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(is paper carries out free and forced vibration analysis of piezoelectric FGM plates resting on two-parameter elastic foundations
placed in thermal environments. By employing the third-order shear deformation theory and the finite element method, this work
establishes free and forced vibration equations of piezoelectric FGM plates, where the materials are assumed to be varied in the
thickness directions, and the mechanical properties depend on the temperature. (en, comparative examples are conducted to
verify the proposed theory and mathematical model, and the results of this study and other methods meet a very good agreement.
(en, effects of geometrical and material properties such as the feedback coefficient, voltage, volume fraction index, temperature
as well as the parameters of elastic foundations on free and forced vibration of the plates are investigated, and the conclusions are
given out to provide the effective direction for the design and practical use of these structures.

1. Introduction

Nowadays, due to the development of science and tech-
nology, complicated smart mechanical structures are used
more and more in engineering practice, where they are
integrated with numerous kinds of materials such as
composite materials, functionally graded materials (FGM),
piezoelectric layers, magnetorheological materials, and
shape memory alloy.(erefore, mechanical investigations of
these structures need to use advanced approaches and cost
much time to deal with. Besides, mechanical systems in
many cases can be rested on elastic structures, so it can seem
to be elastic foundations; thus, scientists tend to examine
mechanical responses of these structures lying on other
elastic parts, and these problems are more and more chal-
lenging. In this section, a review of related works is firstly
carried out to find out the lack of published papers as well as
figure the reason to conduct this investigation.

For investigations relating to piezoelectric FGM plates,
some spotlight papers can be counted as follows. Lieu et al.

[1] for the first time introduced an isogeometric Bézier FE
formulation to conduct the static bending and transient
analysis of piezoelectric functionally graded porous (FGP)
plates reinforced by graphene platelets (GPLs), in which the
modified Halpin–Tsai micromechanical model was
employed to evaluate the effective mechanical characteristics
which varied gradually in the thickness direction of the core
layer, and the electric potential was assumed to change
linearly through the thickness for each piezoelectric sub-
layer. Barati and colleagues [2] investigated free vibration of
piezoelectric FGM plates with porosities by using a refined
four-unknown plate theory, which could capture shear
deformation impacts needless of the shear correction factor.
A modified power-law model was assumed to describe the
changing rule of gradedmaterial properties of a piezoelectric
functionally graded plate. Governing equations derived from
Hamilton’s principle was solved by an analytical method,
which satisfied several kinds of boundary conditions. Nam
et al. [3] studied free and forced vibration of smart FG metal
foam plate structures reinforced by graphene platelets
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(GPLs). (ey then examined the active control of FG metal
foam plates with piezoelectric layers. A computational ap-
proach based on a generalized-type higher-order shear
deformation theory (C0-HSDT) polygonal finite element
formulation (PFEM) was modified to provide numerical
solutions. (e numerical results showed that the proposed
approach was suitable for modeling both thick and thin
structures. Keleshteri and his coworkers [4] used the first-
order shear deformation theory (FSDT) and von Karman
geometrical nonlinearity along with the Hamilton principle
to study large-scale vibration response of piezoelectric FG
carbon nanotube-reinforced composite (FG-CNTRC) an-
nular sector plates. Malekzadeh et al. [5] developed a
transformed differential quadrature method (TDQM) to
investigate the free vibration response of FG multilayer
nanocomposite eccentric annular plates. (e modified
Halpin–Tsai model was also used to estimate the effective
mechanical properties of the nanocomposites. (e gov-
erning equations were derived by using the FSDT and
Hamilton’s principle andMaxwell’s equation.(e numerical
data pointed out that the TDQM met a very good con-
vergence rate. Ebrahimi and Rastgoo [6] carried out a
nonlinear free vibration analysis of thin annular piezo-
electric functionally graded plates, where the material
properties of the FG core plate were assumed to be changed
in the thickness direction based on the power-law distri-
bution. A good agreement between the results of their work
and those of the finite element (FE) analyses were obtained.
Keleshteri et al. [7, 8], respectively, presented buckling
analysis and postbuckling analysis of piezoelectric FG-
CNTRC rectangular and annular plates.

For FGM plates resting on elastic foundations, scientists
also have published many good works on these problems.
Hassen et al. [9] examined the free vibration analysis of
simply supported functionally graded plates (FGPs) resting
on a Winkler–Pasternak elastic foundation using a new
higher shear deformation theory. Chan et al. [10] carried out
the nonlinear dynamic analysis of piezoelectric functionally
graded porous truncated conical panel in thermal envi-
ronments by using an analytical method, where the panel
resting on an elastic foundation was modeled according to
the Winkler–Pasternak theory. (e material properties in-
cluding Young’s modulus, shear modulus, and density were
assumed to gradually through the shell thickness. (eo-
retical formulations were presented based on the first-order
shear deformation shell theory with a von Karman–Donnell
type of kinematic nonlinearity. Zenkour and Radwan [11]
studied the bending response of FG plates resting on elastic
foundations in a hygrothermal environment with porosities.
Shen and Xiang [12] introduced a postbuckling analysis of
carbon nanotube-reinforced composite (CNTRC) cylindri-
cal panels resting on elastic foundations and subjected to
axial compression in thermal environments. (e cylindrical
panels were reinforced by aligned single-walled carbon
nanotubes (SWCNTs) which were assumed to be func-
tionally graded (FG) through the thickness direction with
different types of distributions. (e material properties of
FG-CNTRC panels were evaluated through an extended rule
of mixture micromechanical model. (e governing

equations were based on a higher-order shear deformation
theory with a von Kármán type of kinematic nonlinearity.
Ninh [13] examined nonlinear thermal torsional post-
buckling of piezoelectric carbon nanotube-reinforced
composite cylindrical shell surrounded by an elastic me-
dium. Nebab et al. [14] used an analytical method to research
wave propagation in simply supported graduated functional
plates resting on a two-parameter elastic foundation (Pas-
ternak model) using a new theory of high-order shear strain.
Duc and Quan [15] conducted the nonlinear stability
analysis of double-curved shallow FGM panels on elastic
foundations in thermal environments. Kim and his co-
workers [16] explored nonlinear vibration and dynamic
buckling of eccentrically oblique stiffened FGM plates
resting on elastic foundations in a thermal environment. Do
et al. [17] presented the role of material combination and
new results of mechanical behavior for FG Sandwich plates
in a thermal environment. Mai et al. [18] researched the
flexural and shear performance of hybrid sandwich panels
using an experimental solution. Recently, there have also
been a number of publications on mechanical responses of
beam and plate structures resting on elastic foundations, in
which different foundation models were taken into account.
Abdelkrim et al. [19] used the first shear deformation theory
to investigate the buckling problem of a single layered
graphene sheet resting on elastic foundation. (e first shear
deformation theory was also used in the work of Noureddine
et al. [20] to research the static and free vibration behavior of
nanocomposite sandwich plates reinforced by carbon
nanotubes resting on Pasternak elastic foundation. Rabhi
et al. [21] used a new innovative three unknowns trigono-
metric shear deformation theory to investigate the buckling
and vibration responses of exponentially graded sandwich
plates resting on elastic mediums. Fouad et al. [22] used the
Navier method and first-order shear deformation beam
theory to analyze the dynamic and stability analysis of the
simply supported single-walled carbon nanotube-reinforced
concrete beam on elastic foundation. Mokhtar et al. [23]
investigated the static and free vibration analysis of func-
tionally graded plates based on an efficient and original high-
order shear and normal deformation theory. Miloud et al.
[24] studied the statics and free vibration of functionally
graded porous plates resting on elastic foundations using a
new type of quasi-3D hyperbolic shear deformation theory.
Farouk et al. [25] researched the effect of Winkler/Pas-
ternak/Kerr foundation and porosity on dynamic behavior
of FG plates using a simple quasi-3D hyperbolic theory.
Hong [26] investigated the free vibration and static bending
analysis of piezoelectric functionally graded material plates
resting on one area of the two-parameter elastic foundation
using the third-order shear deformation theory of Reddy.

Research on the mechanical behavior of beam and plate
structures considering the effect of temperature has also
been attracted to scientists and has made some publications.
Salah et al. [27] studied the hygrothermal and mechanical
buckling responses of simply supported FG sandwich plate
seated on Winkler–Pasternak elastic foundation based on a
novel shear deformation theory. Abdelouahed et al. [28]
used a simple four-variable trigonometric integral shear
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deformation model in order to the static behavior of ad-
vanced functionally graded plates subjected to a nonlinear
hygro-thermomechanical load. Hakima et al. [29] presented
the free vibrational behavior of the FG nanobeams resting on
an elastic foundation in the hygrothermal environment.
Abderrafik et al. [30] used an exact solution to study the
thermomechanical flexural analysis of functionally graded
material sandwich plates based on a nth-order shear de-
formation theory.

(us, one can see that the above studies have only
mentioned the mechanical behaviors of FGM beams and
plates without piezoelectric layers, and there is no research
on the effects of both elastic foundation and temperature, in
which the material properties vary with temperature based
on the third-order shear deformation theory. And as we
know, FGM structures are often designed to perform in
high-temperature environments, and the use of additional
piezoelectric layers will increase the control ability and
thereby increase the working capacity of these structures;
therefore, it is really necessary to study the mechanical
behavior of piezoelectric FGM structures, which effectively
guide the design and use of these structures in practice.
Hence, this work focuses on free and forced vibration of
piezoelectric FGM plates resting on elastic foundations, in
which the effect of temperature is taken into account, based
on the third-order shear deformation theory and the finite
element method, which does not need any shear correction
factors.(is third-order shear deformation theory is suitable
for the calculation of plate structures, especially thick
thickness plates, which is the outstanding advantage of this
theory compared to the classical plate theory and first-order
shear deformation theory. (is work aims to deal with this
problem to figure out the mechanical response of these kinds
of structures in practice as well as to contribute the ex-
plorations on these issues.

(e rest of this paper is organized as follows. Section 2
shortly introduces piezoelectric functionally graded plates.
Finite element formulations for piezoelectric FGM plates are
described clearly in Section 3. Section 4 is about numerical
results and discussion. Some remarkable points are con-
cluded in Section 5.

2. Piezoelectric Functionally Graded Plates

Consider a piezoelectric FGM plate, where the core layer is
made of functionally gradedmaterial, and the two face sheets
are actuator and sensor layers. (e plate is resting on a two-
parameter elastic foundation kw and ks, as shown in Figure 1.

Assume that the FGM plate is fabricated from ceramic
and metal with mechanical properties varying according to
the temperature T (K) [31, 32]:

Θ � Θ0 Θ−1T
− 1

+ 1 + Θ1T
1

+ Θ2T
2

+ Θ3T
3

􏼐 􏼑, (1)

in which Θ represents Young’s modulus E, Poisson’s ratio ],
and mass density ρ, where T � T0 + ΔT and T0 � 300K

(ambient or free stress temperature), ΔT is the temperature
change, and Θ0,Θ−1,Θ1,Θ2, andΘ3 are the temperature-
dependent coefficients, which can be seen in Table 1.

(e following equation expresses the dependence of
material properties on the volume fraction proportion of
ceramic (Vc) and metal (Vc) as follows [31–34]:

E(z, T)

](z, T)

ρ(z, T)

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
�

Ec(T)Vc + Em(T)Vm

]c(T)Vc + ]m(T)Vm

ρc(T)Vc + ρm(T)Vm

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
, (2)

where Ei, ]i, ρi, and Vi (i� c, m) are Young’s modulus,
Poisson’s ratio, mass density, and the volume fraction of
ceramic and metal, respectively. (e proportions of ceramic
(Vc) and metal (Vc) are changed by the following law
[31–35]:

Vc � 1 −
z

h
+
1
2

􏼒 􏼓
n

􏼢 􏼣,

Vm � 1 − Vc,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(3)

in which n≥ 0 is the volume fraction index.

3.FiniteElementFormulations forPiezoelectric
FGM Plates

In this work, the higher-order shear deformation theory of
Reddy is used; therefore, the displacement field of one point
within the plate is expressed as follows [32]:

u(x, y, z) � u0(x, y) + zφx(x, y) −
4
3h

2z
3 φx +

zw0

zx
􏼠 􏼡,

v(x, y, z) � v0(x, y) + zφy(x, y) −
4
3h

2z
3 φy +

zw0

zy
􏼠 􏼡,

w(x, y, z) � w0(x, y),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(4)

with u0; v0; w0 are the displacements at a point (x, y, z� 0)
and φx andφy are the transverse normal rotations in xz and
yz surfaces.

(e strains can be written in detail as follows:

εx � εm
x + zκ1x + z

3κ3x,

εy � εm
y + zκ1y + z

3κ3y,

cxy � c
0
xy + zκ1xy + z

3κ3xy,

cxz � c
0
xz + z

2
c
2
xz,

cyz � c
0
yz + z

2
c
2
yz.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(5)

Equation (5) can be rewritten in the vector form as
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Piezoelectric face sheets

Figure 1: (e model of a piezoelectric FGM plate resting on a two-parameter elastic foundation.

Table 1: Temperature-dependent coefficient of Young’s modulus E (Pa) and Poisson’s ratio ] for various materials.

Materials P0 P−1 P1 P2 P3 P (300K)

Ceramic silicon nitride (Si3N4)
E (Pa) 348.43×109 0 −3.070×10−4 2.160×10−7 −8.946×10−11 322.27×109

] 0.24 0 0 0 0 0.240
ρ (kg/m3) 2370 0 0 0 0 2370

Ceramic zirconium oxide (ZrO2)
E (Pa) 244.27×109 0 −1.371× 10−3 1.214×10−6 −3.681× 10−10 168.06×109

] 0.288 0 1.133×10−4 0 0.298
ρ (kg/m3) 3657 0 0 0 3657

Metal stainless steel (SUS304)
E (Pa) 201.04×109 0 3.079×10−4 −6.534×10−7 0 207.79×109

] 0.326 0 −2.002×10−4 3.797×10−7 0 0.318
ρ (kg/m3) 8166 0 0 0 0 8166
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According to Hooke’s law, the relation between me-
chanical components and electrical ones is given by the
following expressions [36, 37]:

σ � Db εm
+ zκ1 + z

3κ3􏼐 􏼑 − eTEv,

τ � Ds γ0 + z
2γ2􏼐 􏼑,

D � e ε0 + zε1 + z
3ε3􏼐 􏼑 + pEv,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(7)

where

σ �

σx

σy

τxy

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

,

τ �

τxz

τyz

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
,

Db �
E(z, T)

1 − v
2
(z)

1 ](z, T) 0

](z, T) 1 0

0 0
1 − ](z, T)

2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Ds �
E(z, T)

2(1 + v(z, T))

1 0

0 1
⎡⎢⎢⎣ ⎤⎥⎥⎦.

(8)

Ev is the electric field, which is determined through the
variation in the potential as follows [38]:

Ev � −∇ϕ �

0

0

E
z

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
. (9)

Herein, it is assumed that the electric field applies only to
the plate in the thickness direction, and the symbol Ez is the
electric field in the z-direction, which is calculated through
the voltage and the thickness of the plate as follows:

E
z

�
−ϕ
hp

. (10)

D is the electric displacement vector and e denotes the
piezoelectric stress coefficients, which has a specific ex-
pression in the following form:

e �

0 0 0

0 0 0

e31 e32 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (11)

p is the dielectric tensor at constant mechanical strain
with the expression as follows:

p �

p11 0 0

0 p22 0

0 0 p33

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (12)

(is work uses an 8-node plate element, each node has 5
degrees of freedom, and displacement components at the
neutral plane are interpolated as follows:

u0 � 􏽘
8

j�1
Nj(ξ, η) · uj,

v0 � 􏽘
8

j�1
Nj(ξ, η) · vj,

w0 � 􏽘
8

j�1
Nj(ξ, η) · w0j,

φx � 􏽘
8

j�1
Nj(ξ, η) · φxj,

φy � 􏽘
8

j�1
Nj(ξ, η) · φyj,

(13)

where Nj is the Lagrangian interpolation function of the 8-
node plate element and ξ and η are natural coordinates.

Based on the above interpolation technique, the strain
components are now written as follows:

εm
� B0qe; κ

1
� B1qe; κ

3
� B3qe,

γ0 � B0cqe; γ
2

� B2cqe,

⎧⎨

⎩ (14)
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,

B1 � 􏽘
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0 0 0
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zNj

zy

zNj

zx

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
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B3 �
−4
3h

2 􏽘

8

j�1

0 0
z
2
Nj

zx
2

zNj

zx
0

0 0
z
2
Nj

zy
2 0

zNj

zy

0 0 2
z
2
Nj

zx zy

zNj

zy

zNj

zx

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

B0c � 􏽘

8

j�1

0 0
zNj

zx
0 Nj

0 0
zNj

zy
Nj 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

B2c �
−4
h
2 􏽘

8

j�1

0 0
zNj

zx
0 Nj

0 0
zNj

zy
Nj 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(15)

At this point, the electric field vector of the actuator layer
and the sensor layer is calculated through two degrees of
freedom ϕa and ϕs as follows:

Ev � −

0, 0,
1
ha

0, 0,
1
hs

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

ϕa

ϕs

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
� −

Ba
ϕ

Bs
ϕ

⎡⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎦

ϕa

ϕs

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
, (16)

where

Ba
ϕ � 0, 0,

1
ha

􏼢 􏼣

T

,

Bs
ϕ � 0, 0,

1
hs

􏼢 􏼣

T

,

(17)

in which ha and hs are the thicknesses of the actuator layer
and sensor layer, respectively.

(e internal force components can be expressed as

N

M

M
⌢

Q

Q
⌢

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

�

A B E 0 0

B D F 0 0

E F H 0 0

0 0 0 A B

0 0 0 B D

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

εm

κ1

κ3

γ0

γ2

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (18)

where

A

B

D

E

F

H

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

� 􏽚
h/2

−h/2
Db

1

z

z2

z3

z4

z6

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

dz,

A

B

D

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

� 􏽚
h/2

−h/2
Ds

1

z2

z4

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

dz.

(19)

(e total strain energy of the piezoelectric FGM plate can
be given by
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􏽙
e

�
1
2

􏽚
Se

ε0 ε1 ε3􏼈 􏼉
Tσ + γ0 γ2􏼈 􏼉

Tτ − DTEv

kww
2

+ ks

zw

zx
􏼠 􏼡

T
zw

zx
􏼠 􏼡 +

zw

zy
􏼠 􏼡

T
zw

zy
􏼠 􏼡⎛⎝ ⎞⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

dSdz − 􏽚
Se

uT 􏽢FdS − 􏽚
Se

ET
v QdS,

� qT
e

1
2

􏽚
Se

BT
0AB0 + BT

0BB1 + BT
1EB3 + BT

1BB0 + BT
1DB1 + BT

0EB3

+BT
3EB0 + BT

1FB3 + BT
3EB1 + BT

3FB1 + BT
3HB3

+BT
0cAB0c + BT

0cBB2c + BT
2cBB0c + BT

2cBB2c

+ kwN
T
wNw + ks

zNw

zx
􏼠 􏼡

T
zNw

zx
􏼠 􏼡 +

zNw

zy
􏼠 􏼡

T
zNw

zy
􏼠 􏼡⎛⎝ ⎞⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

dS qe

− qT
e

1
2

􏽚
Se

−BT
0Ae

TBϕa − BT
1Be

TBϕa − BT
3Ee

TBϕa􏼐 􏼑dSϕea

− qT
e

1
2

􏽚
Se

−BT
0Ae

TBϕs − BT
1Be

TBϕs − BT
3Ee

TBϕs􏼐 􏼑dSϕes

− ϕT
ea

1
2

􏽚
Se

−BT
ϕaeAB0 − BT

ϕaeBB1 − BT
ϕaeEB3􏼐 􏼑dSqe

− ϕT
es

1
2

􏽚
Se

−BT
ϕseAB0 − BT

ϕseBB1 − BT
ϕseEB3􏼐 􏼑dSqe

−
1
2
ϕT

ea􏽚
Se

BT
ϕapB

T
ϕadSϕea −

1
2
ϕT

es􏽚
Se

BT
ϕspB

T
ϕsdSϕes − qT

e 􏽚
Se

NT 􏽢FdS

− ϕT
ae􏽚

Se

BaT
ϕ Q

adS − ϕT
se􏽚

Se

BsT
ϕ Q

sdS,

(20)

where Nw � 􏽐
8
j�1[0, 0, Nj, 0, 0] and 􏽢F is the surface loading

and equation (20) is expressed in matrix form as follows:

􏽙
e

�
1
2

qT
e Kuueqe + qT

e K
a
uϕeϕae + qT

e K
s
uϕeϕse

+ϕT
aeK

a
ϕueqe + ϕT

seK
s
ϕueqe

−ϕT
aeK

a
ϕϕeϕae − ϕT

seK
s
ϕϕeϕse

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

− qT
e Pe − ϕT

aeF
a
qe − ϕT

seF
s
qe, (21)
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where each matrix is defined clearly as

Kuue � 􏽚
Se

BT
0AB0 + BT

0BB1 + BT
1EB3 + BT

1BB0 + BT
1DB1 + BT

0EB3

+BT
3EB0 + BT

1FB3 + BT
3EB1 + BT

3FB1 + BT
3HB3

+BT
0cAB0c + BT

0cBB2c + BT
2cBB0c + BT

2cBB2c

+kwN
T
wNw + ks

zNw

zx
􏼠 􏼡

T
zNw

zx
􏼠 􏼡 +

zNw

zy
􏼠 􏼡

T
zNw

zy
􏼠 􏼡⎛⎝ ⎞⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

dS,

Ka
uϕe � 􏽚

Se

−BT
0Ae

TBϕa − BT
1Be

TBϕa − BT
3Ee

TBϕa􏼐 􏼑dS,
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uϕe � 􏽚

Se

−BT
0Ae

TBϕs − BT
1Be

TBϕs − BT
3Ee

TBϕs􏼐 􏼑dS,

Ka
ϕue � 􏽚

Se

−BT
ϕaeAB0 − BT

ϕaeBB1 − BT
ϕaeEB3􏼐 􏼑dS,

Ks
ϕue � 􏽚

Se

−BT
ϕseAB0 − BT

ϕseBB1 − BT
ϕseEB3􏼐 􏼑dS,

Ka
ϕϕe � ϕT

ea􏽚
Se

BT
ϕapB

T
ϕadSϕea,

Ks
ϕϕe � ϕT

es􏽚
Se

BT
ϕspB

T
ϕsdSϕes,

Pe � 􏽚
Se

NT 􏽢FdSe,

Fa
qe � 􏽚

Se

BaT
ϕ QadS,

Fs
qe � 􏽚

Se

BsT
ϕ QsdS,

(22)

in which Qa and Qs are the voltages acting on actuator and
sensor layers.

(e kinetic energy of the plate element is determined by
the following formula:

Te �
1
2

􏽚
Ve

_u
Tρ(x, z) _udV �

1
2

_q
T
e

􏽚
Ve

NTLTρp(x)LNdV + 􏽚
Ve

NTLTρa(x)LNdV

􏽚
Ve

NTLTρs(x)LNdV

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
_qe

�
1
2

_q
T
e Me _qe,

(23)
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where ρp, ρa, and ρs are, respectively, the mass density of the
plate, actuator, and sensor layers; N is the shape function
matrix; and the matrix L and the element mass matrixMe are
defined as follows:

L �

1 0 −
4z

3

3h
2

z

zx
z −

4z
3

3h
2 0

0 1 −
4z

3

3h
2

z

zy
0 z −

4z
3

3h
2

0 0 1 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Me �

􏽚
Ve

NTLTρp(x)LNdV + 􏽚
Ve

NTLTρa(x)LNdV

􏽚
Ve

NTLTρs(x)LNdV

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(24)

(e Galerkin weak form of the governing equations of
piezoelectric plates can be derived by using Hamilton’s
variational principle which can be written as follows:

δLe � 0, (25)

where

Le � Te − Πe. (26)

Substituting equations (21) and (23) into equation (25),
the following equation can be obtained:

Mue 0 0

0 0 0

0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ €qe
€ϕae

€ϕse􏽮 􏽯 +

Kuue Ka
uϕe Ks

uϕe

Ka
ϕue Ka

ϕϕe 0

Ks
ϕue 0 Ks

ϕϕe

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

qe

ϕae

ϕse

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭

�

Pe

Fa
qe

Fs
qe

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

⎫⎪⎪⎪⎬

⎪⎪⎪⎭

.

(27)

By extracting ϕae andϕse from the second and third ex-
pressions of equation (27) and then substituting them into the
first expression of equation (27), the forced vibration equation
of the piezoelectric plate element is obtained as follows:

Mue €qe +
Kuue + Ka

uϕeK
a−1
ϕϕeK

a
ϕue

+Ks
uϕeK

s−1
ϕϕeK

s
ϕue

⎛⎝ ⎞⎠qe � Pe + Ks
uϕeF

s
qe + Ka

uϕeF
a
qe.

(28)

As external forces are acting to the plate, the plate will be
deformed, and the voltage will be changed; then, the voltage
of the sensor layer will be transmitted to the controller, and
the controller will overpower the applied voltage back to the
actuator layer to create an electrical force that acts opposite
to the direction in which the plate is deforming, returning
the plate to its equilibrium before deformation. (e process
is clearly described in Figure 2.

Let Gd be the displacement feedback coefficient and Gv

the velocity feedback coefficient of the controller, and these
coefficients present the relationship between the applied
voltage (input) ϕa and the voltage in the sensor layer
(output) ϕs:

ϕae � Gdϕse + Gv
_ϕse. (29)

Without the appearance of the applied voltages Qa and
Qs, from the third equation in (27), the voltage vector of the
sensor layer is derived as follows:

ϕse � Ks−1
ϕϕ K

s
uϕqe, (30)

and the voltage of the sensor layer is generated by the de-
formation phenomenon of the plate as follows:

Qs
e � Ks

uϕeqe. (31)

(is means that when the plate is oscillating, the
voltage generated in the sensor layer due to the defor-
mation effect of the plate will generate an input signal to
the controller, which will affect directly the actuator layer.
As a result, the stress and strain generated from the pi-
ezoelectric effect will produce a voltage signal applied
back to it, controlling the stress and strain in the desired
direction.

Substituting expressions (29) and (30) into the second
equation in (27), we obtain the following expression:

Qa
e � Ka

uϕeqe − GdK
a
uϕK

s−1
ϕϕeK

s
ϕueqe − GvK

a
uϕeK

s−1
ϕϕeK

s
ϕue _qe.

(32)

Substituting equation (32) into (28), we get the forced
vibration equation of the piezoelectric element as follows:

Mue €qe + Cd
e _qe + K∗e qe � Pe, (33)

where

K∗e � Kuue + GdK
a
uϕeK

s−1
ϕϕeK

s
ϕue, (34)

and Cd
e is the resistance matrix due to the effect of the

feedback coefficient which is determined by the following
expression:

Cd
e � GvK

a
uϕeK

s−1
ϕϕeK

s
ϕue. (35)

Actuator input

Sensor output

Controller

Actuator

Sensor

FGM core

Figure 2: (e vibration control model of the plate by the piezo-
electric layers.
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In the case of taking into account the structural damping
coefficient, the forced vibration equation of piezoelectric
plate element has the following form:

Mue €qe + Cd
e + Ce􏼐 􏼑 _qe + K∗e qe � Pe, (36)

where Ce is the Rayleigh structural damping matrix, which is
calculated through themass and stiffness matrices as follows:

Ce � αMuue + βKuue. (37)

After assembling the element matrices and eliminating
boundary conditions, the forced vibration equation of the
piezoelectric plate is expressed as follows:

Mu €q + Cd
+ C􏼐 􏼑 _q + K∗q � P

⌣
. (38)

For the free vibration problem, the following equation is
established to find natural frequencies and vibration mode
shapes:

K∗ − ω2Mu􏼐 􏼑q � 0. (39)

(us, finite element formulations established in this
work used the third-order shear deformation theory, which
does not need any shear correction factors, and this is the

outstanding advantage in comparison with the first-order
shear deformation theory and classical plate theory. At the
same time, this theory also considers the effect of shear
strain, so it will correctly show the mechanical response of
the plates, especially the plate structures with large thickness.

4. Numerical Results

4.1. Free Vibration of a Piezoelectric FGM Plate

4.1.1. Accuracy Study. (is section firstly carries the ver-
ification problem to show the accuracy of the proposed
theory and mathematical model. (e results of this work
are compared with those of references [39, 40], where
analytical and numerical methods were used. Consider a
piezoelectric FGM (Ti-6Al-4 V/aluminum oxide) with
dimensions a � b � 0.4 m and thickness hp � 5mm. Mate-
rial properties are Ec � 320.24 GPa, ]c � 0.26, ρc � 3750 kg/
m3, Em � 105.7 GPa, ]m � 0.2981, and ρm � 4429 kg/m3.
Two piezoelectric face sheets have thicknesses
ha � hs � 0.1 mm, and material properties Epi � 63 GPa,
]pi � 0.3, d31 � d32 � 254.10−12 m/V, and k33 �15 nF/m. (e
plate is fully simply supported (SSSS). Table 2 presents the
numerical results with some meshes, and it can be seen

Table 2: Comparison of first natural frequencies (Hz) with some meshes.

Mode Method Mesh
n

0 0.2 0.5 1 5 15 1000

1

[39] — 144.2 168.7 185.4 198.9 230.4 247.3 261.7
[40] — 145.3 169.2 186.2 200.5 233.0 250.3 265.1

(is work

4× 4 146.1 170.6 175.5 201.7 233.8 250.7 265.1
6× 6 145.4 169.8 186.6 200.7 232.5 249.4 263.8
8× 8 145.4 169.8 186.6 200.6 232.4 249.3 263.7
10×10 145.4 169.8 186.6 200.6 232.4 249.3 263.7
12×12 145.4 169.8 186.6 200.6 232.4 249.3 263.7

Table 3: Comparison of first nondimensional natural frequencies ϖ of fully simply supported FGM plates resting on two-parameter elastic
foundation.

(k∗w, k∗s ) a/h N [41] (is work

(0, 0)

20

0 0.0239 0.0239
0.25 0.0226 0.0231
1 0.0215 0.0220
5 0.0218 0.0225
∞ 0.0204 0.0206

10

0 0.0918 0.0919
0.25 0.0860 0.0888
1 0.0815 0.0848
5 0.0817 0.0860
∞ 0.0789 0.0790

(250, 25)

20

0 0.0342 0.0342
0.25 0.0328 0.0331
1 0.0318 0.0321
5 0.0323 0.0328
∞ 0.0293 0.0294

10

0 0.1336 0.1337
0.25 0.1277 0.1295
1 0.1238 0.1258
5 0.1253 0.1279
∞ 0.1148 0.1148
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that the results gain the exact data when the mesh is 8 × 8.
So, the proposed theory and mathematical model are
verified. For all next investigations, this 8 × 8 mesh will be
employed.

Next, natural frequencies of FGM plates resting on
elastic foundations are compared in Table 3, where Hashemi
et al. [41] used the analytical approach. (e FGM (Al/ZrO2)
plates with dimensions a� 0.2m and b� a/1.5 and the plate
thickness h� a/10 and h� a/20 are considered. Material
properties Ec � 200GPa, ]c � 0.3, ρc � 5700 kg/m3,
Em � 70GPa, ]m � 0.3, and ρm � 2702 kg/m3.(e plate is fully
simply supported (SSSS). Two nondimensional elastic
foundation parameters are calculated as follows:

k
∗
w �

Kwa
4

A
,

k
∗
s �

Ksa
2

A
,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(40)

with

A �
h
3

1 − ]2m􏼐 􏼑

n 8 + 3n + n
2

􏼐 􏼑Em + 3 2 + n + n
2

􏼐 􏼑Ec

12(1 + n)(2 + n)(3 + n)
⎡⎣ ⎤⎦.

(41)

(e first nondimensional natural frequency is defined as

ω∗ � ωh

��ρc

Ec

􏽲

. (42)

It can be obtained that, from Table 3, numerical results of
this work and [41] meet a good agreement. Also note that the
publication [41] used the first-order shear deformation
theory, and this work employs the third-order shear de-
formation theory; therefore, the errors shown in Table 3 can
be easily understood and accepted, where the results cal-
culated by this work are greater than or equal to results
calculated by the first-order shear deformation theory [41].

Finally, nondimensional natural frequencies of FGM
(Si3N4/SUS304) plate in thermal environments are com-
pared. (e geometrical dimensions are a� b� 0.2m, and the
plate thickness h� a/10. Material properties are given in
Table 1. Table 4 presents nondimensional natural frequen-
cies of the fully clamped plate in the range of 400K to 600K.
It can be seen that this work and references [31, 42] meet a
good agreement.

4.1.2. Numerical Results of Free Vibration of Piezoelectric
FGM Plates Resting on Elastic Foundation in >ermal
Environment. In this section, the effects of geometrical and
material properties on natural frequencies of piezoelectric
FGM plates are investigated. Consider a square plate with
dimensions a� 0.2m and the plate thickness h� 10mm; the

Table 4: Nondimensional natural frequencies (Ψ � (ωa2/h)[ρ0(1 − ]2)/E0]
1/2) of Si3N4/SUS304 plates (E0 and ρ0 are the reference values of

Em and ρm at T0 � 300K).

T (K)
n� 0.5 n� 1 n� 5

[42] [31] (is work [42] [31] (is work [42] [31] (is work
400 15.938 15.355 15.467 13.915 13.433 13.646 11.175 10.852 11.012
500 15.468 15.192 15.285 13.462 13.280 13.332 10.749 10.716 10.723
600 14.939 15.008 14.998 12.941 13.093 13.001 10.242 10.528 10.210

Table 5: First nondimensional natural frequencies ϖ of Si3N4/
SUS304 plates depending on the temperature (k∗w, k∗s ) � (100, 10).

n
T (K)

300 400 500 600
0 0.0363 0.0360 0.0357 0.0354
0.5 0.0287 0.0284 0.0282 0.0279
1 0.0262 0.0260 0.0258 0.0255
2 0.0243 0.0241 0.0239 0.0236
10 0.0220 0.0218 0.0216 0.0214

Table 6: First nondimensional natural frequencies ϖ of ZrO2/
SUS304 plates depending on the temperature (k∗w, k∗s ) � (100, 10).

N
T (K)

300 400 500 600
0 0.0239 0.0229 0.0221 0.0215
0.5 0.0215 0.0207 0.0201 0.0197
1 0.0205 0.0199 0.0193 0.0189
2 0.0197 0.0191 0.0186 0.0182
10 0.0187 0.0183 0.0178 0.0175

Table 7: First nondimensional natural frequencies ϖ of ZrO2/
SUS304 plates depending on k∗w (T� 500K).

N
k∗w � 100

k∗s � 0 k∗s � 5 k∗s � 10 k∗s � 50 k∗s � 100

0 0.0192 0.0207 0.0221 0.0311 0.0395
0.5 0.0177 0.0190 0.0201 0.0279 0.0352
1 0.0170 0.0182 0.0193 0.0266 0.0335
2 0.0165 0.0176 0.0186 0.0255 0.0320
10 0.0159 0.0169 0.0178 0.0242′ 0.0303

Table 8: First nondimensional natural frequencies ϖ of ZrO2/
SUS304 plates depending on k∗s (T� 500K).

N
k∗s � 10

k∗w � 0 k∗w � 50 k∗w � 100 k∗w � 200 k∗w � 500

0 0.0207 0.0214 0.0221 0.0234 0.0270
0.5 0.0189 0.0196 0.0201 0.0213 0.0244
1 0.0182 0.0188 0.0193 0.0204 0.0233
2 0.0175 0.0181 0.0186 0.0196 0.0223
10 0.0169 0.0174 0.0178 0.0188′ 0.0213
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thicknesses of piezoelectric layers are ha � hs � 1mm. (e
FGM core layer is made of Si3N4/SUS304 và ZrO2/SUS304
with material properties depending on temperature, as
shown in Table 1. (e plate is fully simply supported (SSSS).
(e nondimensional natural frequency is defined as follows:

ω � ωh

��ρ0
E0

􏽲

, (43)

where ρ0 and E0 are, respectively, mass density and Young
modulus of Si3N4/SUS304 at 300K.

By changing the temperature in a range of 300K to
600K, nondimensional natural frequencies ω of the plate are
presented in Tables 5 and 6. As changing the stiffness co-
efficient of the elastic foundation, nondimensional natural
frequencies ω are shown in Tables 7 and 8. Based on nu-
merical results, some comments are given as follows.

When increasing the temperature, the nondimensional
natural frequency of the plate decreases for all values of the
volume fraction index. (e reason is that Young’s modulus
of the core layer decreases on increasing the temperature
while the mass density is remained; therefore, the first
nondimensional natural frequency of the plate will decrease.
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–10

–8

–6

–4

–2

0

2

t (s)

This work
[43]

W
c ×

 1
0–8

 (m
)

×10–3

Figure 3: Comparison of the center point deflection changing by
the time of the piezoelectric FGM plate, n� 2.
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Figure 4: (e dependence of wc on Gv, n� 1, T� 300K, SSSS.
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Figure 5: (e dependence of ϕs on Gv, n� 1, T� 300K, SSSS.
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Figure 6: (e dependence of ϕa on Gv, n� 1, T� 300K, SSSS.
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At the same time, when increasing the volume fraction index
n, the proportion of the metal increases, which leads to the
decrease in the total mass of the structure; therefore, the
natural frequencies of this FGM plate decrease.

On increasing the stiffness coefficient of the elastic
foundation, the stiffness matrix of the whole plate will be
added by the addition stiffness component of the elastic
foundation, and hence, the first nondimensional natural
frequency of the plate will increase.

4.2. Numerical Results of Dynamic Response for Sandwich
FGM Plates in High Temperature

4.2.1. Accuracy Study for Dynamic Response of Piezoelectric
FGM Plates. Consider a square plate with a� b� 0.2m, the
plate thickness 20mm; the piezoelectric layer has a thickness
of 2mm.(e plate is fully clamped.(e core layer is made of
Ti-6Al-4V/Aluminum oxide, and the piezoelectric face sheet
is shown in Section 4.1.1. (e load changing by time is
described as
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Figure 7:(e dependence ofwc on Gv with two FGmaterials, n� 1,
T� 300K, SSSS.
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Figure 8:(e dependence of ϕs on Gv with two FGmaterials, n� 1,
T� 300K, SSSS.
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Figure 9:(e dependence of ϕa on Gv with two FGmaterials, n� 1,
T� 300K, SSSS.

0 1 2 3 4 5
–2

–1.5

–1

–0.5

0

0.5

1

t (s)

T = 400
T = 600
T = 800

×10–3

×10–3

W
c (

m
)

Si3N4/SUS304
n = 1

Figure 10: (e dependence of wc on the temperature, n� 1, SSSS,
k∗1 � 100, k∗2 � 10, Gv � 2.10−4.
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P � P0 sin
πx

a
􏼒 􏼓sin

πy

b
􏼒 􏼓F(t), (44)

with P0 �103N/m2, and the function F (t) has the following
form:

F(t) �

sin π
t

t1
􏼠 􏼡, 0≤ t≤ t1

0, t> t1,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(45)

where t1 � 1ms.
(e dynamic responses of the center point of the pie-

zoelectric FGM plate changing by the time are presented in
Figure 3 and compared with those of the cell-based
smoothed discrete shear gap method [43]. It can be observed
that they meet a good agreement; therefore, the proposed
theory and mathematical model are verified.

4.2.2. Numerical Results for Dynamic Response of Piezo-
electric FGM Plates in High Temperature. (is section in-
vestigates the effects of some geometrical and material
properties on the dynamic response of piezoelectric sandwich

FGM plates resting on two-parameter elastic foundations,
where the whole structure is placed in the thermal envi-
ronment. Consider a fully simply supported square plate with
a� b� 0.2m, the plate thickness h� 10mm. (e core layer is
made of functionally graded materials Si3N4/SUS304 and
ZrO2/SUS304 where the material properties are shown in
Table 1. Two face sheets are the piezoelectric G-1195N ma-
terial with the thicknesses ha� hs � 1mm, and mechanical
properties are Epi � 63GPa, Poison’s ratio ]pi � 0.3,
d31 � d32� 254.10−12m/V, and k33 �15nF/m. (e plate is
subjected to the triangular load with the form as shown in
equation (44) with the function F (t) in the following form:

F(t) �

1 −
t

t1
, 0≤ t≤ t1,

0, t> t1.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(46)

Nondimensional elastic foundation parameters are de-
fined as

k
∗
1 �

Kwa
4

D
,

k
∗
2 �

Ksa
2

D
,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(47)

with

D �
Ech

3

12 1 − ]2c􏼐 􏼑
. (48)

(e output results are the deflection w and voltages
ϕs, ϕa at the center point of the plate.(eNewmark-β is used
to solve the dynamic equation with parameters α and β
having the values of 0.5 and 0.25, respectively.

(1) Effect of Feedback Coefficient. Gv To see more clearly
the effect of the feedback coefficient Gv on the ability to
reduce the oscillation of the plate, this subsection con-
siders a piezoelectric FGM plate with the volume fraction
index n � 1. (e parameters of the two-parameter elastic
foundation k∗1 � 100 and k∗2 � 10. (e results of the de-
flection w and the voltages ϕs,ϕa at the center point of the
plate are presented in Figures 4–9. Some comments are as
follows.

When increasing the feedback coefficient Gv, the de-
flection w of the plate is reduced rapidly; in other words, the
ability to reduce the oscillation of the plate is better.
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Figure 11: (e dependence of wc on the temperature with two FG
materials, n� 1, SSSS, k∗1 � 100, k∗2 � 10, Gv � 2.10−4.

Table 9: Maximum deflection wc (mm) depending on n and
temperature, Si3N4/SUS304, Gv � 2.10−4.

T� 300K 400K 500K 600K 800K
n� 0 0.000124 0.0933 0.2000 0.3198 0.5989
n� 0.5 0.000133 0.2330 0.4937 0.7812 1.4508
n� 1 0.000136 0.2858 0.6045 0.9578 1.7772
n� 2 0.000138 0.2949 0.6229 0.9804 1.8144
n� 5 0.000140 0.2324 0.4893 0.7737 1.4225
n� 10 0.000141 0.1735 0.3700 0.5904 1.1011

Table 10: Maximum deflection wc (mm) depending on n and
temperature, ZrO2/SUS304, Gv � 2.10−4.

T� 300K 400K 500K 600K 800K
n� 0 0.0002063 0.3169 0.8967 1.8400 5.2122
n� 0.5 0.0001976 0.3323 1.1231 2.5868 8.1864
n� 1 0.000194 0.3638 1.2806 2.9506 9.5619
n� 2 0.000191 0.3534 1.2216 2.9051 9.3896
n� 5 0.000188 0.2681 0.8920 2.0752 6.6588
n� 10 0.000186 0.2070 0.6197 1.3717 4.3010
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Increasing the feedback coefficient Gv, the voltages ϕs

and ϕa are also reduced quickly; however, when Gv gets
higher values, the voltage ϕs decreases and ϕa increases. (at
is because ϕs is proportional to the nodal displacement
according to equation (30); however, the displacement of the
plate should also decrease, and ϕa is proportional to Gv, so in
the first stage, when the external force is active, ϕa increases
when Gv increases, and ϕa also decreases rapidly when out of
force. Besides, from Figures 4 and 5, it can be seen that when
increasing the value of Gv, the maximum deflection wc and
ϕs in the active external phase do not decrease much, but
when the external force is not acting on the structure (free

oscillation phase), the maximum value of deflection wc and
ϕs decreases significantly and the dimming time of these
components also decreases rapidly as Gv increases. It is
explained that when the value of Gv increases, the drag
coefficient of the structure related to Gv also increases, and
this leads to the loss of the total energy of the structure;
therefore, the oscillation of the plate is rapidly extinguished.
(is also indicates that, in practice, to control plate oscil-
lation, if piezoelectric layers with appropriate Gv coefficients
are used, it will increase the working capacity of the
structure.

(2) Effect of Temperature. When increasing the temperature
in a range of 400K to 800K, the deflection wc of the center
point of the plate (Si3N4/SUS304 and ZrO2/SUS304)
changing by the time is presented in Figures 10 and 11. It can
see clearly that the temperature has a strong effect on the
dynamic response of the structure. At the same time, the
temperature is the main reason for changing the mechanical
properties of the material, and the frequencies of the plate
vary; as a result, the time of maximum occurrence of de-
flection wc is not the same. In addition, as the temperature
increases, the frequency of the plate changes; hence, the
shape of the response line of the plate corresponding to
different temperature cases is also changed, which causes the
response curves to be inconsistent with each other. (us, in
practice, when the plate is working in a high-temperature
environment, piezoelectric layers can be used to control the
vibration of this structure according to the requirements.

(3) Effect of Volume Fraction Index. Next, the effect of the
volume fraction index n is examined in this section. (e
maximum deflection wc of the center point of the plate for
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the case of n changing in a range of 0 to 10 is presented in
Tables 9 and 10. (e deflection changing by the time is
shown in Figures 12 and 13. It can be obtained that, for the
case of T� 300K, when increasing the volume fraction index
n, the maximum deflection increases. However, for the case
of T> 300K, the value, as well as the shape of the deflection
wc, will change by the time, and as a result, the plate obtains
the maximum deflection at different moments. Besides, the
maximum deflection increases when n is small, and then, it
decreases as n gets higher values. (is is because as the
volume fraction index n increases, the metal ratio increases,
and the stiffness of the plate decreases.

(4) Effect of Elastic Foundation. Now, the effect of the elastic
foundation is investigated. (is case k∗2 � 10, let k∗1 increase
gradually from 0 to 1000, and the dependence of the center
point deflection on k∗1 is shown in Figures 14 and 15. It can
be seen that when increasing the value of k∗1 , the maximum
deflection of the plate decreases. It is explained that when
increasing the value of the elastic foundation coefficient, the
total energy of the plate is added by the energy relative to the
elastic foundation coefficient, which increases the stiffness of
the structure, so the maximum deflection of the plate is
increased. Besides, the shape of the deflection response is
also changed by the stiffness of the elastic foundation, this is
due to the change in the stiffness of the plate, and the
frequency of the plate is also changed.

5. Conclusions

(is paper presents new free and forced vibrations of pie-
zoelectric FGM plates resting on two-parameter elastic
foundations placed in thermal environments. Finite element

formulations are established by using the third-order shear
deformation theory of Reddy and the finite element method.
(e reliability of the proposed theory and mathematical
model is verified by comparing the results of this work with
those of other methods. A series of parameter studies are
conducted to examine the effects of geometrical and me-
chanical properties of the plates on free and forced vibra-
tions of piezoelectric FGM plates. Some remarkable points
are concluded as follows:

(1) When increasing the temperature, the first natural
frequency of the plate is reduced, and this is because
the elastic modulus of both metal and ceramic is
reduced; therefore, the deflection of the plate under
forced loads increases when the temperature in-
creases, and the time response curves are also not
uniform.

(2) When increasing the feedback coefficient Gv, during
the period of forced oscillation, the maximum de-
flection of the plate does not decrease much, but
when the external force is not active, the maximum
deflection of the plate decreases rapidly. (is is the
best advantage of the structure when adding pie-
zoelectric components.

(3) When increasing the stiffness of the elastic foun-
dation and the value of the volume fraction index n,
the maximum deflection of the plate is reduced.

(e results in this study are the reference to apply in the
vibration control of piezoelectric FGM plates resting on
elastic foundations in high-temperature environments.
Depending on the practical requirements, it can be set out,
the appropriate coefficient Gv is selected, and we will obtain
the desired deflection value, which increases the working
capacity for the structure. At the same time, this is one of the
solutions that contribute to the optimization of structures
according to engineering requirements.
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