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It is very difficult to extract the feature frequency of the vibration signal of the rolling bearing early weak fault and in order to
extract its feature frequency quickly and accurately. A method of extracting early weak fault vibration signal feature frequency of
the rolling bearing by intrinsic time-scale decomposition (ITD) and autoregression (AR) minimum entropy deconvolution
(MED) is proposed in this paper. Firstly, the original early weak fault vibration signal of the rolling bearing is decomposed by the
ITD algorithm to proper rotations (PRs) with fault feature frequency. )en, the sample entropy value of each PR is calculated to
find the largest PRs of the sample entropy. Finally, the AR-MED filtering algorithm is utilized to filter and reduce the noise of the
largest PRs of the sample entropy value, and the early weak fault vibration signal feature frequency of the rolling bearing is
accurately extracted. )e results show that the ITD-AR-MED method can extract the early weak fault vibration signal feature
frequency of the rolling bearing accurately.

1. Introduction

Rolling bearings play a pivotal role in modern industry and
their applications are very extensive, such as aircraft engines
[1, 2], gas turbines [3], landing gear [4], flexible mechanism
[5], and wind turbines [6–11]. However, the rolling bearing
is very easy to cause damage in a strong vibration envi-
ronment, and the rolling bearing is very prone to failure in
most rotating machinery systems. )e failure of the rolling
bearing will even cause a catastrophic accident to the ro-
tating machinery system, which will indirectly cause huge
economic losses. )erefore, it is significant to accurately
extract the early weak fault vibration signal feature frequency
of the rolling bearing [12].

At present, vibration signal [13–15] is mostly used for
rolling bearing fault diagnosis analysis. Because the rolling
bearing usually works in complex environmental noise, and
the collected fault vibration signal feature frequency of the

rolling bearing is usually weak [16, 17]. Many researchers use
the signal decomposition algorithms such as empirical mode
decomposition (EMD) [18, 19], wavelet packet decompo-
sition (WPT) [20–22], and local mode decomposition
(LMD) [23–25] to reduce the noise of the original signal.
However, the wavelet basis function (WBF) is fixed before
the WPT decomposition and the decomposition effect
according to the selection of the WBF. )erefore, WPT has
obvious defects in vibration signal decomposition.)e EMD
and LMD are prone to adverse factors such as endpoint
effects and mode mixing [26–29].)erefore, Frei and Osorio
[30] proposed an intrinsic time-scale decomposition (ITD)
adaptive signal decomposition algorithm. )e ITD algo-
rithm can effectively solve the unfavorable factors between
EMD and LMD. Xing et al. [31] developed the ITD method
combined with singular value decomposition (SVD) and
support vector machine (SVM) method. )e original vi-
bration signal is decomposed by the ITD algorithm, and the
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proper rotations (PRs) with the greatest correlation was
selected for subsequent analysis. An [32] utilized the ITD
algorithm in fault diagnosis under four fault states collected.
)e first few PRs were selected for spectral analysis to find
out their feature frequency. Feng et al. [33] utilized the ITD
algorithm in fault diagnosis and feature extraction of the
planetary gearbox.

)e fault vibration signal of the rolling bearing usually
presents the characteristics of the impact waveform [34]
when the rolling bearing fails. Wiggins [35] proposed a
minimum entropy deconvolution (MED) filtering method
to enhance the impact component in the fault vibration
signal. )is method can enhance the impact component and
the fault feature in the signal. Sawalhi et al. [36] and Endo
and Randall [37] utilized the MED to enhance the impact
component of the rolling bearing and gear vibration signal,
respectively, and the experiment results proved that this
method could effectively enhance the feature frequency.
Jiang et al. [38] proposed a condition monitoring method of
the rolling bearing based on the MED and envelope spec-
trum. After the rolling bearing fault vibration signal was
filtered by the MED, its fault feature frequency was en-
hanced, and then an envelope spectrum analysis was per-
formed on it; thus, the rolling bearing fault feature frequency
was separated accurately. Li et al. [39] developed an
autoregression (AR) MED and variational mode decom-
position (VMD) fault diagnosis method. Among them, the
AR-MEDmethod can eliminate the influence of background
noise effectively, which can enhance the feature frequency in
the fault signal.

In summary, this paper studied the problem of extracting
early weak fault vibration signal feature frequency of the
rolling bearing under complex background noise.)is paper
proposes a method for extracting early weak fault vibration
signal feature frequency of the rolling bearing based on ITD
and AR-MED.

2. ITD Signal Decomposition Method

Suppose that the original signal Xt to be decomposed is a
real value discrete signal, ξ is defined as the baseline ex-
traction factor of Xt, Ht � Xt − ξXt is defined as the proper
rotations (PRs), where ξXt is the mean curve of the signal,
denoted as Lt � ξXt; then, the primary decomposition of the
original signal can be expressed as

Xt � Lt + Ht. (1)

)en, the steps of the ITD algorithm are as follows:

(1) Extract the extreme point Xk of Xt and the corre-
sponding time point τk. Among them,
k � 1, 2, . . . , N and definition τ0 � 0, so definition
Lk+1 is

Lk+1 � α Xk +
τk+1 − τk

τk+2 − τk

  Xk+2 − Xk(   +(1 − α)Xk+1,

(2)

where α ∈ [0, 1], α � 0.5, and k � 1, 2, . . . , N − 2.

(2) )e piecewise linear baseline extraction factor of
signal Xt is defined as

Lt � ξXt � Lk +
Lk+1 − Lk

Xk+1 − Xk

  Xt − Xk( . (3)

(3) Repeat steps (1)-(2) with baseline signal Lt as the
original signal; then, the original signal Xt is
decomposed into

Xt � ξXt + HXt � H 

p−1

k�0
ξk

+ ξp⎛⎝ ⎞⎠Xt, (4)

where Hξk
Xt is the k + 1 component of proper rotations

(PRs) and ξp
Xt is the monotone trend signal. According to

the above equation, the first PR component H1
t � Xt − L1

t

can be obtained.)en, L1
t is decomposed until the new signal

is generated, L
p
t is monotone function or constant function,

and then the decomposition is stopped. )e time domain
and frequency domain waveform of fault signals of the
rolling bearing is shown in Figure 1.

It easy can be seen from the above ITD decomposition
process that the baseline signal Lt is obtained through the
linear transformation of the signal, so the calculation process
of ITD can be greatly simplified and the decomposition
speed greatly improved.

3. AR-MED Filter

3.1. AR Filter. AR filtering is a parametric modeling method
based on the rational transfer function. Because the system
parameters of the AR filter are very sensitive to the state
change of the system, it is of great value to apply it to signal
analysis.

When the data sequence slides along the signal sequence,
the adaptive AR spectrum of the signal is formed. )e
parameter estimation of signal sequence AR model is to
select appropriate parameters so that the residual of the AR
model εk is white noise. )e commonly used methods are
time series theory method and optimization theory esti-
mation method. If there is a time series xn, there is a positive
integer p, which makes

pΓxn
� ap, (n>p), (5)

where Γ is the Wold decomposition operator; p is analysis
order; ap is AR model parameter.

)e AR model of signal sequence xn can be expressed as

Yk � 

p

i�1
aixi+k + εk, (6)

where εk is a white noise process, and its variance represents
the estimation error of the AR filter.

)e process of linear predictive filtering using the AR
filter is shown in Figure 2. After the original signal passes
through p-order AR linear filter for predictive filtering, a
new signal Yn is obtained. Due to the convolution operation
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Figure 1: Time domain and frequency domain waveform of rolling bearing vibration signal: (a) inner race (IR) fault of rolling bearing
vibration signal and (b) outer race (OR) fault of rolling bearing vibration signal.

AR filtering
Xn ∑ Intercept

p

Yn εk Yn–p

Figure 2: AR filtering process diagram.
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in the filtering process, Yn is also intercepted to obtain a
signal Yn−p.

3.2. MEDMethod. )e purpose of MED is to find the source
of impact in the signal. )e principle is to select an appro-
priate filter coefficient to construct an inverse filter so that the
output signal is restored to the input after the inverse filter.
)e minimum entropy of the signal is used as the determi-
nation condition, which can significantly improve the signal-
to-noise ratio (SNR) of pulse impact signals, which is very
suitable for bearing crack fault diagnosis. )e fault vibration
signal generated by the bearing in the event of failure usually
has impact characteristics. )e MED can be applied to the
noise reduction treatment of impact fault of the rolling
bearing to better highlight the impact pulse. It is assumed that
when impact failure occurs to the rolling bearing, the collected
discrete signals can be expressed as follows:

yt � gt + nt( ∗ ht, (7)

where gt is the signal of rolling bearing fault impact source
after AR filtering; nt is noise interference; ∗ is the convo-
lution operator; and ht is the influence of the transfer path.

)e purpose of deconvolution is to find the filter coef-
ficient f of the inverse filter so that the output signal yt is
restored to the input signal gt; that is,

et � fn ∗yt � 
L

l�1
f(l)y(n − l), (8)

where et is the output signal of the inverse filter and the input
signal gt can be recovered. L is the filter length.

In this paper, the objective functionmethod is selected to
realize the MED, and the optimal inverse filter coefficient is
found so that the objective function is maximized. )e
objective function can be defined as

O4 fl(  �


N
n�1 e

2
t


N
n�1 e2t 

2. (9)

Take the derivative of the objective function and set it
equal to 0 to obtain

z O4 fl( ( 

z fl( 
� 0. (10)

Since zet/zfl � y(n − l), we can get


N
n�1 e

2
t


N
n�1 e

4
t

  

N

n�1
e
3
t y(n − l) � 

L

p�1
f(p) 

N

n�1
y(n − l)y(n − p).

(11)

Equation (11) can be written as matrix

f � A
− 1

b, (12)

where b is the cross-correlation matrix of input signal gt and
output signal et of the inverse filter; A is Toeplitz auto-
correlation matrix of inverse filter input signal gt; and f is
the filtering coefficient of the inverse filter. )e solution
process of MED is as follows:

(1) Toeplitz autocorrelation matrix A is calculated, and
the filtering coefficient f(0) of the inverse filter is
initialized, which is usually set as the delayed pulse.

(2) According to the initial filter coefficient f(0) and the
inverse filter input signal g(0), the output signal e(0) is
calculated.

(3) Vector b(1) is calculated based on the output signal
e(0) and the input signal g(0).

(4) According to equation (12), f(1) � A− 1b(0).
(5) Calculate the iteration error:

δ �
f

(1)
− μf

(0)
 

μf
(0)

,

μ �
E( f

(0)
) 

2

E f
(1)

 
2

 
1/2.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(13)

When the expected value of the iteration error is greater
than the set error threshold, that is, E(δ)> τ, f(0) � f(1),
recalculate step (2), repeat the calculation until E(δ)≤ τ or
E(δ) diverges, stop the calculation, and get the MED FIR
filter parameters.

4. EarlyWeak Fault Feature Frequency Enhance
Method of Rolling Bearing Based on
ITD-AR-MED

In order to enhance the feature frequency in the complex
background noise, a fault feature extraction method of the
rolling bearing based on the ITD-AR-MED is proposed in
this paper. )e flow chart of fault feature frequency enhance
method of rolling bearing based on ITD-AR-MED algo-
rithm is shown in Figure 3.

)e steps of the ITD-AR-MED algorithm are as follows:

(1) Firstly, the early weak fault vibration signal of rolling
bearing, which decomposed by the ITD algorithm
into several PRs.

(2) )en, the sample entropy value of each PR is solved,
and the PRs with the maximum entropy value is
selected for subsequent processing.

(3) Finally, the selected PRs are filtered by the AR-MED
method to obtain the final signal.
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)e ITD-AR-MED algorithm decomposition advantages
are compared by the fast kurtogram algorithm. )e simu-
lation signals are decomposed by the ITD-AR-MED algo-
rithm and fast kurtogram algorithm, respectively. Its
simulation signal is

x1(t) � 0.5 cos(2πω1t) · cos 2πω2t + sin 15πt
2

  ,

x2(t) � 0.25 cos(2πω3t) · e
− 2t2

,

n(t) � noise,

x(t) � x1(t) + x2(t) + n(t),

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(14)

where ω1 � 6, ω2 � 50, ω3 � 20, n(t) is Gaussian white noise
signal, t is time, x1(t), x2(t) is simulation fault signal. )e time
domain and frequency domain waveform of the simulation fault
signal x(t) is shown in Figure 4. )e feature frequency of the
fault simulation signal x(t) is f1 � ω2 − ω1 � 50 − 6 � 44Hz,
f2 � ω2 + ω1 � 50 + 6 � 56Hz, and f3 � ω3 � 20Hz. Time
domain waveform of simulation signal x(t) and its components
is shown in Figure 5. Time domain waveform of ITD decom-
position of simulation signals x(t) and its PRs.

It can be seen from Figures 5 and 6 that the ITD al-
gorithm can roughly decompose the component signal of the
simulation signal x(t).

5. Experiment Analysis

5.1. Fault Diagnosis of the Rolling Bearing Experiment.
)e standard rolling bearing data set selected from Case
Western Reserve University (CWRU) was tested by the ITD-
AR-MED method for fault diagnosis of bearing outer and
inner rings [40]. )e test rig is shown in Figure 7. )e test rig
equipment consists of motor, power meter, torque sensor,
acceleration sensor, and electronic control equipment.
Among them, the fault bearing should be as close as possible
to the motor. )e single point of bearing fault is processed by
Electric Discharge Machining (EDM) technology, with a
diameter of 0.117mm and a depth of 0.011mm. )e fault
vibration signal generated by the test rig is collected by the
acceleration sensor, which is installed directly above the

motor drive end shell. )e motor frequency is 30Hz, and the
16-channel DATdata acquisition system is adopted to collect
the vibration signal of the rolling bearing fault. )e signal
sampling frequency is 12 kHz, the spindle speed is 1797 r/min,
and the rolling bearing model is 6205-2rs JEM SKF.

According to the empirical equations (15) and (16), the
fault feature frequency is 107.3Hz and 162.2Hz of the inner
race (IR) and the outer race (OR):

f0 �
Z

2
1 −

d

D
cos α 

N

60
, (15)

f1 �
Z

2
1 +

d

D
cos α 

N

60
, (16)

where D is the section bearing diameter; N is the spindle
speed; d is the diameter of the roll; and z is the number of the
ball.

It is necessary to conduct noise reduction decomposition
base on Figure 1’s results. )e decomposition results of the
ITD algorithm for the IR fault signal and OR fault signal of
the rolling bearing are shown in Figures 8 and 9, respectively.

It can be seen from Figures 8 and 9 that the IR fault signal
of rolling bearing has the widest frequency range of PR1 after
ITD decomposition, so it covers the most characteristic
information. )e OR fault signal of rolling bearing has the
widest frequency range of PR2 after ITD decomposition, so
it covers the most characteristic information.

)e sample entropy value of each PR is obtained. Table 1
shows the sample entropy values of each PR of the rolling
bearing.

According to the obtained sample entropy value of each
PR component, the fault vibration signal of the IR is
decomposed by the ITD, and the PR1 component is selected
for subsequent analysis. After the fault vibration signal of the
OR is decomposed by ITD, the PR2 component is selected
for subsequent analysis.

Firstly, the PR1 of the IR fault is filtered by AR, and
Figure 10 is obtained. Figure 10 shows the spectrum of the
PR1 component filtered by ITD-AR. After AR filtering, the

The rolling bearing vibration
signal Xn

ITD for the Xn

A series of PRs are obtained

Select the PR component
with the largest sample

entropy

AR filtering

MED

Accurately extract the
feature frequency of rolling

bearing faults

Figure 3: )e flow chart of fault feature frequency enhance method of rolling bearing based on the ITD-AR-MED algorithm.
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Figure 4: Time domain and frequency domain waveform of the simulation signal.
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Figure 5: Time domain waveform of simulation signal x(t) and its components.
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signal is processed by MED. Figure 11 shows the spectrum
diagram of the PR1 component by the ITD-AR-MED
algorithm.

Figures 10 and 11 show that the feature frequency of the
IR fault vibration signal is 162.2Hz. )e envelope spectrum

of PR1 by the ITD-AR-MED algorithm is shown in
Figure 12.

As shown in Figure 12, the fault frequency of the PR1 can
be accurately obtained, which is close to the theoretical value
of 161.9Hz. In addition, the envelope spectrum also
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Figure 6: Time domain waveform of ITD decomposition of simulation signals x(t) and its PRs.

Figure 7: Test rig of the CWRU.
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accurately extracted the fault feature frequency at the
doubling frequency of 323Hz and the motor rotation fre-
quency at the doubling frequency of 60.06Hz.

)en, the fault vibration signal PR2 component is filtered
by AR. )e spectrum of PR2 component filtered by ITD-AR
is shown in Figure 13. After AR filtering, the signal is
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Figure 9: OR fault vibration signal of rolling bearing is decomposed by ITD.
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Figure 8: IR fault vibration signal of rolling bearing is decomposed by ITD.
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Figure 11: Spectrum diagram of PR1 component of fault vibration signal of IR of rolling bearing by ITD-AR-MED algorithm.
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Table 1: Sample entropy value of each PR of IR and OR of rolling bearing.

PR1 PR2 PR3 PR4 PR5
IR fault 1.8545 1.7907 1.2145 0.6286 0.2009
OR fault 0.9054 1.6289 0.9147 0.4052 —
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processed by MED. Figure 14 shows the spectrum diagram
of PR2 component filtered by ITD-AR.

As shown in Figures 13 and 14, the spectrum diagram
shows that the fault feature frequency is not clearly displayed
at 107Hz, which covers a large amount of background noise
frequency. )erefore, the spectrum diagram obtained by the

MED is used for envelope spectrum analysis. )e envelope
spectrum of PR2 by the ITD-AR-MED algorithm is shown in
Figure 15.

As shown in Figure 15, the fault frequency of the PR2
component can be accurately obtained, which is similar to
the theoretical value 107.7Hz. In addition, the envelope
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Figure 13: Spectrum diagram of PR2 component of fault vibration signal of OR of rolling bearing filtered by ITD-AR.
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Figure 12: Envelope spectrum of fault vibration signal PR1 of IR of rolling bearing by ITD-AR-MED algorithm.
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spectrum also accurately extracted the fault feature fre-
quency, both 215.3Hz and 323Hz, which are two-time
frequency and three-time frequency, as well as the motor
rotation frequency 30Hz.)is proves the effectiveness of the
proposed fault diagnosis method.

In order to highlight the advantages of the ITD-AR-
MED algorithm, the fast kurtogram algorithm is substituted
for the ITD algorithm to obtain the envelope spectrum. )e
fault vibration signal is filtered and enhanced by the fast
kurtogram algorithm. Figure 16 shows the fast kurtosis

X: 107.7
Y: 0.01296

X: 215.3
Y: 0.008261

X: 323
Y: 0.004328

X: 30.03
Y: 0.003117Sp

ec
tr

um
 m

ag
ni

tu
de

 (a
/m

s–2
)

50 100 150 200 250 300 350 4000
Frequency (f/Hz)

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

Figure 15: Envelope spectrum of fault vibration signal PR2 of OR of rolling bearing by the ITD-AR-MED algorithm.
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Figure 14: Spectrum diagram of PR2 component of fault vibration signal of OR of rolling bearing by ITD-AR-MED algorithm.
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spectrum of rolling bearing IR fault vibration signal. It can
be seen from Figure 16 that the IR bearing fault signal is
obtained by the fast kurtogram algorithm and the center
frequency and bandwidth of the bandpass filter are 2250Hz
and 1500Hz, respectively. Figure 17 shows the envelope
spectrum of the rolling bearing IR fault vibration signal after
the fast kurtogram algorithm. By comparing Figure 12 with
Figure 17, the fast kurtogram algorithm can extract IR fault
feature frequency, but its accuracy is slightly lower than that
of the ITD-AR-MED algorithm.

Figure 18 shows the fast kurtosis spectrum of rolling
bearing OR fault vibration signal. It can be seen from
Figure 18 that the OR bearing fault signal is obtained by the
fast kurtogram algorithm and the center frequency and
bandwidth of the bandpass filter are 3000Hz and 2000Hz,
respectively. Figure 19 shows the envelope spectrum of the
rolling bearing OR fault vibration signal after the fast
kurtogram algorithm. By comparing Figure 15 with Fig-
ure 19, the fast kurtogram algorithm can extract OR fault
feature frequency, but its accuracy is slightly lower than that
of the ITD-AR-MED algorithm.

5.2. FaultDiagnosis of theDesulfurization FanRolling Bearing
Experiment. )e desulfurization fan rolling bearing test rig
is shown in Figure 20. )e test rig equipment consists of
motor, bearing, hydraulic coupler, acceleration sensor, and
fan. )e signal sampling frequency is 25.6 kHz. )e OR fault
feature frequency is 60.31Hz of the desulfurization fan
rolling bearing.

)e decomposition results of the ITD algorithm for the
OR fault signal of the desulfurization fan rolling bearing are
shown in Figure 21.

It can be seen from Figure 21 that the OR fault signal of
the desulfurization fan rolling bearing has the widest fre-
quency range of PR2 after ITD decomposition, so it covers
the most characteristic information.

)e sample entropy value of each PR is obtained. Table 2
shows the sample entropy values of each PR of the desul-
furization fan rolling bearing.

According to the obtained sample entropy value of each
PR component, the fault vibration signal of the OR is
decomposed by the ITD, and PR2 component is selected for
subsequent analysis.

fb-kurt.2 – Kmax = 4 @ level 2, Bw = 1500Hz, fc = 2250Hz
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Figure 16: Fast kurtosis spectrum of rolling bearing IR fault vibration signal.
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Figure 17: Envelope spectrum of the rolling bearing IR fault vibration signal after the fast kurtogram algorithm, (a) original signal,
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Figure 18: Fast kurtosis spectrum of rolling bearing OR fault vibration signal.
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Firstly, the PR2 of the IR fault is filtered by AR, and
Figure 22 is obtained. Figure 22 shows the spectrum of the
PR2 component filtered by ITD-AR. After AR filtering, the
signal is processed by MED. Figure 23 shows the spectrum
diagram of the PR2 component by the ITD-AR-MED
algorithm.

Figures 22 and 23 show that the feature frequency of the
OR fault vibration signal is 50Hz. )e envelope spectrum
of PR1 by the ITD-AR-MED algorithm is shown in
Figure 24.

As shown in Figure 24, the fault frequency of the PR2
can be accurately obtained, which is close to the theoretical
value of 60.31Hz. Figure 25 shows the fast kurtosis spec-
trum of the desulfurization fan rolling bearing OR fault
vibration signal. It can be seen from Figure 25 that the OR
bearing fault signal is obtained by the fast kurtogram al-
gorithm and the center frequency and bandwidth of the
bandpass filter are 3000Hz and 2000Hz, respectively.
Figure 26 shows the envelope spectrum of the rolling
bearing OR fault vibration signal after the fast kurtogram
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Figure 19: Envelope spectrum of the rolling bearing OR fault vibration signal after the fast kurtogram algorithm, (a) original signal,
(b) envelope of filtered signal Bw � Fs/24, fc � 2625Hz, Kurt� 5.6, α� 0.1%, and (c) amplitude spectrum of the squared envelope.
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Figure 20: Test rig of the desulfurization fan rolling bearing.
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Table 2: Sample entropy value of each PR OR fault signal of the desulfurization fan rolling bearing.

PR1 PR2 PR3 PR4
OR fault 1.0109 1.2076 0.7348 0.2199
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Figure 22: Spectrum diagram of the PR2 component of fault vibration signal of OR of the desulfurization fan rolling bearing filtered by ITD-AR.
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Figure 21: OR fault vibration signal of the desulfurization fan rolling bearing is decomposed by ITD.
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Figure 23: Spectrum diagram of the PR2 component of fault vibration signal of OR of the desulfurization fan rolling bearing by ITD-AR-
MED algorithm.
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fb-kurt.2 - Kmax = 17.1 @ level 5.5, Bw = 266.6667Hz, fc = 12133.3333Hz
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Figure 25: Fast kurtosis spectrum of the desulfurization fan rolling bearing OR fault vibration signal.
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algorithm. By comparing Figure 24 with Figure 26, the fast
kurtogram algorithm can extract OR fault feature fre-
quency, but its accuracy is slightly lower than that of the
ITD-AR-MED algorithm.

6. Conclusions

Aiming at the difficulty of extracting the early weak fault
feature frequency, the characteristics of the shock waveform
of the IR and OR of rolling bearing are combined. In this
paper, the ITD-AR-MED method is used for weak fault
feature extraction, and the following conclusions are as
follows.

(1) )e ITD algorithm can decompose the early weak
fault vibration signal effectively, retaining the fault
impact characteristics of the rolling bearing.

(2) )eMED algorithm can be used to separate the noise
from the original signal. )e envelope spectrum can
extract the early weak fault feature frequency of the
rolling bearing, which verifies the effectiveness and
accuracy of the method.
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