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To clarify the process of stress change and plastic zone evolution of square roadways under high-stress conditions, the rotational
square expansion plastic zone evolution model of square roadway was established by theoretical analysis, numerical simulation,
and engineering verification. *e shear slip impact stress criterion of square roadway based on complex variable function theory
was studied, and the law of surrounding rock stress distribution, plastic zone expansion, elastic energy density, local energy release
rate (LERR), and total energy release of square roadway were analyzed. *e results show that the compressive stress is con-
centrated in the four corners of the roadway after the roadway excavated and transfers with the change of plastic zone. Main shear
failures start from the four corners and develop in a rotating square shape, forming square failure zones I and II.*e square failure
zone I is connected with the roadway contour and rotated 45°.*e square failure zone II is connected with the square failure zone I
and rotated 45°. When the original rock stress is low, the surrounding rock tends to be stable after the square shear slip line field
formed. When the original rock stress is high, the shear failure of the surrounding rock continues to occur after the square failure
zone II formed, showing a spiral slip line. Corners of the square roadway and square failure zones I and II are the main energy
accumulation and release areas. *e maximum elastic energy density and LERR increase exponentially with the ratio of vertical
stress to uniaxial compressive strength (Ic). When square corners of the roof are changed to round corners, the plastic zone of the
roof expands to form an arch structure.*emaximum elastic energy density decreases by 22%, which reduces the energy level and
possibility of rock burst. *is study enriches the failure mechanism of roadway sliding impact. It can provide a basic theoretical
reference for the design of the new roadway section and support form based on the prevention of rock burst.

1. Introduction

*e causes of rock burst are various, and their manifesta-
tions are also different [1–4]. *e cross section of many
premining roadways in a coal mine is square or rectangular,
and a lot of rock burst happened in these roadways. For
example, on February 22, 2020, a rock burst occurred in
Xinjulong Coal Mine, resulting in four deaths and extensive
roadway damage. Many scholars have studied the failure of

rectangular and square roadways and achieved fruitful
results.

Shi et al. [5] studied the stress distribution law of
rectangular roadways under different span height ratios
and lateral pressure coefficients. Guo et al. [6] studied the
evolution law of plastic zone and large-scale failure cri-
terion of roadway surrounding rock by FLAC numerical
simulation method. Wu et al. [7, 8] found that V-shaped
belt failure occurred on both sides of the tunnel through
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true triaxial experiment and numerical simulation. Wang
et al. [9] established the elastic energy spatial zoning
evolution model of surrounding rock under different
driving speeds. Yang et al. [10] divided the rock burst
roadway into a head-on area, dynamic evolution area of a
plastic circle, and stable area of a plastic circle. Li et al. [11]
divided the rectangular roadway roof into fracture
through the area, fracture development area, micro-
fracture area, and nonfracture area. Yu et al. [12] studied
the loose range of rectangular roadway surrounding rock
under different lithologic conditions by combining the
method of multipoint displacement of deep base point
and borehole peeping. Yu et al. [13] studied the distri-
bution and evolution law of stress, displacement, and
plastic zone of a roadway with a composite roof. Pan et al.
[14] studied the stress distribution, surrounding rock
displacement, and plastic zone distribution characteristics
of the bottom gas drainage roadway through numerical
simulation. Meng et al. [15] obtained the evolution
process of roadway surrounding rock impact by studying
the stress, displacement, and plastic zone distribution of
soft rock roadway. Wang et al. [16] studied the analytical
expressions of stress distribution, plastic zone, and dis-
turbed zone width on both sides of the roadway in a gas
coal seam. Hou et al. [17] studied the deformation
characteristics and acoustic emission characteristics of
rectangular roadway surrounding rock under different
initial in situ stresses through a laboratory test. Yin et al.
[18] studied the critical plastic softening zone depth and
critical load of the rectangular roadway under rock burst.
Rock burst occurs when the softening zone of tunnel rock
mass with rock burst tendency reaches the critical depth
[19]. Li et al. [20] studied the deformation and failure
process of rectangular roadways through numerical
simulation and field observation. Zheng et al. [21] ana-
lyzed the calculation formula of the Hoek Brown con-
stitutive model based on the stress of rectangular
roadways and studied the effect of anchorage system on
roadway roof under different preloads. Chen et al. [22]
studied the working face stability of shallow buried square
tunnels in heterogeneous soil. Zhao et al. [23] applied the
theory of complex variable function to solve the stress of
square tunnel surrounding rock in a homogeneous iso-
tropic elastic rock mass. Zhang et al. [24] established the
friction work calculation model of roadway plastic zone
and studied the influence of the relationship between total
energy and friction work in roadway impact area on rock
burst. Yi et al. [25] studied the transmission and dissi-
pation of strain energy in the surrounding rock of deep
roadway by numerical simulation. Wen et al. [26] studied
the rock burst evaluation method based on the ratio of
released energy to the absorbed energy. However, the
research on the law of plastic zone evolution and energy
dissipation around square roadway needs to be further
studied.

In this paper, the rotational square expansion plastic
zone evolution model of square roadway was established,
and the shear slip stress conditions of square roadway based
on the theory of complex variable function are studied. *e

stress distribution, plastic zone expansion, elastic energy
density, local energy release rate, and total energy released by
surrounding rock are analyzed, and the optimization scheme
of the roadway section is proposed.

2. Roadway Shear Slip Impact Model and
Surrounding Rock Stress Distribution

2.1. Shear Slip Impact Model of Roadway. After the exca-
vation of the square roadway, the high-stress concentration
is formed at the corner, and the shear slip occurs and ex-
pands continuously from the corner, as shown in Figure 1.
When the shear slip zone passes through, a square failure
zone is formed, which is called square failure zone I. After
the formation of square failure zone I, the stress concen-
tration zones shift from the corners of the roadway to the
corners of square failure zone I. And the shear slip continued
to expand in a square form from the corners of square failure
zone I, forming square failure zone II. Either square failure
zone is circumscribed with the tunnel contour (or the
previous square failure zone) and rotated 45°, and the ex-
pansion of plastic failure area is called rotational square
expansion, and the shear slip line field is rotational square
slip line field.

After the formation of square failure zone II, the stress
distribution at the corner of square failure zone II changes
due to the reaction of the destroyed coal and rockmass in the
roadway. *e shear failure does not propagate according to
the rotational square but tends to the logarithmic spiral
[27, 28] shear slip mode.

When the roadway failure does not form square failure
zone I, the plastic zone is small and will not form a large-
scale rock burst. When the roadway failure forms square
failure zone I, the failure area is connected for the first time,
forming a large range of overall weak blocks. If there are high
elastic energy accumulations around the roadway, it is easy
to form a large-scale roadway rock burst. *e center of two
sides, roof, and floor are the main impact areas, while the
impact at the corner is weak. When the roadway failure
forms square failure zone II, the overall weak block of the
surrounding rock further increases, which is easy to form
large-scale roadway rock burst. *e two sides, roof, floor,
and corners are the main impact areas.

2.2. Stress Distribution and Impact Determination of Sur-
rounding Rock Based on Complex Function 3eory. In [23],
the stress distribution of square roadway surrounding rock is
studied by complex variable function and integral trans-
formation theory.*e circular stress distribution function of
surrounding rock in polar coordinates of square roadway is
given as follows:
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where A � (6/53)cos 4 θ + (3328/395)cos 2 θ − 4, B � cos
8 θ − 4θ − 8, C � (6/53)sin 4 θ + (3328/395)sin 2 θ, D �

sin 8 θ − 4 sin 4 θ, E � (6/53)cos 4 θ + (3328/395) cos 2
θ − 4, F � (6/53) sin 4 θ + (3328/395)sin 2 θ, P is the
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original rock stress along the X-axis direction, λ is the stress
ratio along Y-axis to the x-axis, and θ is the polar angle.

*e length of the roadway is much larger than the cross
section of the roadway. *e deformation and failure of the
roadway can be approximated as a plane strain problem.
According to the plane strain characteristics, equation (2)
can be obtained by universal Hooke’s law.

σz �
1
2

σθ + σr( , (2)

where σz is the stress along the length of the roadway and σr
is the radial stress of the roadway.

σr is 0 on the surface of the roadway, and σm, which is the
average stress of roadway, is as follows:

σm �
1
3

σθ + σr + σz(  �
1
2
σθ. (3)

According to the characteristics along the slip line, Δσm
is directly proportional to Δω.

Δσm �
2kΔω, Group α,

−2kΔω, Group β,
 (4)

where Δσm is the average stress change in the same slip line,
Δω is the angle of slip line, k is the radius of the stress circle,
and α and β are group α and group β of slip lines,
respectively.

*e slip line between corners of square failure zone I and
square failure zone II are straight line segments, and Δω is 0.
*e average stress in a linear interval of the slip line is equal,
while Δσm is 0. Average stresses of the slip line in square
failure zone I and square failure zone II are equal because
linear intervals are connected.

*e average stress equation of slip line can be obtained
from equations (1), (3), and (4):
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(5)

where Δω′ is the angle from the starting point of a spiral line
to any point of the spiral line.

According to the Mohr-Coulomb criterion, under the
limit equilibrium state, the stress state at any point can be
expressed as

σ � σm + k cos
π
2

+ φ ,

τ � k sin
π
2

+ φ ,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(6)

where σ is the normal stress, τ is the shear stress, and φ is the
internal friction angle.
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Figure 1: Evolution model of roadway failure area.
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Substituting equation (5) into equation (6), the stress
state at any point in the limit equilibrium state is equation
(7). When the stress state of the surrounding rock breaks
through the limit equilibrium state, the shear slip impact
occurs in the corresponding region.
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3. Numerical Simulation of Failure Law of
Square Roadway

3.1. Modeling. *e strain-softening model was established
by FLAC3D software. *e model length×width× height is
100m× 1m× 50m. *e physical and mechanical parame-
ters of rock strata are mainly taken from Xinjulong Coal
Mine, and the conventional parameters are used to sup-
plement the missing coal and rock parameters. Table 1 lists
the physical and mechanical parameters of each rock
stratum.

Fix the bottom and lateral boundaries, and apply dif-
ferent forces on the top of the model, respectively. 21 groups
of different initial stress states are formed, and the vertical
stress at the boundary between the coal seam and roof is
1.0–3.0 [σc], respectively (the ratio of vertical stress to
uniaxial compressive strength Ic� 1.0–3.0). *e coefficient
of lateral pressure is 1.0.

3.2. Law of Stress Change. After the model is balanced, the
roadway is excavated along the coal seam floor with a section
size of 4m× 4m. Four vertical stress measuring points are
arranged in the far field of the roadway sidewall to monitor
the change of regional stress. *e distance between the stress
measuring point and the roadway sidewall is 28–37m, and
the vertical direction is located on the horizontal plane of the
middle point of the roadway. When Ic� 1.5, the vertical
stress change of each measuring point is shown in Figure 2.
Each measuring point has experienced two obvious stress
reduction and recovery stages, which indicates that the
surrounding rock of the roadway has a twice obvious failure,
causing regional stress adjustment.

*e evolution of compressive stress concentration area
of roadway surrounding rock is shown in Figure 3.When the
roadway is just excavated, the compressive stress is con-
centrated near the four corners of the roadway. After the first
obvious failure of the roadway, the compressive stress

concentration area rotates 45° and expands outward. After
the second obvious failure of the roadway, the compressive
stress concentration area rotated 45° again and expanded
outward.

3.3. Evolution Law of Failure Area. When Ic� 1.5, the plastic
zone expansion of the surrounding rock is shown in Fig-
ure 4. After the first obvious failure of the roadway, square
failure zone I is formed, and square failure zone I is mainly
shear and tensile failure. After the second obvious failure of
the roadway, square failure zone II is formed, and square
failure zone II is mainly shear failure. *e main shear failure
areas of the surrounding rock are shown in Figure 5, and the
main shear failure zones extend in a rotating square shape.

When Ic� 1.5, the shear strain nephogram of the
roadway surrounding rock is shown in Figure 6. *e shear
strain is the largest at the four corners of the roadway, and a
square shear slip line field connected with the roadway and
rotated 45° is formed, which is the boundary of square failure
zone I in the theoretical analysis, and square failure zone II
with a rotation of 45° is formed outside square failure zone I.

When the original rock stress is low, the surrounding
rock tends to be stable after the formation of square failure
zone II. When the original rock stress is high, after the
formation of square failure zone II, the failure area continues
to expand outward, as shown in Figure 7, which shows the
shear strain nephogram of surrounding rock with Ic� 3.0.
After the formation of square failure zone II, the stress
distribution has changed, and the propagation direction of
the failure zone has changed. *e slip line field is similar to
the spiral expansion form.

4. Energy Dissipation Mechanism of
Square Roadway

4.1. EnergyMonitoringMethods. When the elastic moduli of
the three principal stress directions are the same, the elastic
strain energy released by the element can be expressed as
[29, 30]

U
e

�
1

2E0
σ21 + σ22 + σ23 − 2v σ1σ2 + σ2σ3 + σ1σ3(  , (8)

where U e is the elastic strain energy released by the element,
E0 is the elastic modulus, σ1, σ2, and σ3 are the three principal
stresses of the element, and v is the Poisson ratio.

*e elastic strain energy released by the element is
expressed by the local energy release rate (LERR), and the
sum of elastic strain energy released by all elements is the
total energy released by the surrounding rock, which is
recorded as ERE. *e calculation method is as follows [31]:

LERRi � U
e
imax − U

e
imax, (9)

ERE � 
n

i�1
LERRi · Vi( , (10)

where LERRi is the local energy release rate of the ith ele-
ment and Ue

imax is the peak value of elastic strain energy
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density of the ith element before failure. Ue
imin is the valley

value of elastic strain energy density after the failure of the
ith element and Vi is the volume of the ith unit.

According to the above method, FLAC3D software is
used to program Fish language to monitor the energy pa-
rameters of the model.

4.2. Energy Evolution Law. When Ic� 1.5, the evolution law
of elastic energy density of surrounding rock is shown in
Figure 8. After the formation of square failure zone I, the
elastic energy accumulates at its four corners. After the
formation of square failure zone II, the elastic energy ac-
cumulated at the four corners of square failure zone II.

When Ic� 1.5, the local energy release rate of the sur-
rounding rock is shown in Figure 9. Four corners of the
roadway and the four corners of square failure zone I are the
areas where a lot of energy is released. *e maximum local
energy release rate is 30.6 kJ/m3.

When Ic� 1.5, the total energy release curve of the
surrounding rock is shown in Figure 10.*ere are two peaks
in the total energy released by the surrounding rock. When
the total energy released by the surrounding rock reaches the
peak value I, the square failure zone I is basically formed.*e
surrounding rock tends to be stable and the stress is
readjusted, resulting in the accumulation of new strain
energy, which leads to the decrease of the total energy re-
leased in the region. When the total energy released by the

surrounding rock reaches peak II, the square failure zone II
is basically formed. *e stress is adjusted again, and the
surrounding rock tends to the final stable state and the total
energy released tends to be stable.

*e statistical results of maximum elastic energy density
(PE) and local energy release rate (LERR) of each model are
shown in Figure 11. *rough data fitting, it can be seen that
PE and LERR increase exponentially with Ic.

5. Engineering Verification

5.1.Case1. Liangbaosi Coal Mine is located in Juye coalfield.
*e average buried depth of 3507 working face is 1067m,
and the average thickness of the coal seam is 6.2m. *e coal
seam, roof, and floor have a weak impact tendency. A coal
blasting occurred during the tunneling of the 3507 track
gateway, which resulted in roof subsidence of the right
shoulder and bolt fracture, as shown in Figure 12. *e roof
subsidence of the right shoulder of the roadway is
200–300mm, while the middle part of the roof has no
deformation, which is consistent with the theoretical anal-
ysis that the corner of the roadway is damaged first.

5.2. Case 2. Xinjulong Coal Mine is located in the south-
central part of Juye coalfield.*e average buried depth of the
2305s fully mechanized caving face is 1004m. At present, the
thickness of the coal seam in the mining area is 8.1–10.5m,

Table 1: Model parameters in the FLAC3D model.

Layers Lithology *ickness
(m)

Elastic modulus
(GPa)

Poisson
ratio

Tensile strength
(MPa)

Cohesion
(MPa)

Internal friction
angle(°)

Roof2 Fine
sandstone 16 50.69 0.3 7.78 5 35

Roof1 Siltstone 4 21.37 0.3 2.92 5 35
Seam Coal 7 17.04 0.37 0.74 3.1 28.5

Floor Fine
sandstone 23 19.68 0.3 4.99 5 35
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Figure 2: Regional vertical stress monitoring curve.
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and the coal seam and roof have a weak impact tendency. On
February 22, 2020, a rock burst occurred in the 2305s upper
drift and associated roadway. *e situation after impact in
some areas is shown in Figure 13. *e middle part of the
sides and the middle part of the roof protrude. *e defor-
mation of roadway corners is relatively small. It is consistent
with the theoretical analysis that the main impact areas are
the roadway side and middle roof.

6. Optimization of Roadway Section

*e right angle in the structure is easy to produce stress
concentration, while the fillet stress concentration is low.
*e filleted corner should be kept as far as possible in the
roadway excavation. *e roadway driving along the bottom
shall avoid forming a right angle at the top angle, while the

None

Shear-n

Shear-n shear-p

Shear-n shear-p tension-p

Shear-p

Shear-p tension-p

Tension-n shear-p
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Figure 4: Evolution of plastic zone of the surrounding rock.
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Figure 5: Evolution of main shear failure area of surrounding rock.
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roadway driving along the top shall avoid forming a right
angle at the bottom angle.

*e two roof corners of the roadway in the model,
where Ic� 1.5, are changed into rounded corners, and the
fillet radius is 0.5m. When the model is recalculated, the
law of plastic zone expansion has changed. *e sur-
rounding rock forms an arch failure area. *e newly
formed arched surrounding rock structure can bear more
force and reduce deformation. As shown in Figures 14 and
15, the maximum depth of the plastic zone on the roof of
the fillet roadway is reduced by 20%, the maximum depth of
plastic zone on both sides is reduced by 10%, and the
maximum horizontal displacement is moved from the
middle point of the two sides to the bottom angle of the two
sides.

Figure 16 shows the cloud chart of the maximum elastic
energy density after roadway excavation. *e maximum elastic
energy density of the square roadway is 61.7 kJ/m3, which is
located on the roadway floor. *e maximum elastic energy
density of the round corner roadway is 48.2 kJ/m3, which is
located at the top coal of the roadway. *e maximum elastic
energy density of the filleted corner roadway is 22% less than that
of the square roadway, and the location of the maximum elastic
energy density is transferred from the floor to the top coal.

Figure 17 shows the local energy release rate nephogram
of the round corner roadway. *e energy release rate and
range of the floor are larger than those of top coal. *e
corners of the roadway floor are still right angle, and the
plastic zone still expanded in a rotating square shape in the
early stage. A large amount of energy is released at the corner
of square failure zone I. When the corners of the roadway
roof are changed to round corners, the plastic zone of the
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roof expands to form an arch structure, which increases the
bearing capacity and releases less energy. *erefore, the
accumulated elastic energy of the floor is less than that of the
roof, but a greater energy release and damage occur. At the
same time, it can be determined that the ability of top coal
with arch structure is higher than that of floor sandstone
with right angle corner.

7. Discussion

*is paper studies the impact failure mechanism of the
square roadway under high stress. *e roadway mainly
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Figure 13: Upper drift impact damage diagram.
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presents tensile shear failure. *e shear failure starts from
the four corners of the roadway, develops at 45° with the
roadway contour, and finally integrates into a square shear
failure area, which is connected with the roadway contour
and rotated 45° to the roadway contour. *en, the four
corners of the square shear failure zone begin to expand,

forming a new square shear failure zone, which is con-
nected with the original square shear failure zone and
rotated 45° to form a rotating square slip line field. After
two times of rotation square shear failure, the stress dis-
tribution at the corner changed due to the reaction of the
damaged coal and rock mass in the roadway. *e shear
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Figure 16: Comparison of maximum elastic energy density.
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failure does not expand in the form of rotation square, and
the expansion form of shear failure tends to logarithmic
spiral shear slip, which is similar to the spiral shear slip line
studied by scholars before.

When the corners of the square roadway are changed
into rounded corners, the evolution law of the plastic zone
changes, and the square plastic zone is transformed into an
arch shape, which is more conducive to bearing capacity and
can reduce the accumulation of elastic energy of sur-
rounding rock. In addition, the construction of shear bolts in
the main shear area of the roadway can strengthen the ability
of the roadway to withstand shear failure. More prevention
and control technologies need more in-depth research.

*e research results enrich the failure mechanism of
roadway sliding and impact and can provide a basic theo-
retical reference for the design of new roadway cross section
and support forms based on rock burst prevention and
control.

8. Conclusions

In this paper, the rotational square expansion plastic zone
evolution model of square roadway was established, and the
stress criterion of shear slip impact of square roadway based
on complex function theory is given.

When the roadway is just excavated, the compressive
stress is concentrated near the four corners of the roadway,
and the main shear failure starts from the four corners and
gradually forms the square failure zones I and II. Square
failure zone I is connected with the roadway contour and
rotated by 45°, and square failure zone II is connected with
square failure zone I and rotated 45°. When the original rock
stress is low, after the formation of square failure zone II, the
surrounding rock tends to be stable, forming a rotating
square shear slip line field. When the original rock stress is
high, the shear failure of the surrounding rock continues to
occur after the formation of square failure zone II and tends
to expand in the form of a logarithmic spiral.

When square failure zone I is not formed, the plastic
zone is small and large-scale rock burst will not occur. When
square failure zone I is formed, the failure area is connected
for the first time, forming a large-scale overall weak block. If

there is a high elastic energy accumulation around the
roadway, it is easy to form a large-scale roadway rock burst.
*e center of two sides and the center of roof and floor are
themain impact areas, and the impact at each corner is weak.
When square failure zone II is formed, the weak block of
surrounding rock of roadway will further increase, which is
easy to form large-scale roadway rock burst. *e two sides,
roof, and floor and corners of the roadway are the main
impact areas.

*e corners of the square roadway and the corners of
square failure zones I and II are the main energy accu-
mulation and release areas. *e maximum elastic energy
density and local energy release rate increase exponentially
with the ratio of vertical stress to uniaxial compressive
strength. When the corners of the roof are changed to round
corners, the plastic zone of the roof expands to form an arch
structure, the bearing capacity increases, and the plastic zone
becomes smaller when it reaches stability. *e maximum
elastic energy density of the round corner roadway is 22%
less than that of the square roadway, which reduces the
energy level and possibility of rock burst.
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