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Recently, variational mode decomposition (VMD) has attracted wide attention on mechanical vibration signal analysis. However,
there are still some dilemmas in the application of VMD, such as the determination of the number of mode decomposition K and
quadratic penalty term α. In order to acquire appropriate parameters of VMD, an improved parameter-adaptive VMD method
based on grey wolf optimizer (GWO) is developed by taking the minimum average mutual information into consideration
(GWOMI). Firstly, the parameters (K, α) are adaptively determined through GWOMI. +en, the vibration signal is decomposed
by the developed method and effective modes are extracted according to the maximum kurtosis. Finally, the extracted modes are
processed by Hilbert envelope analysis to acquire the incipient fault features. With the simulation and experimental analysis, it is
clearly found that the developed method is effective and performs better than some existing ones.

1. Introduction

Rotating machinery has been extensively employed in the
manufacturing, traffic and transportation, marine vessel, etc.
Rolling bearings are one of the most crucial parts of them
and their unexpected failures usually lead to great pro-
duction loss and high repair cost. +erefore, it is of great
significance for fault detection at their incipient faulty stage
to ensure the reliable and safely running of the machinery
[1–4]. If a local fault occurs in a rolling bearing, some
transient pulses will appear in the vibration signal. +ese
transient pulses analysis can provide a possible solution for
fault detection and diagnosis. However, these pulse signals
caused by the early fault are usually very difficult for de-
tection. Meanwhile, they are nonstationary, nonlinear, and
easily covered by strong background noise, which makes it
almost impossible to extract the incipient fault features from
the raw signals [5, 6].

To address these problems, many methods have been
developed based on signal processing. Time-frequency
analysis is one of the most widely used signal processing
methods to extract the fault feature. Wavelet transform is a
typical time-frequency analysis method, which can de-
compose vibration signal into some wavelets and provide
some significant local information. However, it is a non-
adaptive signal analysis method as wavelet basis functions
are determined in advance [7–11]. An empirical mode de-
composition (EMD) method was developed by Huang et al.
[12]. EMD could decompose a signal into some modes and a
residue. And EMD has strong adaptive decomposition
ability to time-varying signals [7]. Lu et al. [13, 14] inves-
tigated a kind of method based on an improved genetic
algorithm and EMD, which could extract the fault features.
However, there are some weaknesses of the methods based
on EMD, such as poor antinoise capability and mode ali-
asing [15]. To address these above problems, Zheng et al.
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proposed a modified EMD approach, which was employed
to process the nonstationary signal [16]. Ensemble empirical
mode decomposition (EEMD) method was developed by
Wu et al. [17]. In the work [18], this method was successfully
used for the fault diagnosis of bearing signals. However, it
would introduce new noises and reduce the computational
efficiency. Zheng et al. put forward a partly EEMD method
to overcome these problems [19].

VMD is a novel signal analysis method developed by
Dragomiretskiy [20]. +is method can decompose signals
into some intrinsic mode functions, which have limited
bandwidths and different center frequencies. It can over-
come the shortcoming of mode aliasing and has been widely
used in the fault diagnosis of rotating machinery. However,
the effect of VMD relies on the choice of its parameters (K,
α). In practical applications, it is difficult to determine these
parameters, and problems overdecomposition or under-
decomposition may happen when parameters are not se-
lected correctly [21, 22]. Shen et al. developed a modified
VMD based on initial center frequency, which was suc-
cessfully used in the fault diagnosis of rotating machinery
[23]. Zhang et al. utilized the grasshopper optimization
algorithm to improve the parameter adaptiveness of VMD
and this method was used to extract fault features suc-
cessfully [24]. Zhu et al. developed an adaptive VMD
method, which decomposed a complex signal into some
band-limited intrinsic mode functions [25]. Zhao et al.
utilized a single-objective salp swarm algorithm to optimize
VMD parameters, which could reduce mode aliasing and
kept the fidelity of complex vibration signals [26]. Gu et al.
reported an adaptive VMD based on GWO. In this method,
the minimum average envelope entropy was used as the
objective function [3]. However, signal decomposition,
whose parameters are obtained by the minimum average
envelope entropy, may result in the loss of some fault
features.

Inspired by the above research results, an improved
parametric-adaptive VMD based on grey wolf optimizer
with mutual information algorithm (GWOMI-VMD) is
developed in this work. +e GWO algorithm has a great
global searching ability with high convergence accuracy.
However, it is noted that the optimization objective function
has a great impact on the optimization results. And there are
still some overdecomposition or underdecomposition
problems in the VMD method when the most commonly

used objective functions are applied in GWO, such as
smoothness index, sparsity measurement, and correlation
coefficient [27]. Mutual information (MI) is a valuable in-
formation measure in information theory, which is used to
represent the mutual dependence between two variables. In
this paper, minimum average mutual information (MAMI)
is selected as the optimization objective function to reflect
the decomposition effect of VMD. +en, the parameters are
optimized by GWOMI and the signal is decomposed by our
proposed method. Finally, effective modes are extracted
according to the maximum kurtosis and envelope spectrum
analysis is applied to the effective modes to acquire fault
features.

+e remainder of this paper is organized as follows: the
main principles of VMD and GWO are briefly introduced in
Section 2. In Section 3, an improved parametric-adaptive
VMD method based on GWO with mutual information is
given in detail. In Section 4 and Section 5, both simulation
and experimental signals are utilized to demonstrate the
validity of the GWOMI-VMD, and some comparisons be-
tween the proposed method and traditional VMD, and
particle swarm optimization (PSO) optimized VMD and
EMD methods are provided. In Section 6, some conclusions
are drawn.

2. The Principle of VMD and GWO

2.1. Variational Mode Decomposition. VMD is a novel
method of signal processing, which adaptively decomposes
signals into K modes and these modes have different center
frequencies ωk. +e crucial issue of the VMD algorithm is
how to acquire the solution of the constrained variational
problem, which is formulated in equation (1) as follows:
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where uk  � u1, u2, . . . , uk  and ωk  represent each mode
component and center frequency, respectively. We intro-
duce Lagrange multiplier λ and balance parameter α to
transform equation (1) into an unconstrained one, which is
formulated in the following equation:
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+e alternating direction method of multipliers is
employed to acquire the saddle point of equation (2). As

shown in equations (3) and (4), un+1
k and ωn+1

k are updated to
obtain the optimal values:
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where n is the number of iterations.
After each update, the modes and corresponding center

frequencies are obtained. After that, the Lagrange multiplier
is updated as shown in the following equation:
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When equation (6) is satisfied, the above iteration is
terminated:
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We can see from equation (3) that the modes are rec-
ognized as some Wiener filters. In equation (4), ωk is the
gravity of the corresponding mode power spectrum. And, in
equation (2), the quadratic penalty term α can suppress
mode aliasing, which is one of the critical parameters in
VMD.

2.2. Grey Wolf Optimizer. Compared with other bionic in-
telligent algorithms, the grey wolf optimization algorithm
has faster convergence and better global search capability.
First, a group of grey wolves is randomly generated and they
are divided into four social hierarchies according to their
objective function values from best to worst, namely, α, β, δ,
and ω. Next, the hunting (optimization) is guided by α,
under the cooperation with β and δ by the way of circling the
prey. +en, ω and other wolves move towards the prey,
periodically updating their position, gradually reducing the
distance between them and the prey, and finally successfully
hunting [28]. +e main procedure of the algorithm is given
as follows.

+e distances between the wolves and their prey during
the hunting are formulated in equations (7) and (8),
respectively:
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where X
→

p(t), X
→

(t), and t stand for prey position, wolf
position, and iteration number, respectively. +e coefficients
A
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and h
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where a
→ decreases gradually from 2 to 0 and n

→
1 and n

→
2 are

random vectors in [0, 1].
During the hunting, α, β, and δ are obtained for the first

three optimal solutions in the optimization space, and the
positions of β and δ are changed according to α. +e specific
process is shown as follows:
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where F� α, β, δ and i� 1, 2, 3.

3. The Proposed Method

3.1. Minimum Average Mutual Information. Mutual infor-
mation (MI) is a nonparametric and nonlinear metric in
information theory and can be used to reflect the mutual
dependence between two variables. +e expression is as
follows:

MI(a, b) � 
a∈a


b∈b

f(a, b)lg
f(a, b)

f(a)f(b)
, (11)

where f(a, b) represents the joint probability density
function of a and b and f(a) and f(b) are edge probability
density functions of a and b, respectively. If there is no
overlapping information between a and b, in other words, a
and b are independent variables, the MI value between them
is 0. On the contrary, if there is more overlapping infor-
mation between a and b, the MI value is closer to 1 [29].

In this paper, the minimum average mutual information
(MAMI) is selected as the optimization objective function
and its expression is given by

objectiveGWO � Minimum


K
j�2 V

uk
MI(u(j−1),u(j))

K − 1
, (12)

where K is the number of mode decomposition and


K
j�2 V

uk
MI(u(j−1),u(j)) represents the sum of MI between each

neighboring mode. +e smaller the MI is, the better the two
modes are decomposed. Similarly, the smaller the average
MI is, the better the overall effect of VMD will be.
When ((

K
j�2 V

uk
MI(u(j−1),u(j)))/(K − 1)) is minimized, the

signal can be properly decomposed into a series of modes by
VMD. At this moment, the corresponding parameters (K, α)
are optimal.

3.2. Mode Extraction Based onMaximumKurtosis. After the
signal is processed by the GWOMI-VMD method, the ef-
fective mode is extracted according to the maximum kur-
tosis. Kurtosis describes the peak value of waveform and can
reflect the numerical statistics of vibration signal distribu-
tion features [30]. +e expression is as follows:
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where μ is the mean of signal [x1, x2, . . . , xn] and σ and n
represent the standard deviation of the signal and the length
of the signal, respectively.

As we all know, the more the impact components in the
signal, the greater the corresponding kurtosis. +erefore, the
effective mode with the maximum kurtosis is selected for the
fault feature extraction.

3.3. GWOMI-VMD. In this paper, we develop an incipient
fault characteristics extraction method from the rolling
bearing vibration signal, named GWOMI-VMD. +e steps
of GWOMI-VMD are described briefly as follows:

(1) Input the vibration signal, set the parameter range of
VMD parameters K and α, and initialize the pa-
rameters of GWO.

(2) Decompose the signal by VMD and calculate the
average mutual information of the decomposed
modes.

(3) Update the objective function value and record the
position of the wolves.

(4) Judge whether the number of iterations exceeds the
maximum number of iterations. If so, the iteration
will be terminated. If not, go back to step 2 to
continue the iteration.

(5) Obtain the minimum value of the optimization
objective function and save the optimal position (K,
α).

(6) +e signal is decomposed by VMD with the opti-
mized (K, α), and the effective mode is extracted
based on the maximum kurtosis.

(7) +e envelope spectrum of the extracted mode is
calculated and the fault characteristics are corre-
spondingly obtained.

+e flowchart of the developed method is illustrated in
Figure 1.

4. Simulation Analysis

In order to demonstrate the performance of the developed
method, a simulation signal y is configured as shown in the
following equation:

y1(t) � cos 2∗pi∗f1 ∗ t( ,

y2(t) �
1
4

cos 2∗pi∗f2 ∗ t( ( ,

y3(t) �
1
16
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y � y1 + y2 + y3 + noise,
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(14)

where f1 � 2Hz, f2 � 24Hz, and f3 � 288Hz, the noise
signal is random numbers distributed in [−2, 2], and the

sampling frequency is 1000Hz. Figure 2 shows the com-
posite signal y in the time domain and its frequency spec-
trum. Figure 3 shows each component of the composite
signal y. We can clearly see the frequency components f1
and f2 from the frequency spectrum, but the frequency
component f3 has been completely submerged by the
random noises in Figure 2.

+e proposed method is performed to search the optimal
parameters of VMD. In the optimization process, the op-
timization objective function adopts the minimum average
mutual information (MAMI). And the convergence diagram
of the optimization objective function is illustrated in Fig-
ure 4. As seen from Figure 4, the objective function value is
0.017 when the iteration time reaches 14, and, at this mo-
ment, the curve of the objective function converges. Besides,
the corresponding parameters of VMD are optimized when
the iteration time reaches 14. +en, the optimized param-
eters (9, 4721) are substituted into VMD to decompose the
composite signal y, and Figure 5 shows the resulting modes.

From Figure 5, we can see that three frequency com-
ponents f1, f2, and f3 are extracted, respectively, which are
consistent with the frequencies of the simulation signal y. It
is worth mentioning that there is no serious aliasing between
these modes.

In addition, the simulation signal is processed by the
traditional VMD with parameters (3, 2000) as shown in
Figure 6. We can clearly see that both frequency com-
ponents f1 and f2 are extracted in the first mode.
However, the frequency component f3 cannot be
extracted from these modes. Lastly, the particle swarm
optimization (PSO) is utilized to improve the traditional
VMD and optimal parameters (10, 4883) are obtained
correspondingly. +en, the composite signal y is
decomposed and the decomposition results are illustrated
in Figure 7. From Figure 7, we can see that frequency
components f1 and f2 are also extracted, but frequency
component f3 cannot be successfully extracted.

+rough the above comparison analysis, we can find that
the three frequency components f1, f2, and f3 can be
extracted accurately through the proposed method. How-
ever, the traditional VMD and PSO-VMD could not ac-
curately extract the frequency component f3. So, it is
obvious that our proposed method GWOMI-VMD has a
better performance than the traditional VMD and PSO-
VMD.

5. Experiment Analysis

+e validity and superiority of the GWOMI-VMD in weak
fault diagnosis of rolling bearing are demonstrated through
analyzing the experimental signal. +e experimental data
comes from the Case Western Reserve University Bearing
Data Center [31]. Figure 8 shows the basic layout of the
bearing test table.

As seen from Figure 8, the test table consists of the
following parts: a dynamometer, an electric motor, and a
torque transducer/encoder. +e tested bearing supports the
motor spindle shaft, and the tested bearing has single point
faults. +e vibration signal is collected through an
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accelerometer. +e specific technical parameters are listed in
Table 1 and 6000 data points are sampled for analysis.

5.1. Bearing Inner Race Fault Feature Extraction. Figure 9
shows the experimental signal and it is processed based on
the GWOMI-VMD method. Firstly, the optimal parameters
(K, α) are determined according to the GWOMI algorithm.
Figure 10 shows the GWOMI and PSO convergence curves
for VMD parameter optimization. When the number of
iterations is 13, PSO starts to converge at the objective
function value of 0.032896. When the number of GWOMI
iterations is 7, the objective function value is 0.032876, and
the corresponding parameters of VMD are optimal with a
value of (10, 5612). We can find that the convergence

accuracy and speed of GWOMI are obviously better than
those of PSO.

+en, the optimized parameters are substituted into
VMD, and the signal is decomposed. Figure 11 shows the
modes acquired by decomposition using GWOMI-VMD.
+emode, which contains the most useful fault information,
cannot be judged intuitively from these modes.+erefore, an
index needs to be determined to help extract the effective
mode.

As described above, the maximum kurtosis is used as an
indicator for mode extraction in this work. +e kurtosis
diagram of the ten modes is shown in Figure 12. We can see
that the kurtosis of the 10th mode is the highest out of them,
with a value of 3.113.+erefore, we choose the 10th mode for
the following analysis.
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Envelope spectrum analysis is performed on the 10th

mode and Figure 13 shows the results of the analysis. From
Figure 13, the fault frequency f, rotation frequency fr, and its
second harmonic frequency 2fr have emerged obviously.
What is more, compared with the frequency spectrum in
Figure 9, we can find that the background noise is basically
eliminated in Figure 13.

Comparison analysis: a performance comparison be-
tween maximum kurtosis and maximum correlation coef-
ficient as the mode index is conducted. Figure 14 shows the

envelope spectrum of the effective mode, which was
extracted based on the maximum correlation coefficient. We
find that although fault frequency f is extracted, the rota-
tional speed frequency fr is not extracted as shown in
Figure 13. In addition, there is a newly generated interfer-
ence frequency, whose amplitude in the spectrum exceeds
the fault frequency f.

In addition, the GWOMI-VMD is further compared with
traditional VMD. In this paper, the parameters of traditional
VMD are set as (5, 2500) based on experience. +e
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decomposition results of traditional VMD are shown in Fig-
ure 15. +en, GWOMI-VMD method is compared with the
EMD method and Figure 16(a) shows the first five modes
obtained by using the GWOMI-VMD method. Figure 16(b)
shows the first five modes obtained by using the EMDmethod.
As seen from Figures 15 and 16(b), there is a certain degree of
aliasing between these modes in the case of traditional VMD
and EMD.

5.2. Bearing Outer Race Fault Feature Extraction. As dem-
onstrated in the inner race, the optimal parameter of
VMD is first obtained with the value of (9, 4340), and then
the effective mode is extracted according to the maximum
kurtosis. +e kurtosis of the 9th mode is the highest, with a
value of 6.1024. +erefore, the 9th mode is extracted out

and Figure 17(a) shows its envelope spectrum. +e fre-
quency components in Figure 17(a) are basically con-
sistent with the calculated fault frequencies listed in
Table 1.

A performance comparison between maximum kur-
tosis and maximum correlation coefficient both as the
mode index is conducted. Figure 17(b) gives the spectrum
of the effective mode extracted by the maximum corre-
lation coefficient. From Figure 17(b), we can find that the
second rotation harmonic frequency 2fr is extracted.
However, it is obvious that the fault frequency f is not
extracted successfully, compared with Figure 17(a).
+erefore, the effective mode extracted by the maximum
kurtosis utilized in this paper has certain advantages over
the correlation coefficient.
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Table 1: Technical parameters.

Test bearing (inner race) Test bearing (outer race)
Parameters Values Parameters Values
Fault size 0.007″ Fault size 0.007″
Sampling frequency fs 12000Hz Sampling frequency fs 12000Hz
Fault characteristic frequency f 162Hz Fault characteristic frequency f 107Hz
Rotational frequency fr 29.95Hz Rotational frequency fr 29.95Hz
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Figure 11: Results of the proposed method.
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Figure 16: Frequency spectrums of u1, u2, u3, u4, and u5 decomposed by (a) GWOMI-VMD and (b) EMD.
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6. Conclusions

A parameter-adaptive VMD method based on GWOMI for
fault diagnosis of rolling bearing is proposed in this work. It
greatly enhances the parameter-adaptive ability of VMD.
Firstly, the minimum mean mutual information is used as the
optimization objective function of the GWOMI-VMD. After
that, the maximum kurtosis is set as the effective mode index.
Finally, envelope spectrum analysis is implemented on the
effective mode to extract the fault feature. +rough simulation
and experimental analysis, the validity and feasibility of
GWOMI-VMD are demonstrated. In addition, comparison
results between GWOMI-VMD and the traditional VMD,
PSO-VMD, and EMDare provided, fromwhich the superiority
of the GWOMI-VMD is further verified. +erefore, this paper
has some certain values for incipient fault detection and di-
agnosis of rotating machinery.
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