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The similarity between a shock response spectrum (SRS) and a target shock specification is essential in evaluating the success of a
qualification test of a space component. Qualification testing facilities often utilize shock response databases for rapid testing. Tra-
ditionally, the comparison of two shocks (SRS) depends on visual evaluation, which is, at best, subjective. This paper compares five
different quantitative methods for evaluating shock response similarity. This work aims to find the most suitable metric for retrieving an
SRS from a pyroshock database. The five methods are the SRS difference, mean acceleration difference, average SRS ratio, dimensionless
SRS coefficients, and mean square goodness-of-fit method. None of the similarity metrics account for the sign of the deviation between
the target SRS and database SRS, making it challenging to satisfy the criteria for a good shock test. We propose a metric (the weighted
distance) for retrieving the most similar SRS to a target SRS specification from a shock database in this work. The weighted distance
outperforms the mean square goodness-of-fit and other metrics in database SRS retrieval for rapid qualification testing.

1. Introduction

Small electronic components such as chips and crystals used
in satellite-electronic boards are susceptible to the pyro-
technic shock events during a rocket launch. Pyrotechnic
(explosive) shocks may lead to the failure of the satellite’s
critical systems and components. Component failure modes
may be cracks, fractures, seals failures, relay and switch
chatter, and structural deformation [1]. We can guarantee
that a component will retain its functional performance after
exposure to a dynamic environment by doing a qualification
testing (QT). In this case, we are considering a satellite
attached to a rocket body and exposed to pyrotechnic shock.
The QT aims to match the shock severity from a laboratory
shock simulation to the shock generated during the satellite’s
actual separation from the rocket body.

In mechanical shock characterization, there are many
tools, such as the energy spectrum (Fourier transform),
shock response spectrum (SRS), temporal moments, and
wavelets for comparing signal features [2]. However, most of
these tools’ starting point is the acceleration-time history,

which is not usually available as a shock test specification.
Shock tests are typically specified using the shock response
spectrum (SRS). Comparing the SRS calculated from the
acceleration measurements on a test article to a specified
target SRS forms the basis for QT. The velocity-time history,
Fast Fourier Transform (FFT), wavelets, or temporal mo-
ments are used to validate the measurements [2, 3].

The SRS is a measure of the peak response of a series of
single-degree-of-freedom (SDOF) systems as a function of
the systems’ natural frequencies. A digital filter models the
SDOF at each natural frequency. There is an equal number of
digital filters (n) per octave between the upper and lower
frequency limits. The SRS was first described in a thesis on
the transient oscillations in elastic systems by Maurice Biot
[4]. Since then, it has found applications in the character-
ization of aerospace components’ mechanical shock, upon
sudden impact, or in the explosive (pyrotechnic) separation
of spacecraft rocket stages [5].

The SRS is, first and foremost, a visual tool. To pass the
QT, the SRS profile of a shock simulated in the laboratory
must match or surpass the target SRS profile. When this
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happens, we assume the two shocks are equal in severity. The
satellite (component) must not experience any physical or
functional failure after the shock test. The first QT criterion is
that, at least 50% of the SRS magnitudes should exceed the
nominal test specification [1]. The second criterion is in-
tuitive. The SRS specification is bounded by statistically
derived lower and upper tolerance limits that define the
range of acceptable SRS for the simulated shocks [6]. When
tolerance limits bound the nominal test specification, 100%
of the SRS magnitudes should exceed the nominal specifi-
cation’s lower limit. Our recent testing experience suggests a
client preference for 100% of the SRS magnitudes above the
nominal specification. In pyrotechnic shock testing, it is
difficult to match a laboratory-simulated shock to a target
SRS profile. A pyroshock typically has high acceleration
amplitudes that span a wide frequency bandwidth (up to
10kHz in the near-field).

When there is a high demand for QT, it is beneficial to
maintain a database of shock responses and the experimental
conditions used in obtaining such SRS. Provided the testing
machine has proven repeatability in the SRS measurements,
we can retrieve the operating conditions for a future shock
test from a database [7, 8]. The problem here is that re-
trieving the operating parameters for a future shock test
from a previous shock test database is not well described in
the available literature. For a large database, a simple visual
evaluation of SRS similarity is insufficient. There is a need for
a quantitative measure of SRS similarity.

The purpose of this paper is to propose a suitable metric
for retrieving an SRS with a similar profile to a target SRS
specification from a pyroshock database. First, we evaluate
the suitability of different metrics used in other shock test
applications for our intended purpose. The metrics include
SRS difference, mean acceleration difference (MAD), di-
mensionless SRS coefficients (E, and M, ), average SRS ratio
(ASR), and the mean-squared (RMSE) goodness-of-fit
metric [7]. The shock testing applications include a new
shock machine’s characterization, demonstration of shock
attenuation [9], and different simulation methods [9]. Apart
from the mean squared goodness-of-fit metric [7], we did
not find any instance where the other metrics were useful in
extracting a similar SRS from an SRS database. In general, we
did not find any publication with a detailed explanation of
the metric used for database retrieval.

In the following sections, we describe the experimental
setup and data acquisition method. Next, we discuss the
different metrics listed above for comparing two shocks.
Next, we introduce the weighted distance as a metric for
database SRS retrieval and illustrate its application using an
example. The paper concludes with a discussion of our
results and a summary of our findings.

2. Experimental Setup and Data Collection

The data used in this work were measured using three
ENDEVCO 2225 accelerometers attached to an interface jig
on an air gun shock machine. The test article was mounted
on the interface jig. The shock measurements were carried
out along three orthogonal axes, as shown in Figure 1. The
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Ficure 1: Experimental setup showing the test article and
accelerometers.

test article is an aluminum structure used in the vibration
testing of 1 to 3 U CubeSats. The shock machine produces a
shock by the mechanical impact of a projectile and the shock
table. The projectile is propelled by air pressure and impacts
the XY plane of the shock table directly beneath the point
where the test article is mounted. Usually, we measure the
acceleration-time histories at three positions corresponding
to the X, Y, and Z axes. The data sampling speed was 100,000
samples per second. The accelerometer signals were am-
plified using a SHOWA 4035-52 (large input) charge am-
plifier. The amplified signals were obtained on the control
PC through a NI 9222 module with a maximum sampling
capability of 500kS/s. SRS computation was at an octave
spacing of 1/48 from 10Hz to 10kHz and a 5% damping
ratio (dynamic amplification Q= 10).

For data with a zero shift error, the SRS is corrected using
the wavelet-based zero shift correction program described in
[10]. A zero shift may sometimes be undetectable by visual
inspection of the acceleration-time history. However, it
manifests as a constant maximax acceleration in the SRS’s low-
frequency region. The velocity-time history may also indicate a
zero shift if the net velocity change is not 0. Zero shift occurs
predominantly in piezoelectric accelerometers due to spurious
charge outputs. The spurious charges may be caused by sat-
uration in the accelerometer’s transducer or the signal con-
ditioner. It may also be due to cabling problems in the
measurement setup [11]. Zero shift correction is carried out on
a case by case basis depending on the shock test’s purpose.
Figure 2 shows the velocity-time history and the positive and
negative SRS of an acceleration-time history before and after
zero shift correction using the wavelet method.

After correction, the velocity-time history shows a net-
zero velocity, and the SRS reflects the correct slope.
Accepting corrected shock data exhibiting zero shift requires
engineering judgment. A shock data exhibiting zero shift is
still useful for evaluating the SRS in the high-frequency
region (>1 kHz). According to [10], the correction algorithm
is accurate within 4dB of the actual acceleration measure-
ment. However, our policy is to repeat a test whenever the
data exhibits a zero shift.
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FIGURE 2: Zero shift correction. (a) Acceleration-time history. (b) SRS (Q = 10) before correction. (c) Velocity-time history. (d) SRS (Q = 10)

after correction.

3. SRS Comparison

We can evaluate the similarity between two or more shocks
quantitatively by comparing their SRS. A visual distinction
of 2 SRS is sufficient in some applications to explain the two
shocks’ differences. However, a quantitative description of
the similarity or difference between two SRS may be nec-
essary for other applications. Below is a brief description of
some of the methods that describe the similarity between
two SRSs quantitatively.

3.1. Visual Evaluation. The SRS specification with a given
lower and upper limit is a type of control chart. The
control chart concept was first introduced by Shewhart
[12] as a method of quality control. In the control chart,
acceptable measurement values fall within tolerance limits
derived empirically.

The data that lies outside the tolerance limits are out-of-control
and are therefore of unacceptable quality. Typically, the upper and
lower limits for an SRS specification are + 6 dB for natural fre-
quencies below 3kHz and (+9/-6 dB) when the natural frequency
is above 3kHz [1]. Figure 3 shows the SRS from 3 shock mea-
surements for a shock test specification.

3.2. SRS Difference (DIFF). The simplest method to evaluate
the similarity (or difference) between 2 SRSs is subtracting
one from another (equation (1)). The SRS difference is the
absolute value of the difference in acceleration of the 2 SRS
(in dB) at each natural frequency. This method was used in
[9] to show SRS attenuation for different kinds of absorber
materials. One of the SRS data is a reference, while the other
is the measured SRS. For example, in Figure 3, the difference
between the upper limit and the SRS specification is 6 dB at
all natural frequencies (f) below 3 kHz and 9 dB otherwise:
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Diff (f) =|SRSef (f) = SRS peasurea ()] (1)

3.3. Mean Acceleration Difference (MAD). In equation (2),
the MAD is a ratio of the absolute difference between a
reference SRS and a measured (or modeled) SRS for n
natural frequencies in the measurement bandwidth. The
MAD gives a single scalar value to measure the similarity (or
difference) between 2 SRSs. In contrast, the SRS difference
method shows a pointwise comparison. Suppose the ref-
erence SRS is the same as the measured SRS. In that case, the
MAD is 0 and tends to positive infinity as the SRS difference
becomes more pronounced. This method was used in [13] to
compare SRS measurements:

3 1% 1|SRSref - SRSmeasuredl
MAD = D RS, i (2)

=]

3.4. Average SRS Ratio (ASR). In [14], ASR is the ratio of
measured SRS to a reference SRS. In equation (3), m is the
number of successive measurements or simulation trials.
According to the authors, there was poor repeatability be-
tween successive tests below 1 kHz, so the computation only
covers natural frequencies above 1kHz. The measurement
system could accurately measure near-field pyroshock with
frequency content of up to 10 kHz. For our application, we
require no frequency control above 5kHz:

kHz
ASR = l S SRSmeasured (3)
m L., SRS

ref

3.5. Dimensionless SRS Coefficients. Recent shock publica-
tions express that the similarity between two or more SRS is
in terms of a dimensionless coefficient [15-19]. The two

Shock and Vibration

dimensionless coefficients used frequently are the mean SRS
coefficient, (E,), and the maximum SRS coefficient, M,. The
two SRS coefficients are calculated using equations (4) and
(5). In [19], the dimensionless coeflicients are also called
attenuation rates, and E, was calculated using the formula
for the MAD in equation (2):

fi
E = Z;l SRSmeasured

(4)
r fn
Zfl SRsref

_ Max (SRSmeasured) (5)
r Max (SRSref ) .

3.6. Mean Squared Goodness-of-Fit (RMSE). The mean-
squared goodness-of-fit method involves calculating the
root-mean squared-error between a measured SRS and a
reference SRS. The RMSE is similar to the SRS difference
calculation. In the RMSE, a single scalar quantity (in dB)
represents the difference between the two SRS. In contrast,
the SRS difference can only be shown visually as a pointwise
difference between two SRS. This method was used in [7] for
rapid shock testing. Equation (6) shows the formula for
calculating the mean square deviation in dB, where 7 is the
number of natural frequencies in the SRS’s computation:

Z?:l 20 x (log SRsmeasured - log SRsref)2 ) o

RMSE = (
n

(6)

Table 1 shows a summary of the metrics discussed in this
section.

4. Application: Retrieving an SRS from a
Database for a Shock Test

Pyrotechnic shock testing facilities often carry out large
volumes of shock qualification tests with various SRS pro-
files. Usually, the SRS measurements from these tests and the
associated shock machine operation conditions form a
shock-test database. For a future test, the test engineer re-
trieves an SRS profile similar to the target SRS specification
from the database as well as the associated shock machine
operating conditions [7, 8, 20, 21]. This section compares the
effectiveness of the SRS comparison methods discussed in
section 3 for retrieving an SRS from a database for a shock
test. The comparison is limited to purely quantitative
(nonvisual) methods.

The database comprises 324 channels of recently mea-
sured SRS at the QT facility of the Center for Nanosatellite
Testing (CeNT). Section 2 describes the data acquisition
process. The target shock specification is the ISO 19683 [22]
recommended shock level. The upper and lower limits of the
ISO 19683 are +6 dB and —6 dB, respectively (Table 2). By
default, the SRS is computed automatically at a 1/48 octave
spacing between 10Hz and 10kHz, corresponding to 480
data points (natural frequencies). However, we used a total
of 324 natural frequencies between 100 Hz and 5kHz. The
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TaBLE 1: Summary of database SRS retrieval metrics.

Best SRS

Worst SRS

Metric Formula . . Remark
similarity similarity
. (i) Pointwise calculation
DIFF ISRS,.;(f) — SRS €3] 0dB Tend§ to Posmve (ii) May show attenuation at specific
ref 'm red Yy 1%
) ) - infinity frequencies
Tends to positive (i) Single scalar representation of similarity
MAD (Un)>™ L (SRS, — SRS /SRS, ]) 0 s o posty (ii) Suitable for repeatability calculations
i=0 ref 'measured ref infinit P y
Y (for minimal differences)
(i) It ignores lower frequencies (<1kHz)
10kHz (ii) Suitable for evaluating reproducibility
ASR (U)X 5= ki, (SRSmeasurea/ SRS er) ! (making the same measurement with
different equipment or different personnel)
The SRS profile may . .
E, E, = (Z;TSRSmeasured/ZﬁSRSref) 1 be dissi rrP: iar for al)l’ (i) May show overall attenuation
(i) Considers only the peak acceleration
values value
M, M, = (Max (SRS, casured)/Max (SRS, ¢)) 1 (ii) May demonstrate attenuation for
applications where the peak acceleration is
the critical parameter
Tends to positive (i) Single scalar representation
RMSE (¥, 20 x (log SRS, .ssureq — log SRS, f)Z/n)(m) 0dB stop (ii) Cannot distinguish the sign of the
i=1 g easured g el infinit g g
Y positive and negative deviations
A a ]"w,‘ + (c]-)b 0 1 (i)Single scalar representation

(ii) Preferentially selects positive deviation

TaBLE 2: ISO 19683 recommended shock specification.

Frequency (f) (Hz) 100 2600 5000
Acceleration (m/s?) 545 4145 4145

SRS below 100 Hz are typically not considered in practice,
and the 5kHz upper limit is due to the upper limit of the
example SRS specification in Table 2. The test bandwidth is
within the maximum usable bandwidth of the accelerometer
according to the 1/5th transducer resonance rule of thumb
[23]. The database SRS was evaluated based on two criteria.
The first criterion is that 50 percent of the measured data
points shall exceed the SRS specification [1, 6]. The second
criterion is that 100% of the data points shall exceed the
lower limit.

Table 3 shows the results of the MAD, ASR, dimen-
sionless coefficients, and RMSE as a metric for retrieving a
similar SRS to the SRS specification in Table 2 from a small
database of 10 shocks. The analysis was extended to a bigger
dataset of 324 channels to see the metrics’ effect on the
database size. Tables 3 and 4 show the analysis results.
Figures 4 and 5 show the top three SRS selected for each
metric when the database size is 10 and 324.

4.1. Discussion. The results in Tables 3 and 4 and Figures 4
and 5 reflect the following points:

(i) The MAD ranges from 0 (for entirely similar SRS)
to positive infinity. Here, the biggest MAD is

159.8%. The lower the MAD is, the more similar the
database SRS is to the target SRS.

(ii) When the MAD is used for database SRS retrieval,
some of the best results do not meet the required
minimum percentage of data points above the
target SRS specification. For example, 67% of the
data points for SRS6 (Table 3) and 70% of the data
points for SRS100 (Table 4) fall below the target SRS
specification for the MAD.

(iii) The ASR and Ej reflect a similar pattern. Theo-
retically, the measured SRS is entirely similar to the
target SRS when the ratio (ASR and Ey) is 1. A
higher ratio implies that the measured SRS is higher
than the target SRS.

(iv) Table 3 shows that 67% of SRS6, 67% of SRS 4, and
48% of SRS1 (retrieved for the ASR and Ejy) fall
below the target SRS. In a bigger dataset (Table 4),
the ASR and Ej have an approximate value equal to
1. However, Figure 5 shows that the SRS selected
using this method significantly falls below the target
SRS specification. The reason is that the ASR ex-
cludes the SRS’s low-frequency portion (<1000 Hz)
from the computation. Similarly, for Eg, the SRS
magnitudes at the high-frequency portion
(>1000 Hz) are several orders of magnitude higher
than in the lower frequencies. Therefore, the sum of
the measured SRS magnitudes may exceed the
target SRS magnitudes.
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TaBLE 3: Comparison of different methods for SRS database retrieval (database size = 10).

SRS no. Data above spec (%) MAD (%) ASR Ex My RMSE (dB) A y
3 100 159.8 2.7 2.7 6.8 8.3 0.093
5 93 84.5 2.8 2.3 3.9 3.6 0.083
8 68 50.5 1.9 1.7 3.4 2.3 0.103
1 52 40.9 1.7 1.5 4 1.9 0.118
4 33 54.2 1.7 1.5 4.6 2.8 0.195
6 33 46.9 1.5 1.3 4.3 3.5 0.204
7 7 66.3 0.6 0.5 1.5 16 0.604
2 0 55.3 0.5 0.5 1 10.5 0.407
TaBLE 4: Comparison of different methods for SRS database retrieval (database size =324).
SRS no. Data above spec (%) MAD (%) ASR Ex My RMSE (dB) A y
104 100 63.5 2.0 1.8 5.1 4.5 0.0013
152 100 69.0 2.1 1.9 3.0 4.8 0.0014
302 100 75.4 2.0 1.9 4.0 5.0 0.0014
101 81 33.3 1.5 1.4 4.0 3.0 0.0168
73 60 19.3 1.0 1.1 1.9 2.0 0.0234
14 54 29.1 1.4 1.3 3.8 3.0 0.0406
100 30 23.0 1.3 1.3 4.2 2.6 0.0540
71 27 41.9 1.0 0.9 14 5.7 0.1217
79 18 32.2 1.1 1.0 1.9 4.2 0.1004
76 17 49.3 1.0 0.8 2.2 8.0 0.1941
110 16 44.0 1.2 1.0 2.7 4.9 0.1195
323 11 48.3 0.7 0.6 1.3 6.4 0.1665
218 4 58.4 0.6 0.5 1.2 9.8 0.2747
203 2 68.8 0.5 0.4 1.0 13.1 0.3752
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FiGure 4: Continued.

(c)
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FIGURE 4: Comparing the three most similar SRS to a target SRS spec using different similarity metrics (database size =10 channels).
(2) MAD, (b) ASR, (c) Eg, (d) My, (¢) RMSE, and (f) A;.
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FIGURE 5: Comparing the three most similar SRS to a target SRS spec using different similarity metrics (database size = 324 channels).
(a) MAD, (b) ASR, (c) Eg, (d) My, (e) RMSE, and (f) A;.

(v) The My considers only the peak SRS magnitude
(without considering the frequency at which it
occurs). Shock transients typically have instanta-
neous high magnitude accelerations. Even when the
peak amplitude is the same (SRS2), the two SRS
profiles may be entirely different. A useful metric

should account for all the SRS magnitudes at all the
natural frequencies. The My has the worst per-
formance of the metrics compared.

(vi) The retrieved SRS from the RMSE computation lies
between the specified lower and upper tolerance
limits. However, only 33% of SRS4 in Table 3 and



30% of SRS100 in Table 4 falls above the target SRS
specification.

(vii) The MAD and RMSE are based on the absolute
difference between the SRS magnitudes of the target
SRS and the measured SRS. The drawback here is
that the absolute difference does not account for the
sign of the deviation between the 2 SRS. Therefore,
it is challenging to satisfy the criterion that at least
50% of the measured SRS magnitudes should ex-
ceed the target SRS. Most of the database SRS with a
small RMSE has more than 50% of the SRS mag-
nitudes falling below the target SRS at the lower
frequencies (<1000 Hz).

4.2. Improved Mean Squared Error Scheme for SRS Database
Similarity Estimation. It is clear from section 5 that we need
a metric to choose a preferred database SRS that satisfies the
test criteria. The metric must account for the sign of the
deviation of the SRS magnitudes. The new metric is an
improvement on the RMSE computation. To overcome the
limitations of the RMSE, we introduce weights, (w j), and a
correction factor, ¢ j.b, to the RMSE computation. The
weights and correction factor are combined in equation (7)
to form the weighted distance (weighted RMSE), A ;. We can
calculate the weighted distance over the entire frequency
spectrum (from 10 Hz to 10kHz) or across any frequency
range of interest:

Aj:a]'-wj+(cj)b, 0<w;<1, (7)
where
! = RMSE RMSE,
%= norm = PMSE, _— RMSE, .
(8)
RMSE;
€)= ———1— % 100%.
Y, RMSE;

If we have an SRS database with N entries, a]{ is the
normalized RMSE for each SRS (j=1,2,...,N). Nor-
malizing is carried out by dividing the calculated RMSE for
each SRS with the entire database’s RMSE range. Mathe-
matically, a} becomes undefined if RMSE,, = RMSE_ ;..
However, this is highly unlikely in a database comprising
different shocks. For mathematical consistency, equation (8)
is valid in all instances, where RMSE_,, # RMSE, ;.. The
weight, w;, is the percentage of negative deviations from the
target SRS for each database SRS. In equation (8), cjis the
ratio of the RMSE for each SRS to the sum of RMSE for all
the SRS in the database. If w; = 0, then the weighted distance
is determined by c;. However, if w; is small, b is a coefficient
chosen to prioritize the selection of an SRS in the database

with more positive deviations from the target SRS
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(b = 1072). The database SRS are ranked using the weighted
distance (A j) based on the following conditions:

(i) Suppose several SRS in the database has equal RMSE.
In that case, the SRS with more positive deviations
from the target SRS is the preference.

(ii) If two SRS have an equal-weighted distance, the SRS
with the lower RMSE is preferred.

The aim is to define a metric such that the desired
boundary of the distance is [0, 1]. Similarity decreases as the
weighted distance approach a value of 1. Note that the value
of A; may slightly exceed 1. However, since our primary
interest is to select values closer to zero, the values of A;
closer to 1 does not impact the selection. Therefore, we
automatically assign 1 as the value of A; for every instance
where A is greater than 1.

Table 3 and Figure 4 show the result of the weighted
RMSE. The most similar database SRS to the target SRS is
SRS5 (Aj = (0.083). The next most similar SRS are SRS3
(Aj =0.093) and SRSS8 (Aj =0.103). The initial database
SRS is then ranked from minimum to maximum using the
weighted distance. Considering the criterion on the min-
imum percentage of data points above the target SRS
specification, Figure 5 shows that the weighted RMSE
outperforms other metrics in retrieving an SRS from a
database. The top three SRS retrieved using this method
have 100% of their data points above the target SRS
specification. There is no significant difference in the
percentage of data points above the specification when the
octave spacing increases from 1/48 to 1/12. Table 5 sum-
marises the effect of increasing the octave spacing.

It is also possible to use the weighted distance for SRS
specifications based on three-axis accelerometer readings. In
this case, three-axis measurement refers to independent
measurements taken on the X, Y, and Z faces of an interface
jig using three single-axis accelerometers (Figure 1). Ad-
ditional weights may be applied per axis if a statistical (or
empirical) relationship exists between the three measure-
ments. We did not apply a different weight per axis since the
SRS measurements are independent. If an SRS database
comprises 108 shocks (N) and each shock has SRS three
measurements corresponding to X, Y, and Z axes (324
channels), the weighted distance (A ji) is calculated for each
axis and averaged over the three axes for each test. Equation
(9) shows the computation of the weighted distance for each
test, A je Figure 6 shows that all of the data points between
100 Hz and 5kHz for the three axes SRS are above the SRS
specification:

Aj,  j=1,2,...,N. (9)

W=

Aj= .

3
i=1
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TaBLE 5: Comparison of different methods of database SRS retrieval (SRS octave spacing =1/12).

SRS no. Data above spec (%) MAD (%) ASR Ex My RMSE (dB) A;

3 100 159.7 2.6 2.7 6.4 8.3 0.093
5 91 83.0 2.7 2.3 3.8 5.8 0.088
8 68 50.0 1.8 1.7 33 4.1 0.103
1 51 40.3 1.7 1.5 3.7 3.6 0.120
6 33 45.6 1.5 1.3 4.1 5.0 0.201
4 32 52.9 1.7 1.5 4.5 4.7 0.195
7 6 66.6 0.6 0.5 1.5 11.6 0.615
2 0 55.6 0.5 0.5 0.9 7.4 0.411

10°
S, 10t
E
=1
2
g
5 10° b
3
<
10% ¢ SRS
10 100 1000 5000
Frequency (Hz)
—— Chl Ch3 +6 dB
—=— Ch2 —— spec --- -6dB

F1GURE 6: Three-axis test data retrieved from the SRS database.

5. Conclusion

We evaluated five SRS similarity metrics for suitability in
retrieving an SRS with a similar profile to a target SRS
specification from a shock test database. All evaluated
metrics are calculated from the absolute deviation between
the SRS magnitudes. The SRS’s absolute deviation does not
account for the sign of the deviations of the database SRS
from the target SRS. Among the metrics, the mean square
goodness-of-fit (RMSE) algorithm shows the best results in
retrieving experimental conditions for a previous shock test
from an SRS database. However, the RMSE algorithm may
sometimes retrieve a database SRS that does not comply with
QT criteria.

We introduced an improved goodness-of-fit metric that
meets the minimum percentage of data points (50%) that
should exceed the specified target SRS magnitudes. We
demonstrated the effectiveness of our newly improved
metric, the weighted RMSE (A)), by retrieving the most
similar SRS to a target shock test from a small database and a
big database. We also extended the method to the 3-axis SRS
measurements from the 108 shock tests.

In the future, we hope to utilize a deep learning
framework to extract features for similarity estimation be-
tween two or more shock transients. In the current database

retrieval scheme, the acceleration-time history, SRS, and
experimental conditions of past shock tests are always
available ahead of time. A deep learning method could help
determine the experimental conditions for a given shock
transient if the experimental conditions are unknown or if
the record is lost.

Abbreviations
aj’-: Normalized RMSE for each database entry
b: Scalar multiplier

cjt RMSE ratio for the jth SRS in the database

f: Natural frequency (Hz)

n: Number of natural frequencies (points) in the
SRS calculation

m: Number of successive trials in a shock
simulation

N: Total number of SRS in the database

J Database entry number

SRS easured: SRS measured in an experiment or a simulation

SRS, Target SRS of a shock specification

w;: % negative deviation from SRS,

Weighted distance for the jth database SRS
Weighted distance for triaxial SRS
measurements.

B P

jit
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