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Engine vibration signals are easy to be interfered by other noise, causing feature signals that represent its operating status get
submerged and further leading to difficulty in engine fault diagnosis. In addition, most of the signals utilized to verify the
extraction method are derived from numerical simulation, which are far away from the real engine signals. To address these
problems, this paper combines the priority of signal sparse decomposition and engine finite element model to research a novel
feature extraction method for engine misfire diagnosis. Firstly, in order to highlight resonance regions related with impact
features, the vibration signal is performed with a high-pass filter process. Secondly, the dictionary with clear physical meaning is
constructed by the unit impulse function, whose parameters are associated with engine system modal characteristics. Afterwards,
the signals that indicate the engine operating status are accurately reconstructed by segmental matching pursuit. Finally, a series of
precise simulation signals originated from the engine dynamic finite element model, and experimental signals on the automotive
engine are used to verify the proposed method’s effectiveness and antinoise performance. Additionally, comparisons with wavelet
decomposition further show the proposed method to be more reliable in engine misfire diagnosis.

1. Introduction

Because of its simple structure, output power stability, and
convenient installation, the engine is widely utilized as the
power output device in many mechanical systems, such as
automotive, steamship, and spacecraft [1]. However, after
the long-term harsh operation condition, the engine and
other transmission system are prone to fault which will cause
a sudden power interruption, thus affecting the reliability of
the whole transmission system [2–4]. Furthermore, the vi-
bration signals acquired from the sensor contain not only
engine operating information but also various other strong
noise signals, which causes useful feature signals to be
submerged and makes it hard to diagnose engine fault.
)erefore, it is of great significance to extract engine feature
signals that indicate its health state and further monitor their
operation status timely.

In terms of fault diagnosis in engine condition moni-
toring, many researchers have proposed various effective

methods ranging from traditional signal processing to ar-
tificial intelligent algorithm. On the aspect of traditional
signal processingmethods, Bi et al. [5] proposed a novel fault
diagnosis method of diesel engine valve clearance using the
improved variational mode decomposition (VMD) and
bispectrum algorithm. Vernekar et al. [6] applied empirical
mode decomposition (EMD) to decompose the original
vibration into a finite number of intrinsic mode functions
and then used the Näıve Bayes algorithm as the classifier to
detect the engine fault. Figlus et al. [7] applied a wavelet
decomposition, while filtering the internal combustion
engine’s acoustic signal in order to diagnose an excessive
valve clearance. On the aspect of diagnosis methods based on
the artificial intelligent algorithm, it has been greatly de-
veloped and attracted more and more scholar’s attention
[8–11]. Deng et al. [8] proposed an adaptive method for
choosing the parameters in the deep belief network (DBN)
based on the improved quantum-inspired differential evo-
lution algorithm, which could obtain higher classification
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accuracy on detecting rolling bearing fault. Du et al. [9]
directly used the vibration signal as the input of the prob-
abilistic neural network to simplify the diagnosis process and
combined the swarm intelligent algorithm to achieve effi-
cient parallel search for the best diagnosis effect. Jafarian
et al. [10] employed various intelligent diagnosis methods,
such as the Artificial Neural Networks (ANN) and Support
Vector Machines (SVM), to monitor the engine health state
and highlighted their superiorities. Tao et al. [11] proposed a
novel extreme gradient boosting-based misfire fault diag-
nosis approach utilizing the high-accuracy time frequency
information of vibration signals and achieved higher diag-
nosis accuracy. Although the above methods could achieve
certain effects, most methods are easily influenced by other
noises and cannot obtain good results under the low signal-
to-noise ratio (SNR).

Recently, due to its superiority of feature extraction
ability under low SNR, sparse decomposition is widely
applied in the field of image processing [12], compressed
sensing [13], and fault diagnosis [14, 15]. Engine vibration
signals have similar characteristics with these signals.
)erefore, the sparse decomposition method can be theo-
retically transferred to the engine signal analysis and
employed to extract its features for accurate diagnosis.

Additionally, like it is described in Reference [16], most
of the reference simply used numerical simulation, which
usually consists of sine and modulation components and
noise part from the environment, to simulate the engine
vibration signal and further to verify the proposed feature
extraction method. However, the numerical simulation
signal still has huge differences with the real-world complex
engine signal. )e algorithms validated by it may face
trouble in handling the real engine vibration signal. Hence,
to narrow the gap between the simulation signal and real
signal as much as possible, a more concise dynamic finite
element model should be constructed to generate the sim-
ulation signal rather than simply employ numerical
simulation.

To address these problems, the proposed method
combines the priority of signal sparse decomposition and
engine finite element model to research a novel feature
extraction method for engine misfire diagnosis in this paper.
)e organization of the rest paper is arranged as follows.
Section 2 introduces the fundamental principle of the
proposed method; Section 3 briefly illustrates the con-
struction steps of the engine model and verifies the proposed
feature extraction method; Section 4 is experimental veri-
fications and comparison with wavelet analysis; Section 5
comes to conclusions.

2. Feature Extraction of Engine Misfire Fault

In the actual operating condition, the vibration signal col-
lected from the hood is complex always contains unrelated
signals generated by other components, which easily makes
the feature signal represent the status of the engine sub-
merged in strong noise. Additionally, different from other
types of engine fault, misfire fault occurs with higher
probability and its signal feature is relatively weak [17]. In

order to detect engine misfire fault timely, it is necessary to
find a method that can effectively extract its fault features
under low SNR circumstances. Relying on its excellent
feature extraction capabilities, the signal sparse decompo-
sition method is therefore selected in this paper.

2.1. Basic Principle ofMP. Matching pursuit (MP) is a sparse
algorithm which utilizes linear combinations of atoms in the
redundant dictionary to approximately represent a signal
[14]. Due to its powerful signal sparse representation ability,
MP is now widely applied in feature signal reconstruction to
better detect imperceptible fault. )eoretically, the original
signal x can be decomposed into a linear superposition of
atoms d(‖d� 1‖) in the dictionaryD ∈ Rn×q, as shown in the
following equation:

x � 〈x, d0〉


d0 + R1x, (1)

where d0 denotes the best matching atom in this procedure
and R1x is the residual signal after first MP. Because of the
orthogonality between d0 and R1x, R1x can further de-
compose in the same way as x. After applying N times to the
residual signal, x can be represented as follows:

x � 
N−1

n�0
〈Rnx, dn〉


dn + RNx, (2)

In order to avoid falling into the infinite loop, the it-
erative procedure stops until RNx is less than a preset
threshold δ, which is a small value. From the above intro-
duction, it can be known that the extraction accuracy of the
feature signal mainly depends on the atoms in the dictionary.
)e more similar atoms with the feature signal, the better
feature extraction result can be obtained.

2.2. Construction of the Dictionary with Physical Meaning.
As we know, the unit response function has an attenuated
oscillation waveform. )e feature signals of engine misfire
fault are continuous impact signals, which have a similar
waveform with the unit response function in the time do-
main. Moreover, according to the principle of mechanical
vibration, engine system’s modes that are determined by
modal parameters (fd, ξ) would be effectively excited by
series of impulse forces generated from the cylinder. Fur-
thermore, its parameters could influence structure physical
vibration characteristics. )e natural frequency fd and
damping ratio ξ determine the speed of vibration and at-
tenuation in the time domain, respectively. And, these pa-
rameters are also connected with the physical structure of
the engine system. )erefore, according to the similarity
principle between the original signal and atom, it is rea-
sonable to choose the unit response function as an atom in
the sparse dictionary [14]. Its specific expression is presented
as follows:

d(t) � exp
−2πξ
�����

1 − ξ2
 fdt⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠sin 2 πfdt, (3)
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where fd and ξ are the natural frequency and damping ratio,
respectively. Equation (3) indicates that the atom is asso-
ciated with the modal parameters of the engine again, which
not only has high similarity with the original signal but also
contains clear physical meaning.

2.3. Detailed Procedures of the ProposedMethod. Inspired by
MP and the engine vibration signal characteristics, the
proposed method can be illustrated as shown in Figure 1. It
mainly contains three parts: signal preprocessing, dictionary
construction, and feature extraction. Due to the low-fre-
quency noise caused by other machinery rotational com-
ponents in the engine transmission system, the first part is
utilized to improve the SNR of the obtained signal. )e
second is to construct a dictionary with clear physical
meaning. Finally, the third is to apply MP to extract the
engine feature signal for diagnosis. )e detail procedures of
the algorithm are implemented as follows:

(1) )e signal x(t) is obtained with a sampling fre-
quency fs from the vibration acceleration sensor
installed in the hood. Afterwards, a high-pass fil-
tering process is applied to the collected signal to
remove the low-frequency noise. )is procedure can
further improve the SNR of the signal and minimize
interferences from other irrelevant signals as much
as possible.

(2) According to the theory proposed in Reference [15],
the multiorder frequencies and damping ratios
(fdj, ξj)(j � 1, . . . , J) are obtained by edited ceps-
trum and rational fractional polynomial fitting
method. )erefore, the atoms in the dictionary are
constructed by equation (3). In order to expand the
atoms and achieve the redundancy property of the
dictionary, the time shift factor τ ∈ (0: Δt: Ts) is
introduced to find out impact time of the signal. At
last, the dictionary D consists of all the expanded
atoms, with the shape of p× q. p � J × round((Ts +

1)/Δt) and q � Tsfs, where J is the maximum order
of extracted modal parameters, ∆t represents the
time shift interval, and Ts is the ignition impact
interval, and the notion of round presents for
rounding off.

(3) To accelerate the calculation speed of MP, the signal
is performed in N segmental. Each segment of the
filtered signal xp(t) is divided by a duration of Ts,
which is corresponding to the ignition impact in-
terval, namely, the reciprocal of main exciting fre-
quency in the automotive engine.
Ts � (1/fmain) � ((60 × 2)/nA), where n is the ro-
tation speed of the engine and A is the amount of the
engine cylinder.

(4) Set the iteration value δ of the MP algorithm, and
apply it to solve sparse coefficients of the nth segment
signal. Hence, the feature signal of the nth segment
signal can be represented by xfn(t).

(5) Based on the dividing time sequential of the signal, the
reconstructed feature signal of the engine can be

expressed by equation (4). It should be mentioned that
it is a quick algorithm to reconstruct the engine feature
signal, and the times of inner product equals to
round(T/Ts)Np, whereN is themaximal times ofMP:

xf(t) � 

N

n�1
xfn(t). (4)

(6) Finally, the feature of engine operating status could
be represented by the reconstructed signal xf(t) and
the misfire fault diagnosis is carried out.

3. Simulation Analysis

To verify the effectiveness of the proposed method, a precise
engine finite element model is firstly applied to generate
more realistic engine simulation signals. )en, white noises
are added into the original signals to research its feature
extraction ability under the low SNR condition. Comparison
analysis illustrates the advantages of the proposed method in
terms of feature extraction ability.

3.1. Generation of the Engine Simulation Signals. Different
from other fault signals, such as the bearing fault signal or
broken gear signal, the engine signals are more complex
whether under the health state or misfire fault state.
)erefore, in order to generate more realistic engine signals
for analysis, a high-quality four-cylinder engine multibody
dynamic model is constructed by utilizing the AVL EXCITE
platform [18]. Its main procedures are as follows:

(1) Build the 3-dimensional model of the four-cylinder
engine power unit and crankshaft in CAD software,
and import it into MSC Patranto to perform finite
element mesh division, as shown in Figure 2. )is
step is to set the engine as a flexible body and make
each part of the vibration signal obtainable, espe-
cially the hood part.

(2) As we know, the dynamic system analysis with huge
degrees of freedom is time consuming. Hence, the
matrix reduction method is accomplished by MSC
Nastran to reduce the degrees of freedom of the
constructed model and then improve the calculation
efficiency.

(3) Import the reduced finite element model into the
EXCITE power unit, and each component can be
connected by springs, dampers, bearings, and other
nonlinear elements to form the final coupled engine
dynamic model.

(4) Set combustion pressure in the EXCITE PU module
as the external excitation to make the whole system
vibrate. Its variation law along with the crank angle
under the normal state is illustrated in Figure 3(a),
which is similar to actual engine working conditions.
Meanwhile, the engine misfire fault is simulated by
setting the combustion pressure of the corre-
sponding faulty cylinder into a low value, as shown
in Figure 3(b). It should be mentioned that the crank
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Figure 2: Finite element models. (a) Engine power unit. (b) Crankshaft.
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Figure 3: Combustion pressure variation along with crank angle. (a) Normal state. (b) First cylinder misfire fault in the four-cylinder engine
model.
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Figure 1: Flow chart of the engine signal feature extraction.
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angle represents the rotational angle of the
crankshaft.

3.2. Normal State. Based on the dynamic model constructed
in Section 3.1, the normal state signal is acquired on the hood
with a sample frequency fs of 18748Hz. From Figure 4(a), it
can be hardly seen of any features generated by engine
impact forces both in the time domain and frequency do-
main. Even in the noiseless simulation condition, the fea-
tures indicating the health state of the engine are still
obscured by other low-frequency components. According to
the signal analysis theory, impact forces will excite the
system to vibrate at the high-frequency region. In order to
eliminate the influence of low frequency as much as possible,
combined with the spectrum of the original signal, a high-
pass filter with the cutoff frequency fcut � 2000Hz is applied.
)e filtered signal xp(t) is displayed in Figure 4(b), where
the SNR of impact signals is improved significantly.

)en, multiorder model parameters that highly corre-
lated with the engine impact feature signal are identified to
construct the sparse dictionary, and MP is further utilized to
extract impact features from the filtered signal, and the it-
eration value δ is set as 0.001, which could make the residual
signal as small as enough and ensure the accuracy of the
reconstructed signal according to Reference [14]. Here, the
results are illustrated in Table 1 and Figure 5. Almost all
identified frequencies from Table 1 are located at corre-
sponding resonance regions in Figure 4(b), which demon-
strates the correctness of the identification results and
further provides high quality parameters for the dictionary
design. As can be seen in Figure 5, nearly all the amplitudes
and moments of the impact features in the extracted signal
match well with those of the filtered noiseless signal. )e
results strongly verify the effectiveness of the proposed
method in the feature extraction aspect. Moreover, each
impact feature that is generated by the healthy engine cyl-
inder is clearly exposed, which reveals the health state of the
engine.

To further research the antinoise performance of the
proposed method, a Gaussian white noise with SNR� 5 dB is
added into the simulation signal of Figure 4(a). )e filter
parameters are the same as the noiseless condition, and
corresponding results are shown in Figure 6. Compared with
Figure 4(b), the impact signals in Figure 6(b) are over-
whelmed by noise after removing low-frequency interfer-
ences, which increases the difficulty in extracting the engine
feature signal. Although, few extracted impact features exist
slightly different, the vast majority of extracted signals ob-
tained from the proposed method are still in accordance
with the filtered noiseless signal, as shown in Figure 7. In
sum, the proposed method can extract engine features well
under low SNR conditions.

In order to further illustrate the advantage of the pro-
posed method under low SNR, wavelet decomposition is
chosen to process the same simulation signals in terms of its
good feature extraction ability. In wavelet decomposition,
db10 is selected as the basic function of the wavelet, and the
decomposition layer is set as 4. FS represents the filtered

signal; d1, d2, d3, and d4 denote the decomposition results.
In the noiseless condition, it can be clearly seen that the
wavelet decomposition method is able to extract engine
impact features as effectively as the proposed method, as
shown in Figure 8, when compared with the results in
Figure 7 in the noise condition; though the wavelet de-
composition method could denoise the filtered signal to
some extent and make a few impact features clearer, the
majority of the impact features are still submerged in strong
noise, which reduces the diagnosis accuracy of engine
misfire fault. In summary, the proposed method cannot only
effectively extract and highlight engine features in the
noiseless condition but also in the low SNR condition.

3.3. Single-Cylinder Misfire Fault. Engine misfire fault is
mainly due to its cylinder failing to ignite properly, namely,
under the unfired state. When the engine has misfire fault in
the cylinder, corresponding impact signals will disappear
theoretically due to its unsuccessful ignition in the faulty
cylinder. Hence, the misfire fault feature can be described as
a series of impact feature signal in the time domain; among
the signals, some of the impact waves will miss due to the
faulty cylinder.

Like the normal state, the single-cylinder misfire fault
signal obtained from Section 3.1 also processed in the
noiseless condition and 5 dB noise condition. As shown in
Figure 9(a), it is still difficult to diagnose engine misfire fault
by simply observing the original signal even in the noiseless
condition. After removing interferences caused by low-
frequency components, the impact features have appeared
out much more clearly in Figure 9(b). Moreover, it can be
found that one impact feature is missing in the four con-
secutive impact intervals by comparing with the filtered
signal under the normal state. )is phenomenon just in-
tuitively reveals the features of engine misfire fault and
demonstrates the correctness of the simulation signal gen-
eration model in turn. )en, the feature signal extracted by
the proposed method is illustrated in Figure 10, which shows
a high similarity to the filtered signal, and its diagnosis
features are also clearly exposed.

Under 5 dB noise condition, signals are more complex to
analyse and basically hard to see any impact features both in
the original signal and filtered signal, as shown in Figure 11.
Hence, the proposed method is utilized to extract important
impact features indicating engine misfire fault. From Fig-
ure 12, all the engine ignition impact features with high
amplitude are well extracted, and some weak impact features
are also exposed slightly because of noise influence. In
general, although the unavoidable noise coming from the
environment may cause certain weak pseudoimpact fea-
tures, the proposed method still can effectively extract en-
gine misfire fault features with much higher amplitude to
make correct diagnosis under the noise condition.

Similar to the normal state, the misfire signals are also
performed by the wavelet decomposition method. As the
results shown in Figure 13, engine misfire fault features can
be well extracted under the noiseless condition. When it
comes to the low SNR situation, majority of the impact
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features are still covered by noise interferences, which
hinders the diagnosis of engine misfire fault and further
illustrates the superiority of the proposed method.

4. Experiment Verification

To further verify the effectiveness of the proposed method, a
four-stroke in-line four-cylinder multipoint injection gas-
oline engine with a displacement of 1.6 L was operated under
the normal state and single-cylinder misfire fault state, re-
spectively. As shown in Figure 14, the vibration signal was
obtained by the PCB vibration acceleration sensor mounted
on the hood. )e signal acquisition equipment contains the
MKII signal collector and PAK acquisition and computer
analysis system. )e sampling frequency was set as
10240Hz. Misfire fault of the engine was accomplished by
cutting off the corresponding cylinder fuel supply.

Additionally, the experiment was carried out under no load
because of the limited conditions. Comparison analysis with
the experimental signal illustrates the advantages of the
proposed method in terms of feature extraction ability.

4.1. Normal State. As can be seen in Figure 15(a), the ex-
perimental signal acquired on the hood also includes low-
frequency components’ interference, while the important
high-frequency regions containing impact features are
suppressed largely. )is also verifies the correctness of the
constructed dynamic model from another aspect by ob-
serving the similarity of simulation signals and experimental
signals. )erefore, a high-pass filter is applied to highlight
the impact features of the original signal as in simulation.
)e results are presented in Figure 15(b); compared with the
unfiltered signal, the SNR of the filtered signal is indeed
improved, and some weak impact features can be observed.
However, it is still difficult to diagnose the health state of the
engine by the current signal because of the complex noise
interferences.

)e multiorder model parameters affecting impact vi-
bration characteristics are identified and listed in Table 2. )e
filtered signal is then utilized to exhibit the feature extraction
superiority of the proposed method, as shown in Figure 16.
Most of the impact features have been effectively extracted as
well as the impact amplitudes. Compared with the filtered
signal, the extracted signal is clearer and can better represent
the engine operation condition. Furthermore, although there
are few weak impact features influenced by noise, the am-
plitudes of most of the reconstructed signals are the same as
those of the filtered signals and there is no periodic low-
amplitude impact, which are consistent with the normal
simulations. Hence, the engine health state can be concluded
to the normal state, and the results of the experiment further
verify the effectiveness of the proposed method.

4.2. Single-Cylinder Misfire Fault. )e misfire fault experi-
ment was also conducted on the same condition with the
normal state. As illustrated in Figure 17(a), the original
vibration signal obtained from the hood is disorderly and
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Table 1: )e simulation results of multiorder model parameters’
identification.

Parameter 1 2 3 4 5 6
Frequency fdj

(Hz) 2189 3996 5483 5969 7022 7901

Damping ratio
ξj
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Figure 5: Filtered noiseless signal and extracted feature signal
under the noiseless condition.
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cannot be observed as useful information. After filtering the
low-frequency noise, impact features located in the reso-
nance area are highlighted, but still with some noise dis-
turbances influencing engine health diagnosis.

)erefore, the impact features indicating the engine
health state are further extracted by the proposed

method. According to the misfire fault simulation results
under noiseless and noise conditions, it can be known
from that when single-cylinder misfire fault occurs, the
extracted signal will still show equally spaced impacts
rather than directly missing one impact. More impor-
tantly, the impact feature related with the faulty cylinder
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Figure 13: )e results of the engine single-cylinder misfire fault signal processed by wavelet decomposition. (a) Noiseless. (b) Under 5 dB
noise.

Sensor position Tested engine

(a)

Signal acquisition
equipment Computer

(b)

Figure 14: Experimental devices. (a) Tested engine. (b) Signal acquisition equipment.

Table 2: )e experimental results of multiorder model parameters’ identification.

Parameters 1 2 3 4
Frequency fdj (Hz) 3089 3453 4099 4891
Damping ratio ξj 0.0132 0.0416 0.1730 0.0150
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Figure 15: Experimental signal of the time domain and frequency domain under the normal state. (a) Original signal. (b) Filtered signal.
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has lower amplitude than others and shows quasi-peri-
odicity. As shown in Figure 18, the results from
the experimental signal are similar to the simulation
results and therefore the engine misfire fault is diag-
nosed, which further verifies the correctness of the
proposed method.

)e results processed by wavelet decomposition are il-
lustrated in Figure 19. It can be clearly seen that both
extracted signals under the normal state and misfire state are
submerged by strong noise, which hinders the engine misfire
fault diagnosis. )e comparison results further show the
feature extraction advantage of the proposed method.
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Figure 16: Experimental normal signal processed by the proposed method.
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Figure 17: Experimental signal of the time domain and frequency domain under misfire fault. (a) Original signal. (b) Filtered signal.
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Figure 18: Experimental misfire fault signal processed by the proposed method.
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5. Conclusions

Based on signal sparse decomposition theory, a feature
extraction method is proposed to accurately extract impact
features indicating the engine health state. )e unit response
function that reflects the system modal characteristic is used
as the atom to construct the sparse dictionary with clear
physical meaning. Moreover, the segmental MP algorithm is
applied to reconstruct the impact features from the original
signal. Simulations and experimental tests both verify the
effectiveness of the proposed method. Some important
conclusions are as follows:

(1) A four-cylinder engine multibody dynamic model
constructed by the AVL EXCITE platform can
generate more realistic signals than oversimplified
numerical simulation. Furthermore, it cannot only
simulate the engine normal signal but also the engine
misfire fault signal by adjusting the combustion
pressure of the corresponding cylinder.

(2) Original simulation signals contain many noise
interferences, in which exists low-frequency com-
ponents generated by other rotational parts. In the
normal state, the proposed method can effectively
extract all impact features in the noiseless condi-
tion. Moreover, under the low SNR condition, it can
still make submerged impact features exposed
clearly.

(3) In the engine misfire fault state, the faulty cylinder
will not produce impact features in the corre-
sponding ignition moment theoretically. Hence,
impact features can be well extracted but with
missing one impact by the proposed method in the
noiseless condition. However, in the low SNR
condition, besides the normal state impact features
can be extracted, the pseudoimpacts with lower
amplitude also appeared out due to the noise
interferences.

(4) In real automotive engine tests, the proposedmethod
still makes full use of the fault information that is
buried in the original signal and highlights impact
features to accurately diagnosis the health state of the
engine, especially detect engine misfire fault.

(5) )ough the wavelet decomposition method could
obtain good extraction results under the noiseless
condition as the proposed method, when it comes to
the low SNR condition, only the proposed method
can effectively extract the feature signals that indicate
the engine health state.
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