136r/min; (4) the number of the unit blades z0 is
14. -e eddy current displacement sensors with the type of
CWY-DO and the pressure transmitter with the type of AK-
4D are installed at the flange and the draft tube, respectively.
-e layout of measured points is shown in Figure 3, where
the sampling frequency is 500Hz. -e vibration signal of
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Figure 2: Waveform and frequency spectrum of the simulation signal processed by different methods. (a) Unprocessed simulated signal.
(b) Simulated signal processed by GA-SR. (c) Simulated signal processed by FDM. (d) Simulated signal processed by EMD. (e) Simulated
signal processed by ITD. (f ) Fault signal and simulated signal processed by GA-SR-FDM.

Table 1: Performance comparison of each method.

GA-SR FDM EMD ITD GA-SR-FDM
SNR − 20.6740 − 7.9508 − 14.4336 − 7.8138 − 5.8816
RMS 1.5369 0.0226 0.0483 0.0223 0.0117

Eddy current displacement sensor

Pressure transmitter
Hydropower unit

Figure 3: Schematic diagram of the unit structure and sensor layout.
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flange at horizontal direction and the pressure pulsation
signal of the draft tube are adopted to analyze and to further
verify the advantage of the proposed method.

-e waveforms and the frequency spectrum of the
original signal without being processed are shown in Fig-
ure 4. -e waveforms and the frequency spectrum of the
original signal processed by aforementioned methods are
shown in Figures 5–9.

In order to further compare the effect of feature ex-
traction by aforementioned methods, feature frequencies of
some typical faults are summarized as a reference, which is

shown in Table 2 [35]. -e unit rotational frequency f0 can
be calculated from the rated speed, namely, 2.26Hz.

As shown in Figure 4, due to the small amplitude, the
feature frequencies of the fault analyzed are submerged in
the noise signal and hard to be extracted from the waveforms
and the frequency spectrum. Hence, it is difficult to judge
whether a fault occurs.

-e results obtained by GA-SR and FDM are shown in
Figures 5 and 6, respectively. It can be seen that the feature
frequency of the signal processed by GA-SR can be identified
to a certain extent, indicating that although GA-SR can
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Figure 4: Actual signal of turbine. (a) Y-direction swing signal at the flange. (b) Vibration signal at the draft tube.
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Figure 5: Actual signal processed by GA-SR. (a) Y-direction swing signal at the flange. (b) Vibration signal at the draft tube.
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effectively enhance the amplitude of the feature frequency
and the SNR, it cannot completely eliminate noise inter-
ference. After processed by FDM, the noise of the signal is
partially removed, indicating that FDM can be used for
feature extraction of nonlinear and nonstationary signals,
but some useful information may be lost.

-e results of EMD and ITD processing are shown in
Figures 7 and 8, respectively. It can be seen that the fault
signals processed by EMD and ITD contain a lot of noise,

which makes the fault feature frequency unable to be ac-
curately extracted. -is is because there is a certain mode
mixing caused by EMD, while for ITD, the baseline signals
are constructed by linear transformation, leading to glitch
and distortion in processed signals, which reduces the ef-
fectiveness and reliability of diagnosis results.

Comparing Figure 6 with Figures 7 and 8, it is obvious
that the signal processed by FDM has no mode mixing and
has a certain fault feature frequency, which indicates FDM is
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Figure 6: Actual signal processed by FDM. (a) Y-direction swing signal at the flange. (b) Vibration signal at the draft tube.
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Figure 7: Actual signal processed by EMD. (a) Y-direction swing signal at the flange. (b) Vibration signal at the draft tube.
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Figure 8: Actual signal processed by ITD. (a) Y-direction swing signal at the flange. (b) Vibration signal at the draft tube.
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Figure 9: Actual signal processed by GA-SR-FDM. (a) Y-direction swing signal of the flange. (b) Signal at the draft tube.

Table 2: Partial vibration fault characteristics of hydropower units.

Feature frequency Typical faults
f0 Rotor mass imbalance; improper clearance of guide bearing
(1/5)f0∼(1/2)f0 Low-frequency pressure fluctuation of draft tube
z0f0 Uneven opening of guide vane
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more effective in extracting fault features under strong noise
conditions than EMD and ITD.

-e result of GA-SR-FDM processing is shown in Fig-
ure 9. As can be known, the amplitudes corresponding to
frequency of 1Hz, 2.26Hz, and 31.64Hz are enhanced,
thereafter the feature frequency is effectively extracted. As a
result, compared to other processing methods, GA-SR-FDM
can effectively remove the environmental noise and obtain a
higher SNR, which indicates it is more suitable for feature
extraction of early weak fault signals.

7. Conclusion

In this paper, a newmethod to extract the weak fault features
of vibration signals under the background of strong noise is
proposed for hydropower units. In order to prove the ef-
fectiveness and advantages of the proposed method, the
simulation signal and the actual signals at different place of
the hydropower unit is utilized and various comparative
experiments are designed. Some conclusions are summa-
rized as follows:

(1) FDM avoids the mode mixing in EMD and the glitch
and distortion in ITD and can be used to extract the
feature frequency of nonlinear and nonstationary
signals.

(2) For the early weak fault signal of hydropower units
mixed with strong noise, the modified SR in the
proposed method transfers part of the noise energy
to the low-frequency band of signals through a
nonlinear system. -erefore, the amplitude and the
SNR of the fault signal are increased, and the noise
suppression is achieved.

(3) -e traditional SR requires the system to meet the
conditions of small parameter, while the vibration
signals of the hydropower units belong to the large
parameter signal. -erefore, the variable-scale signal
processing methods are adopted to change the pa-
rameters of the vibration signal for the units to meet
the conditions of SR.

(4) -e traditional SR system cannot adaptively select
the values of structural parameters (i.e., a and b in
this paper). To solve the problem, GA is used in this
paper to adaptively optimize the parameters so as to
obtain stochastic resonance under the best parameter
values.

(5) -e GA-SR-FDM proposed in this paper has an
obvious effect on the feature extraction of early
weak fault signals of hydropower units under the
condition of strong noise, which provides a theo-
retical basis for the fault diagnosis of hydropower
units.
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