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Microseismic (MS)monitoring is an important and commonly used geophysical method in coal mines to predict rock burst which
has great influence on safety production. MS monitoring technology and analysis method of the whole mine or working face have
been matured, but its use in heading faces of coal mine is not mature due to small disturbances and narrow layout spaces. To carry
out MS monitoring and early warning in the heading face, signal recognition must be adequately performed first, and monitoring
objects and indicators must be obtained. *rough field tests of MS systems at the 117 track gateway of Tengdong coal mine,
interference signals of equipment operation and effective signals of coal vibration are accurately collected. After analysis, the
waveform characteristics, spectrum, and propagation distance of the interference signals and coal vibration signal are different.
Some effective signals with small energy (one-channel triggering) cannot be used as early warning indicators because they are
concealed by interference signals. *rough trial operation, it is found that large energy (three-channel and four-channel
triggering) coal vibration events successfully predicted a rock burst. *e MS system of 117 track gateway of Tengdong coal mine
should be able to remove the interference signals in real time through the algorithm and take the number of large energy coal
vibration signal rather than all coal vibration events as the predictor for rock burst risk monitoring.

1. Introduction

MS monitoring, as an important and commonly used
geophysical method, has been applied in many fields, such as
earthquakes [1–5], hydropower stations [6–8], metal mines
[9–12], tunnels [13, 14], petroleum engineering projects
[15, 16], hydraulic or pneumatic fracturing [17–19], and coal
mines [20–23]. MS has achieved good results. Among these
fields, coal mines are more widely monitored byMS systems.
*e main type of MS monitoring systems used in coal mines
includes regional monitoring [24–26] and local monitoring.
Regional monitoring has a large (usually greater than 500m)
spacing between measurement points and aims to monitor
the whole mine, while the spacing between points in local
monitoring is smaller (usually less than 200m) and aims at
specificmining areas (for example, working face [27–29] and
heading face). In the field of rock burst monitoring,

monitoring technology and analysis method of working face
have been matured, but research on MS monitoring in
heading faces is not mature due to small disturbances and
narrow layout spaces.

With the increase in mining depth, the early warning,
prevention, and control of rock burst is becoming more and
more difficult. Rock burst accidents occurred frequently, and
many of these accidents occurred in heading face [30–32].
Here, we count the number of rock burst accidents in five
mines of Yima Coalfield in China over the past five years.
Results show that 44 of the 108 counted accidents occurred
in the heading face, accounting for 40.74% (Figure 1). *e
monitoring and prevention of rock burst in heading face is
imminent, but in practical application, it mainly reflected as
follows: (1) the disturbance of heading face is small, and the
conventional techniques such as stress monitoring and
anchor cable force measurement have little change in
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numerical value, which results in poor monitoring and early
warning effect [33]. (2) MS monitoring is the main tech-
nology of early warning of rock burst in coal mine, but it has
not been used in early warning of rock burst in heading face.
*e main problem is that the construction environment of
heading face is very complex. *ere are roadheader, loader,
belt conveyor, roofbolter, and other machinery. *e vi-
bration of these machines is large, and the effective coal
vibration (CV) signals may be concealed by them. (3) Under
the comprehensive excavation technology, the excavation
speed of heading face is faster (more than 12m per day), and
the distance between monitoring points should not be too
small; otherwise, the amount of group shifting engineering
will be increased when real-time online MS monitoring is
used.

In this paper, the waveforms of interference signals and
effective CV signals are obtained through field records and
MS system data of 117 track gateway of Tengdong coal mine
(117 TGTC), and the waveform characteristics of the signals
are analyzed and distinguished by means of waveform and
spectral analyses.*is study provides a basis for the selection
of monitoring objects and indicators, threshold setting of
trigger acquisition, and measurement point layout of the
online MS system in 117 TGTC.

2. Field Test and Experiment

*e Tengdong coal mine is located in Tengzhou City,
Shandong Province, China. *e No. 3 coal seam with an
average thickness of 7.37m is one of the target coal seams.
*e average depth of the No. 3 coal seam is 830m, and its
rock burst tendency is weak.

117 TGTC is connected to the ground through the main
roadway and shaft, as shown in Figure 2(a). *e width and
height of 117 TGTC are 4.4m and 3.4m, respectively. *e
117 TGTC is supported by rebar bolt and cable bolt, as
shown in Figure 2(b). *e direct roof is sandstone with an
average thickness of 17.94m.*e 117 TGTC drives along the
floor of the No. 3 coal seam and adopts the fully mechanized
excavation mode, which is divided into two sequential
working procedures: excavation and support.*e excavation
process is completed by a fully mechanized roadheader

followed by a loader and a belt conveyor. *e supporting
process is drilled and compressed by a roofbolter.

*e MS system used in the field test includes four
sensors, one acquisition instrument, and one server with
corresponding software. *e system collects vibration sig-
nals and converts them into electrical signals. *en, the
signals are transmitted to the ground server through a
transmission cable, as shown in Figure 3. *e acquisition
frequency is 2000Hz, and the sensor receiving frequency is
0–800Hz. To avoid missing waveform data in the initial
trigger acquisition settings, a continuous acquisition mode is
adopted during the field test, and the storage time of each
waveform is 5 s. It is difficult to deploy measurement points
in space due to the single heading of the gateway, so four
sensors are arranged in a straight line and installed to the tail
of the roof rebar bolt of 117 TGTC. *e spacing of the four
sensors (the order from front to back is #1, #2, #3, and #4) is
55m.*e distance between the #1 sensor and heading face is
15m. After arrangement of the MS system is finished, the
bottom noise waveform of the MS system is tested first, and
then, the precise running time of various equipment and
occurrence time of CV (CV signals are recorded by sound
that emits at the same time) is recorded in detail. *e
running records of the equipment mainly include drilling
operation of the roofbolter, compressing blot operation of
the roofbolter, running time of the belt conveyor, and
running time of the roadheader.

3. Results and Discussion

According to the running time of the equipment and the
occurrence time of CV, the corresponding time of received
waveforms is found. Four kinds of interference signals and
one kind of effective CV signal are obtained and analyzed in
detail below. In addition, the maximum amplitude (MA) of
the bottom noise of the MS system is 40mV.

3.1.Waveformand Spectrum of Roofbolter DrillingOperation.
*e drilling operation of the roofbolter only affected the #1
sensor, showing that the propagation distance of the in-
terference signal is greater than 15m (distance to #1 sensor)
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Figure 1: Place of rock burst accidents occurrence in five mines of Yima Coalfield.
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but less than 70m (distance to #2 sensor). *e signal
waveform is shown in Figure 4.*ewaveform characteristics
of the roofbolter are obvious. A bulge waveform with an MA
of approximately 100mV appears every second or two, and
the start point is very obvious, which occurred at approx-
imately 4 s in Figure 4(a).

Figure 5 is the signal spectrum of Figure 4(b),
Figure 5(a) is the signal spectrum, and Figure 5(b) is the
time spectrum of the signal. Signal spectrum can clearly
indicate the main frequency of the signal [34]. However,
the time spectrum can provide the change in the main
frequency of the signal with time. If the main frequency of
the signal always exists in the time window, it indicates that
the interference is persistent or throughout the interference
process. Otherwise, if the interference exists only in a
period of the machinery’s running time, it is indicated as
the partial interference of the machinery. *is method has
been used in [19, 35]. From Figure 5(a), it can be seen that
there are three main frequencies, which are 76Hz, 347Hz,
and 467Hz, during the drilling process of the roofbolter.
*e amplitudes of the three main frequencies are all ap-
proximately 4mV. Figure 5(b) indicates that a 76Hz fre-
quency always exists in the drilling process, while 347Hz
and 467Hz frequencies only exist in the bulge waveform
section. *e results show that 76Hz interference frequency
should be the continuous interference generated by belt
operation, while 347Hz and 467Hz exist only in period of
“bulge waveform.”

3.2. Waveform and Spectrum of Compressing Bolt Operation.
*e compressing bolt operation of the roofbolter only af-
fected the #1 sensor and showed that the propagation dis-
tance is greater than 15m (distance to #1 sensor) but less
than 70m (distance to #2 sensor). As shown in Figure 6, the
start point of compression is clearly at 1.4 s in Figure 6(a),
and the MA increases gradually from 40mV of bottom noise
to 240mV. During the compaction process, the MA remains
at 240mV, and after the compression process, the amplitude
gradually decreases to the bottom noise amplitude.

Figure 7 is the signal spectrum of Figure 6(b), where
Figure 7(a) is the signal spectrum and Figure 6(b) is the time
spectrum of the signal. From Figure 7(a), it can be seen that
the main frequency is between 192Hz and 255Hz during the
roofbolter compression bolt process. *e amplitude of the
main frequency is approximately 20mV. Figure 7(b) indi-
cates that the main frequency always exists in the drilling
process.

3.3. Waveform and Spectrum of Belt Conveyor Working
Operation. *e belt conveyor start and working operation
waveform of the #1 sensor is shown in Figure 8. Only the
belt conveyor is working during this period of time (belt
conveyor should be opened first, and other equipment,
including the roadheader, are opened later). *e start
point of compression is clearly at 1.2 s in Figure 8(a), and
the MA increases gradually from 40mV of bottom noise
to 110mV. Figure 8(b) is the signal spectrum, and
Figure 8(c) is the time spectrum of the signal. From
Figure 8(b), it can be seen that the main frequency is
between 193 Hz and 247Hz during the belt conveyor
working process. *e amplitudes of 193 Hz and 247Hz are
approximately 13mV and 7mV, respectively. Figure 8(c)
indicates that the 193 Hz and 247Hz frequencies always
exist in the working process. In the course of the belt
conveyor working operation, the amplitude of the #2
sensor does not increase. *e reason may be that the #1
sensor is affected by the greater vibration of the head of
the belt conveyor, while the belt itself will not cause the
amplitude of the sensor to exceed the bottom noise value
of 40mV.

3.4. Waveform and Spectrum of the Roadheader Working
Operation. *e roadheader working operation waveform of
the #1 sensor is shown in Figure 9(a). *e MA of the
roadheader working process (belt conveyor is working at the
same time) is 380mV. Figure 9(b) is the signal spectrum, and
Figure 9(c) is the time spectrum of the signal. From
Figure 9(b), it can be seen that themain frequency is between
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Figure 3: MS system used in 117 TGTC.
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193Hz and 247Hz during the roadheader working process.
*e main frequency value is the same as when the belt
conveyor works alone, but the corresponding amplitude
increases from approximately 13mV and 7mV to ap-
proximately 22mV and 26mV. Figure 9(c) indicates that the
193Hz and 247Hz frequencies always exist in the working
process. As the roadheader worked, the amplitude of the #2
sensor increased to 80mV, showing that the propagation
distance of the interference signal was greater than 70m
(distance to #2 sensor) but less than 125m (distance to #3
sensor).

3.5.WaveformCharacteristics andPropagationAnalysis of the
CV Signal. In this field test, 9 CV signals are recorded
when the equipment is not running. *e MA of the CV
signal is varying from 238 mV to 7914mV. According to
onsite questioning of the construction personnel in 117
TGTC, the CV signal mainly occurs from two sides of the
gateway without support and from the front of 117

TGTC. *e propagation distance of the CV signal di-
rectly affects the arrangement of the MS measurement
points. *e MA and propagation distance of the CV
signals are shown in Table 1. When the MA received by
the #1 sensor is 7914 mV, 6269 mV, and 2022 mV, they
lead to a four-channel triggering CV event, which shows
that the propagation distance exceeds 180m (distance to
the #4 sensor). When the MA received by the #1 sensor is
1799 mV and 1232mV, they cause a three-channel
triggering CV event, which indicates that the propaga-
tion distance is greater than 125 m (distance to #3 sensor)
but less than 180m. When the MA received by the #1
sensor is 1029 mV and 687mV, they cause a two-channel
triggering CV event, which indicates that the propaga-
tion distance is greater than 70m (distance to #2 sensor)
but less than 125m. When the MA received by the #1
sensor is 346 mV and 238mV, a one-channel triggering
CV event occurs, which indicates that the propagation
distance is greater than 15m (distance to #1 sensor) but
less than 70m.
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Figure 4: Waveform characteristics of roofbolter drilling operation: (a) 0–5 s; (b) 5–10 s; (c) 10–15 s.
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Select one CV signal with an MA of 6269mV (#1 sensor)
for detailed analysis (see Figure 10). *e MAs of the #1, #2,
#3, and #4 sensors are 6269mV, 2405mV, 1532mV, and
503mV, respectively. *e waveform of the #1 sensor is
particularly easy to pick up at the take-off point, the arrival
time of the #1 sensor (T1) is 0.201 s, and the arrival time of
the #2 (T2) and #3 (T3) sensors is difficult to pick up, which
are 0.223 s and 0.243 s, respectively, while the take-off point
of the #4 sensor is especially unclear and cannot be picked
up. As shown, the farther the distance is, the harder it is to
pick up the take-off point. By dividing the distance
(△S� 55m) by the time difference (taking themean of△T12

and △T23 results in △T� 0.021 S), a simple calculation of
the coal seam velocity of 117 TGTC can be obtained, which
is△S/△T� 2619m/s. At the same time, occurrence location
of the CV event can be positioned roughly. *e amplitudes
of MS signals decrease gradually from #1 sensor to #4 sensor
and arrival time is getting bigger and bigger, indicating that
the CV event occurred in front of the #1 sensor (happened
around the heading face).

Figure 11(a) is the three-dimensional amplitude spectra of
the #1 sensor, showing that the main frequency of the CV signal
is 60Hz, which is lower than the interference signals. *rough
filtering analysis, the MA of the CV event in different frequency
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Figure 6: Waveform characteristics of roofbolter compression bolt operation: (a) 0–5 s; (b) 5–10 s; (c) 10–15 s.
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bands is counted, as shown in Figure 11(b). *e CV signal is
clearly divided into two frequency bands, a high-frequency band
and a low-frequency band, and the demarcation point is 500Hz.
*e low-frequency band shows a rapid attenuation state, most of
which is consistent with the attenuation trend of the original
signal.*e higher the frequency is, the faster the attenuation rate
is. *e attenuation characteristic of the high-frequency band is
small, and even the MA of the rear measuring point is larger,
indicating that the high-frequency signal band has not been
attenuated over the distance to the #4 sensor.

4. Inspection of Monitoring Effect

After obtaining the waveform characteristics and spectrum
information of each interference signals, the interference
waveforms are eliminated by algorithm to make the online
system pick up only the effective signal as far as possible.

Under the condition of the MS system arrangement, 117
TGTC was monitored and tested online. As the test results,
the signal of roadheader and drilling compaction conceals
the small energy (one-channel triggering) CV event, but the
signal exceeding the interference amplitude of roadheader is
not be concealed. During the trial operation, a small rock
burst occurred. *e CV signals were analyzed, and no one-
triggering event was found. We analyzed the two-channel
triggering and above CV events, and the results are shown in
Figure 12. It can be seen that, before the occurrence of rock
burst (16-Dec), the number of four-channel triggering CV
events increased significantly, and the number of three-
channel triggering CV events increased slightly, while the
number of two-channel triggering CV events did not in-
crease, but decreased. *erefore, the number of three-
channel triggering and four-channel triggering CV events
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Figure 8: Waveform and spectrum of conveyor working process: (a) waveform; (b) spectrum of Figure 8(a); (c) time spectrum of
Figure 8(a).
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Table 1: MA and propagation distance of the CV signals.

No. MA of #1 sensor
(mV)

MA of #2 sensor
(mV)

MA of #3 sensor
(mV)

MA of #4 sensor
(mV)

Number of sensors
received CV

Propagation distance
(m)

1 7914 2329 961 240 4 >180
2 6269 2405 1532 503 4 >180
3 2022 496 446 125 4 >180
4 1799 1399 306 — 3 >125 and <180
5 1232 323 141 — 3 >125 and <180
6 1029 239 — — 2 >70 and <125
7 687 172 — — 2 >70 and <125
8 346 — — — 1 >15 and <70
9 238 — — — 1 >15 and <70
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can be used as monitoring objects and indicators for 117
TGTC MS system.

5. Conclusion

Signal recognition is the primary task for monitoring and
early warning of the MS system in 117 TGTC, and the
interference signals should be recognized and removed in
real time. *erefore, a field test of signal recognition was
carried out. *e waveforms of interference signals and CV
signals are obtained. *e interference signals include the
roofbolter drilling operation signal, roofbolter compression
bolt operation signal, belt conveyor working operation
signal, and roadheader working process signal. *e wave-
form characteristics, spectra, and propagation distances of
the signals are analyzed. *e results show that the waveform
characteristics and main frequencies (or amplitude of the
main frequencies) of the signals are different, and signal
identification can be partly achieved by these features.
Among the interference signals, the roadheader working
interference signal has the largest MA of 380mV and the
farthest propagation distance of more than 70m. *e MA of
the CV signal obtained in the field test ranges from 238mV
to 7914mV, showing some CV events smaller than the MA
of the roadheader interference signal may be concealed.
Online test shows that the number and energy level of three-
channel triggering and four-channel triggering CV events
should be used for monitoring and early warning of rock
bursts, and they are obviously undisturbed by interfering
signals. *e field test provides a basis for triggering acqui-
sition and measurement point arrangement of the MS
system in 117 TGTC, and a new idea of rock burst moni-
toring index is presented in heading face.

Other rock burst monitoring areas can refer to the ar-
rangement of the MS system and the warning index, but the
equipment and geological conditions are obviously not the
same as those at 117 TGTC, so before the MS system can be
applied, interference signals and CV signals of the target
heading face should be identified and analyzed first.
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