Hindawi

Shock and Vibration

Volume 2021, Article ID 6655090, 11 pages
https://doi.org/10.1155/2021/6655090

Research Article

Hindawi

Fault Diagnosis of Electric Impact Drills Based on Time-Varying
Loudness and Logistic Regression

Yapeng Jing ,! Haitao Su®,"? Shao Wang,1 Wenhua Gui,' and Qing Guo 1,2

ISchool of Electronic Engineering and Automation, Guilin University of Electronic Technology, Guilin 541004, China
2Guangxi Key Laboratory of Automatic Detecting and Instruments, Guilin University of Electronic Technology,

Guilin 541004, China

Correspondence should be addressed to Haitao Su; suhaitao@guet.edu.cn and Qing Guo; sxgq@guet.edu.cn

Received 26 December 2020; Revised 24 February 2021; Accepted 12 March 2021; Published 24 March 2021

Academic Editor: Liang Guo

Copyright © 2021 Yapeng Jing et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

As the main component of an electric impact drill, the gearbox is used to decelerate and transmit power; damage and failure to the
gears often lead to the transmission system’s failure. Therefore, as the core component of power transmission, the fault detection
and diagnosis of gearbox devices have attracted increasing attention. This paper presents a psychoacoustic-based fault diagnosis
method for gears of electric impact drills. The proposed methods employ acoustic signals and the time-varying loudness theory of
psychoacoustic parameters. Two states of electric impact drills were analyzed: an electric impact drill with healthy gears and an
electric impact drill with faulty gears. A feature extraction peak-to-average ratio (PAR) method based on the time-varying
loudness spectrum was described and implemented to compute the feature vectors. The classification was carried out by applying
logistic regression (LR). This paper provides the results of an acoustic analysis of electric impact drills. The results had a good
recognition rate and the total accuracy of recognition of EIDs based on the PAR with LR was 97%. This method simulates the
human auditory perception to detect the gear components of an electric impact drill, which can replace the traditional artificial

listening detection method.

1. Introduction

Electric impact drills (EIDs) are an electrical tool used for
tightening and loosening bolts and nuts or drilling holes.
They are mainly composed of a motor, gearbox, and keyless
chuck. EIDs are a kind of rotating machinery that plays a
crucial role in the machinery and construction industries. To
prevent the failure of EIDs, manufacturers should strictly
control their quality and they must be quality-tested before
leaving the factory to ensure that there are no faults in the
internal parts. The mechanical faults of EIDs have been
previously studied [1]. This article focuses on gear failure in
the two-stage gearbox. Specifically, we are concerned about
the problem of broken gear teeth in this paper. We attributed
all possible gear failures to one type of failure, so only a
healthy EID and a failed EID were analyzed in this article. At
present, the factory production line’s commonly used de-
tection method is to rely on professional workers to listen

online. They then judge whether the product is faulty
according to an abnormal sound during the EID’s operation.
The workers’ listening based on their past experience is
affected by many external factors, such as technical maturity,
physical conditions, and personal subjectivity. As a result,
the subjective feelings related to listening vary greatly. It is
difficult to use a stable and consistent standard that judges
whether there are faults in an EID. It is for this reason that it
is hard to enhance the quality of products further. With the
advancement of technology, efficient and accurate fault
detection methods are urgently required by industrial
production.

In the past few years, researchers in the industry have
often used electric current signals, vibration signals, acoustic
emission signals, and sound signals (produced by a mi-
crophone) to detect gear faults. The analysis of electric
currents was developed in previous articles [2-6], and their
results of current recognition were excellent. The current
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gear fault diagnosis method has limited applicability and is
based on the motor stator current. Vibration signal analysis
is an essential means of detecting gear failure [7-19].
Nonetheless, with regard to the structure of the measured
object, the vibration signal may be hard to obtain. In ad-
dition, the shell of the machine under test will shield or
change part of the mechanical vibration signal character-
istics, especially for an EID. The current most prevalent gear
fault diagnosis method is to analyze vibration combined
with the acoustic emission (AE) signal [20-22], which im-
proves the diagnosis capability; however, this detection
method is very complicated and requires two types of
suitable sensors, which increases the diagnosis cost.

In recent years, some scholars have developed gear fault
diagnosis methods in conjunction with vibration and sound
signals [23-26]. Others have directly used sound signals for
diagnosis [27-29] and achieved good results. The abnormal
sound produced by a mechanical structure, which can reflect
some failure of the rotating mechanism, has always been a
problem for manufacturers. Therefore, using the mechanical
structure’s abnormal sound to judge its failure is a feasible
method. The audio signal generated by the vibration of a
rotating machine has a robust corresponding relationship
with the device’s operating state. A slight change in the
characteristic sound signal may indicate a change in the
equipment’s operating state. When the mechanical equip-
ment operates normally, the sound signal appears as a
combination of fundamental components and the resulting
higher-order harmonics, and periodic attenuation wave-
forms appear in the time domain. When the equipment fails,
the mechanical equipment failure point will become a new
excitation source in the sound signal. These excitation
sources will take part to turn around for a period of time, and
the frequency and amplitude of the sound signal will change
significantly. Therefore, we are confident that fault diagnosis
technology based on acoustic signals will be popular. In
traditional signal processing techniques, most of the relevant
features are extracted from the time, frequency, and time-
frequency domains of the signal. Nevertheless, there is no
apparent difference between the analysis method and the
vibration method, failing to reflect the advantages of acoustic
signal analysis.

On the factory production test rig, the professional
workers, based on their past experience, decide the presence of
a fault by listening to the sound emitted by the electric drill.
Based on similar principles of listening, here we use psycho-
acoustic technology to defect malfunctions of EIDs. We ana-
lyzed and evaluated the sounds produced by EIDs using
psychoacoustic theory to detect faults. We describe the ap-
plication of a psychoacoustic-based approach to EIDs. We
analyzed 200 electric impact drills (100 healthy and 100 faulty).
In total, two hundred acoustic signals were analyzed: healthy
EIDs (Figures 1 and 2), EIDs with a faulty sun gear
(Figure 3(a)), EIDs with a faulty ring gear (Figure 3(b)), and
EIDs with a faulty planet gear (Figure 3(c)). In Section 2, we
introduce the proposed psychoacoustic approach of signal
processing and describe the classification algorithm in detail. In
Section 3, the recognition results are depicted. We discuss our
findings in Section 4 and provide a conclusion in Section 5.
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2. Proposed Fault Diagnosis Method Based on
Time-Varying Loudness

The fault diagnosis method of EID was based on psycho-
acoustics. The proposed technique included four processes:
acoustic signal capture, acoustic signal preprocessing,
feature extraction, and classification. Specifically, Lab-
VIEW software was used for acoustic signals catching,
preprocessing, and extracting the data. First, we used an
NI6343 acquisition card and CRY-333 measuring micro-
phone set (a brand made in China, frequency response
3.15-20kHz and sensitivity 50 mV/Pa) to record acoustic
signals of the electric impact drill in use at a sampling rate
of 51,200 Hz, and the signal duration was 1.7s. The mi-
crophone was placed 20 cm from the supporting bracket of
the EID and 8cm from the upper edge of the bracket.
Second, the recorded signals were preprocessed. The
purpose of this step was to convert the voltage signal into
the sound pressure signal, since NI 6343 cannot directly
collect the audio signal. Therefore, the preprocessing
method is to divide the received voltage signal by the
sensitivity parameter of the microphone. Third, we used a
time-varying loudness model to calculate the time-varying
loudness and specific loudness of the preprocessed acoustic
signals, and we proposed a peak-to-average ratio (PAR)
fault diagnosis method on the basis of time-varying
loudness. Last, we used the logistic regression (LR) clas-
sifier for pattern creation and classification. The developed
fault diagnosis approach based on psychoacoustics is
shown in Figure 4.

In the experimental design, we used a supporting bracket
to fix the electric impact drill and a microprocessor to
control operation of the electric impact drill. In addition, the
microprocessor also integrated the power supply module of
the microphone. The lithium battery supplied power to the
microcontroller. The schematic diagram of the experimental
setup to record sound signals is depicted in Figure 5(a) and
the experimental setup of the electric impact drill is shown in
Figure 5(b).

2.1. The Time-Varying Loudness Theory of Psychoacoustic
Parameters. Psychoacoustic parameters are objective
physical quantities that describe the degree of difference in
the subjective human perception of sound, which can
quantitatively reflect the difference in auditory perception
and eliminate individual bias. Commonly used psycho-
acoustics parameters include loudness, sharpness, fluctua-
tion, and roughness. Equations were developed to calculate a
serial of parameters that describe the complex human
perception of sound quality objectively [30]. Importantly,
loudness is the basis for the calculation of other parameters.
On this basis, we calculate the time-varying loudness in
compliance with DIN 45631/A1:2010. The time-varying
loudness is based on the steady-state loudness. The calcu-
lation step size is set as 2ms in the standard so that the
loudness calculation is carried out once every 2ms. The
calculation of excitation mode and specific loudness within
2ms is the same as that of steady loudness. The overall
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(c)

FIGURE 1: (a) Healthy electric impact drill (EID); (b) internal view of a healthy EID; (c) internal composition diagram of an EID, with the
three main components (motor, gearbox, and keyless chuck) highlighted.

FIGURE 2: (a) Healthy EID with a working sun gear connecting the motor and gearbox. (b) Healthy EID with a working ring gear. (c) Healthy
EID with a working planet gear.
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FIGURE 3: (a) EID with a faulty sun gear connecting the motor and gearbox; (b) EID with a faulty ring gear; (c) EID with a faulty planet gear.
Faults are highlighted in the red ovals.
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FIGURE 4: The proposed diagnostic system based on the acoustic signal.

loudness is obtained by summing the specific loudness inthe =~ between healthy products and faulty products. The loudness
whole frequency range. Here, we calculated and analyzed the =~ was obtained by integrating the time-varying specific
time-varying specific loudness and found the difference  loudness to get more accurate features of information. The
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FIGURE 5: (a) Schematic diagram of the experimental setup and (b) experimental setup of the electric impact drill.

PAR calculation method based on the time-varying loudness
spectrum is introduced below.

2.2. PAR of the Time-Varying Loudness Spectrum. The
method of the PAR of the time-varying loudness spectrum
was developed and implemented here. This feature extrac-
tion method was used differently in time-varying loudness.
It consists of six signal processing steps:

(1) Calculate the time-varying loudness of the acoustic
signals according to the time-varying loudness
model in the German DIN 45631/A1:2010 standard.

(2) Intercept time-varying loudness data to obtain y ().
We intercepted the loudness data from 0.3 seconds
to 1.3seconds for analysis to calculate the results
more accurately, and we found that a 1 s sample was
the best data size for analysis.

(3) Compute the FFT spectra of y (t) to obtain y ( f), and
compute the absolute values |y (f)I.

(4) Find the maximum value Al in the [c,d] band and
the corresponding frequency point f, of Al. Then,

calculate the lower critical frequency point f, and
the upper critical frequency point f; according to
the following formula:

e fi-Af<c
fz_{fl‘Af fi-Af=zc
| firAf fi+Af<d
f3_{d fi+Af>d

1

Finally, calculate the average value A2 of |y (f)| in
frequency bands [c, f,] and [f;,d].

iy SN ST ) o
- d—c-2Af ’

where Af =10, ¢ = 150, d = 250. Af refers to the
extended constant, which represents the statistical
half-width of the peak where the maximum is lo-
cated. In this step, c and d were selected based on the
results of FFT analysis.

(5) According to Al and A2 obtained in the fourth step,
the PAR, e, was calculated by



e = A1 1000 3)
|A2] '

(6) Form a feature vector [e, f,].

The approach used to build the PAR model based on the
time-varying loudness spectrum is presented in Figure 6.

In this section, the analysis of the following three cases is
described: Case 1 (Figure 7): healthy EID-a, faulty EID-a;
Case 2 (Figure 8): healthy EID-b, faulty EID-b; Case 3
(Figure 9): healthy EID-c, faulty EID-c. Among them, faulty
EID-a refers to the broken tooth of the sun gear connecting
the motor and the gearbox, faulty EID-b refers to the broken
tooth of the ring gear, and faulty EID-c refers to the broken
tooth of the planet gear.

First, we calculated the time-varying specific loudness of
different products and found apparent features. Time-
varying loudness was calculated to distinguish more
prominent features. Then, we analyzed the time-varying
specific loudness, time-varying loudness, and time-varying
loudness spectrum of healthy EIDs and faulty EIDs, re-
spectively, and found that they have differences and regular
changes. The most obvious difference of time-varying spe-
cific loudness is in subband [14, 24]. The energy of healthy
EID in subband [14, 24] is greater than that of faulty EID.
The time-varying loudness is obtained by integrating the
time-varying specific loudness on the time scale. We find
that the time-varying loudness curve of healthy EID is stable
and does not change greatly from 0.3 s to 1.3 s, but there are
many abrupt changes in the time-varying loudness curve of
faulty EID. The most obvious difference between the spectra
is mainly in the frequency band [150,250]. There are always
one or more prominent peaks in the time-varying loudness
spectrum of healthy EIDs in the [150,250] frequency band;
however, the faulty EID does not show a peak similar to the
healthy EID. The acoustic signal, time-varying specific
loudness, time-varying loudness, and time-varying loudness
spectrum of the EID are depicted in Figures 7-9.

In the above three cases, the PAR of the healthy EID, e,
was 14.68, 30.16, and 24.67, respectively; the PAR of faulty
EID, e, was 3.01, 3.08, and 2.86, respectively.

The classification was the last step in the identification of
EID acoustic signals. Here, we used logistic regression as the
classification tool for electric impact drill acoustic signal
recognition. Logistic regression has been described in many
scientific articles [31-33].

2.3. Logistic Regression. Logistic regression (LR) is one of the
most commonly used and effective classification methods. It
has been successfully applied in industry and has good
interpretability and generalization. Besides, LR is used to
model the probability of a certain category or event, which is
based on probability to classify events. Like other supervised
learning algorithms, the LR algorithm also uses the process
of iterative optimization to find the best segmentation hy-
perplane after learning manually labeled training data. The
LR model is a generalized linear model, which can be
expressed as follows:
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Preprocessed
acoustic signals

Compute the time-varying loudness of acoustic
signals of each state of electric impact drill

!

Intercepting time-varying loudness data

Compute the frequency spectrum of time-varying
loudness

v

Use formula (1) to obtain frequencies f,, f3

A 4
Adopt formula (3) to compute the peak-to-average
ratio e

A 4
Form a feature vector [e, f;]

FIGUre 6: Flowchart of the peak-to-average ratio (PAR) model
based on the time-varying loudness spectrum.

Oy + 0y, + 0,0, + -+ 0,x, = Y Ox, = 0" x, (4)
i=0

where 0 = (6,,0,,0,,...,0,) is the feature weight vector and
x is the feature vector. In this paper, [e, f,] was used as the
feature vector.

LR uses a probability function P (y|x; 0) for prediction.
In the probability function, y is a discrete value and x is a
discrete or continuous quantity. In the binary classification
problem, y = {0, 1}. In this article, y = 0 represents the faulty
EID and y = 1 represents the healthy EID. The LR model was
expressed as follows:

eyGTx
P(ylx;0) =———. (5)
O 0) 1+ eyeTx

As the feature weight vector 6 is not the optimal pa-
rameter, we employed the log-likelihood function J () (6) as
the loss function of the LR model.

J(6) = % ]il [-ylog(he(x;)) (1 - ¥;)log(1 — he(x;))];

(6)
where hy(x) = P(yl|x; 0).

3. Analysis of Acoustic Signals

Acoustic signals were measured with two different states of
the electric impact drill: A healthy electric impact drill and
faulty electric impact drill with gear failure. The operating
parameters were 18.0 V with a motor speed of 1600r/min.
The acoustic signals of the electric impact drill in both states
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FIGURE 7: Acoustic signal analysis of Case 1: (a) acoustic signal of healthy EID-a, (b) acoustic signal of faulty EID-a, (c) time-varying specific
loudness of healthy EID-a, (d) time-varying specific loudness of faulty EID-a, (e) time-varying loudness of healthy EID-a and faulty EID-a,
and (f) time-varying loudness spectrum of healthy EID-a and faulty EID-a.

were analyzed using the proposed method, and the different
acoustic signals were classified.

3.1. Results Based on the PAR of the Time-Varying Loudness
Spectrum. We analyzed 10 faulty EIDs and healthy EIDs
from 20 audio files in the training dataset, and the
computed PAR values of time-varying loudness spectra of
healthy EIDs and faulty EIDs are presented in Tables 1
and 2.

We can see that the PAR values of the healthy EIDs and
the faulty EIDs are not similar in value. It will be easy to
recognize these two classes.

3.2. Classification Results. We used 20 sound signal files for
pattern creation and 200 sound signal files for the testing
process. Training and test samples of audio signals of EIDs were
analyzed using the proposed approach (Figure 6). The accuracy
of LR recognition based on the PAR model was expressed as



40 T T T T T T T T

Amplitude (Pa)

20

[l 1LY
hr‘hn”nhhlhﬂh (A 1 inrlinl ||n*||hn||h|»n 5
MR 1

F (Bark)

0 02 04 06 08 1 1.2 14 16
Time (s)

320 F ) ! ! ' ! ! ' ) B
280 !
240
200 |
160 |
120
80
40

Loudness (sone)

0 02 04 06 08 1 12 14 16

—— Healthy EID-b
—— Faulty EID-b

(e)

Shock and Vibration

Amplitude (Pa)

lll: i |

F (Bark)

0 02 04 06 08 1 1.2 14 16
Time (s)
(d)
1800
1600
1400
1200
1000
800
600
400
200

Amplitude (sone)

A 200 250

200 250

Frequency (Hz)

—— Healthy EID-b
—— Faulty EID-b

)

FIGURE 8: Acoustic signal analysis of Case 2: (a) acoustic signal of healthy EID-b, (b) acoustic signal of faulty EID-b, (c) time-varying specific
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(NPass)

Accgp = ,
( Total test samples)

(7)

where Accyyp, is the accuracy of recognition of acoustic signal
of the selected class, Np,, is the number of test sound signal
files class-tested properly, and N, test samples 1S the number
of all test sound signal files of the selected class.

The total accuracy of recognition was defined as follows:

TAccyp = ACCHealthyEIDs+ACCFaultyEIDs’ (8)
2

where TAccyp is the total accuracy of recognition of the
EID, AcCyeqihy Eips I8 the accuracy of recognition of healthy
EIDs, and Accp,ypps is the accuracy of recognition of
faulty EIDs.

In this paper, we use 200 sound signal samples as test
samples for classification, including 100 healthy EIDs and
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TaBLE 1: PAR of the time-varying loudness spectra of healthy EIDs.

TaBLE 2: PAR of the time-varying loudness spectra of faulty EIDs.

Samples PAR value f,; (Hz) Samples

PAR value f, (Hz)

Samples PAR value f,; (Hz) Samples PAR value f, (Hz)

G W -

20.62
14.68
14.05
10.75
21.3

188
188
175
181
184

6
7
8
9
10

12.26
9.91
17.13
9.53
8.74

184
194
182
184
186

1 3.1 171 6 3.75 160
2 2.89 184 7 3.9 170
3 2.37 184 8 2.98 162
4 3.38 168 9 2.33 195
5 2.7 160 10 3.01 168




10

TaBLE 3: The classification accuracy on the training dataset and
testing dataset using the PAR model with different classification
methods.
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TaBLE 4: The classification accuracy on the testing dataset using the
PAR of the time-varying loudness spectrum and logistic regression
(LR).

Accuracy (%) on

Methods . )

Training dataset Testing dataset
PAR + LR (our method) 100 97
PAR+SVM 100 88
PAR + KNN 100 94.5

100 faulty EIDs. We classify the EIDs using PAR method by
different classifiers and calculate the classification results of
the training dataset and testing dataset, as shown in Table 3.
Finally, we also show the classification results of healthy
EIDs and faulty EIDs using the peak-to-average ratio of
time-varying loudness spectra and the LR classifier in the
testing dataset; see Table 4.

From Table 3, we can see that the recognition results of
the PAR model and LR classifier are the best. Moreover, the
classification results of the Support Vector Machine (SVM)
and K-Nearest Neighbor (KNN) classifier are not as good as
LR because of parameter optimization and K-value selection.

Acoustic signals of the EIDs were processed by the
PAR method and LR classifier (Table 4). The computed
values of ACCeqihyEips @A ACCpyyiy pips Were as follows:
ACCHealthyEIDs =94% and ACCFaultyEIDs =100%.

4. Discussion

The gear fault diagnosis scheme based on acoustic signals has
limitations, as the collection of sound signals has rigorous
requirements of the surrounding environment. The sound
collection process for this study was conducted in a tranquil
setting. Therefore, it is necessary to ensure that there is no
substantial noise interference before experimenting when
testing in a new environment.

Another point is that the fault diagnosis scheme we
proposed was carried out at the end of the assembly line
detection of the EID, which involved gear fault detection.
We did not take other failures into account (e.g., motor
failure and plastic casing failure). What is more, we only
consider EID with a single fault. If we consider multiple
faults of EID, we should obtain more dimensional signals.
For example, we may combine vibration signal and sound
signal for fault diagnosis.

The fault diagnosis method based on time-varying
loudness and LR proposed in this article mainly involve
time-varying specific loudness, time-varying loudness, the
PAR of time-varying loudness spectrum, and LR classifi-
cation algorithm. Among them, the most important step is
the feature extraction process. We analyzed the PAR values
in the [150, 250] frequency band of the time-varying
loudness spectrum to distinguish between healthy and
faulty products. If motor failures or other failures are
considered, the [150, 250] subband may not meet the
analysis conditions required. The appropriate frequency
band should be selected for analysis based on the frequency
difference of the time-varying loudness of functioning and
defective products.

Type of acoustic signal Accgp (%)
Healthy EIDs 94
Faulty EIDs 100

The total accuracy of recognition of EIDs TAccgp (%) 97

5. Conclusions

In this paper, we presented a method for testing electric impact
drills based on psychoacoustics. For this method, the acqui-
sition of acoustic signals was carried out by a microphone and
NI acquisition card; the primary processes of acoustic analysis
included the preprocessing of acoustic signals and feature
extraction and classification. The psychoacoustic parameters
(time-varying loudness, time-varying specific loudness, and
PAR) are the main features of the acoustic signal. The proposed
method is the PAR time-varying loudness spectrum, and we
applied an LR classifier for classification; its correct recognition
rate was 97%. Our analysis scheme, based on time-varying
loudness, is simple and of low cost and can simultaneously
detect a machine and perform the instant measurement and
online monitoring of it. This advanced psychoacoustics-based
method has many applications, such as for fault diagnosis in
machine tool equipment. It can be used for motors, engines,
machinery, and power tools. The proposed method based on
psychoacoustics also has limitations, such as the presence of
background noise and the reflection of sound. This fault di-
agnosis method based on psychoacoustics should be developed
further in the future.
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