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An axial piston pump fault diagnosis algorithm based on empirical wavelet transform (EWT) and one-dimensional convolutional
neural network (1D-CNN) is presented. -e fault vibration signals and pressure signals of axial piston pump are taken as the
analysis objects. Firstly, the original signals are decomposed by EWT, and each signal component is screened and reconstructed
according to the energy characteristics. -en, the time-domain features and the frequency-domain features of the denoised signal
are extracted, and features of time domain and frequency domain are fused. Finally, the 1D-CNN model was deployed to the
WISE-Platform as a Service (WISE-PaaS) cloud platform to realize the real-time fault diagnosis of axial piston pump based on the
cloud platform. Compared with ensemble empirical mode decomposition (EEMD) and complementary ensemble empirical mode
decomposition (CEEMD), the results show that the axial piston pump fault diagnosis algorithm based on EWTand 1D-CNN has
higher fault identification accuracy.

1. Introduction

With the development of industry modernization and in-
formation technology, hydraulic technology is more and
more widely used in all walks of life. Because the hydraulic
system has the advantages of large output power, high work
efficiency, high motion accuracy, and stable work [1], the
hydraulic system has been widely used from national defense
equipment to civilian equipment. -e core executive com-
ponents of most equipment are driven by hydraulic systems,
so the performance of the equipment directly depends on the
working conditions of the hydraulic system.

Hydraulic system faults have the characteristics of
concealed form, high incidence, high damage, and difficult
maintenance. -erefore, obtaining fault knowledge and
identifying fault characteristics are the focus and difficulty of
hydraulic system fault diagnosis research [2–5]. At present,
the fault diagnosis problems of hydraulic systems are mainly

concentrated in three aspects: first of all, the original signal
of the hydraulic system is mixed with a lot of noise signals;
secondly, there is a lack of fault diagnosis models with good
generalization ability; thirdly, there is a lack of a unified
solution for device management and fault diagnosis based
on the cloud platform.

Vibration signal processing has always been the research
hotspot of signal processing methods, which is very im-
portant for equipment vibration signal detection and fault
diagnosis [6–8]. -ere are two main types of vibration signal
processing methods: one is traditional methods such as
amplitude domain analysis [9], Fourier transform [10], and
other methods; and the other is more modern methods, such
as Wigner-Ville distribution [11], spectrum analysis [12],
and wavelet analysis [13]. -e current vibration signal de-
composition methods mainly include wavelet packet de-
composition, Ensemble Empirical Mode Decomposition
(EEMD), Complementary Ensemble Empirical Mode
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Decomposition (CEEMD), and other methods. However,
when the signal has noise, the calculation amount of the
algorithm is relatively large, and the signal decomposition
effect is not ideal, and it cannot overcome the modal aliasing
phenomenon in the signal decomposition process [14].
-erefore, French researcher Gilles combined the advan-
tages of adaptive empirical mode decomposition and wavelet
analysis theory to propose a method named Empirical
Wavelet Transform (EWT) algorithm [15]. -erefore, re-
search scholars at home and abroad have applied the EWT
algorithm as a new signal processing and analysis tool to
some nonstationary signal research and achieved good re-
sults [16, 17]. -e EWTmethod has a good decomposition
effect on multimodal and noisy signals and can eliminate the
problem of modal aliasing.-emodal components extracted
by it are AM and FM signals containing a certain frequency
band. EWT is more robust than the modes extracted by
EEMD and CEEMD. Comparing EWT with EEMD and
CEEMD methods, the effectiveness of EWT is verified
through simulation and test results.

In recent years, scholars at home and abroad have
conducted a lot of research on hydraulic system fault di-
agnosis technology. Chai et al. [18] proposed a hydraulic
system fault diagnosis method combining principal com-
ponent analysis (PCA) and a kernel extreme learning ma-
chine (KELM), which solved the difficult problem of feature
extraction and fault diagnosis in the multifault state of the
hydraulic system; Tang et al. [19] proposed a method for
fault diagnosis of piston pumps based on information fusion,
which realized the fault diagnosis by fusing the vibration
signals and pressure signal of the axial piston pump into the
characteristic layer; Wang and Xiang [20, 21] proposed a
convolutional neural network (CNN) method based on
minimum entropy deconvolution (MED) and a method
using a deep belief network (DBN). By using the deep
learning method, the fault diagnosis of the axial piston pump
has played a good effect. Liu et al. [22] proposed a fault
diagnosis method for piston pumps based on multiple in-
formation intensity features; Jiang et al. [23] proposed an
axial piston pump fault based on Mel-Frequency Cepstral
Coefficient (MFCC) and extreme learning machine (ELM)
diagnosis method. Most of the previous fault diagnosis al-
gorithms are based on traditional classification models.
However, the complex and changeable working environ-
ment of the axial piston pump makes the traditional fault
diagnosis algorithms lack adaptability and not able to solve
more complicated fault diagnosis problems. With the rapid
development of new-generation information technologies
such as big data, deep learning, cloud computing, and the
Internet of -ings, traditional manufacturing is facing the
objective needs of digitized, networked, and intelligentized
transformation and upgrading. -erefore, the urgent need
for informatization in the manufacturing industry and the
trend of accelerating the penetration of information tech-
nology into the manufacturing field have merged with each
other, which has triggered a new round of industrial
revolution.

In recent years, deep learning has achieved great success
in the fields of natural language processing, computer vision,

and image recognition. Deep learning algorithms can learn
features adaptively and have powerful feature extraction and
characterization capabilities, so they are widely used in the
field of fault diagnosis [24]. For example, Chen et al. [25]
used deep neural networks to evaluate the deterioration
degree of rolling bearings; Lei et al. [26] used deep learning
algorithms to achieve health management of multistage gear
transmission systems; Sun et al. [27] proposed a fault di-
agnosis method for induction motors based on sparse
autoencoders. -e CNN algorithm in deep learning has also
been widely used in the fault diagnosis of gearboxes [28] and
rolling bearings [29, 30] and has achieved ideal diagnostic
results. However, the fault diagnosis method of axial piston
pump based on one-dimensional convolutional neural
network (1D-CNN) is rarely reported. -erefore, this article
applies 1D-CNN to the fault diagnosis of the axial piston
pump to improve the accuracy of the axial piston pump fault
diagnosis algorithm.

-e traditional fault diagnosis method has many dis-
advantages, such as low efficiency, high hardware cost, and
single fault alarm form [31]. At present, remote query of
industrial field data is basically impossible. At this stage, the
application of equipment remote monitoring and fault di-
agnosis systems is mainly concentrated in some areas, such
as bearing fault diagnosis of wind turbine and fault diagnosis
of intelligent vehicle control system. In these areas, remote
fault diagnosis systems that use production equipment in the
production workshop as the application object are even
more rare [32]. However, there are more and more demands
for equipment remote monitoring, fault diagnosis, and
alarm systems at home and abroad, so the equipment health
management system based on cloud platform has become
the focus of attention and research in recent years [33].

-ere are many types of hydraulic system failures, and
the causes of failures are more complicated than other
common mechanical failures. At present, the maintenance
of the hydraulic system still adopts the old strategy of regular
inspection and overhaul by maintenance personnel. -is
maintenance system has high operating costs and cannot
cope with potential equipment failures. However, the hy-
draulic equipment health status cloud management system,
through continuous monitoring and analysis of equipment
operating data, can evaluate the health status of the
equipment in real time, provide early warning of upcoming
failures, and even further forcibly stop its operation to re-
duce property loss. In addition, through the industrial cloud
platform, the type of failure can be identified in a short time,
and thenmaintenance or repair programs can be provided to
users to reduce equipment downtime.

With the wide application of hydraulic systems, higher
requirements are put forward for the operation stability and
timely troubleshooting of hydraulic pumps. In order to
reduce the maintenance cost of hydraulic equipment and
realize the real-time monitoring and fault diagnosis of the
working status of the axial piston pump, this paper proposes
a hydraulic pump fault diagnosis method based on deep
learning and cloud platform. -is method samplings the
vibration signals and pressure signal of the axial piston
pump in real time. Apply EWT-based methods to
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decompose and denoise vibration signals and pressure
signals. After denoising, extract the time-domain features of
the vibration signals and pressure signal and extract the
frequency-domain features of the energy of each subband
according to the wavelet packet decomposition theory.
Time-domain and frequency-domain features are fused and
transmitted to the cloud platform in real time. Apply 1D-
CNN on the cloud platform to realize the condition mon-
itoring and fault diagnosis of the axial piston pump. At the
same time, the fault diagnosis results will be displayed on the
WISE-PaaS cloud platform in real time.

In order to realize the fault diagnosis of axial piston pump
accurately, the fault diagnosis algorithm is deployed to the
cloud platform to realize the visual display of fault diagnosis
results on the cloud. -e main contents and structure of this
paper are as follows: Section 1 introduces the background of
the subject and the purpose and significance of the research.
In Section 2, a signal denoising algorithm based on EWTand
energy characteristics is proposed. -e simulation signal is
used for testing. -e algorithm has a good denoising effect.
Section 3 discusses extraction and fusion of time-domain and
frequency-domain characteristics of axial piston pump
vibration signals and pressure signal. In Section 4, a fault
diagnosis algorithm of axial piston pump based on 1D-CNN
is proposed. Section 5 studies the axial piston pump fault
diagnosis algorithm based on EWTand CNN and applies it to
axial piston pump fault diagnosis, verifies the effectiveness of
the method proposed in this paper, and realizes the cloud
platform deployment of fault diagnosis algorithm and cloud
platform visual release of diagnosis results.

2. Signal Denoising Algorithm Based on
Empirical Wavelet Transform

-e core of EWT is adaptive segmentation of the Fourier
spectrum of the original signal. A suitable orthogonal

wavelet filter bank is constructed. -en the AM-FM com-
ponent with the tightly supported Fourier spectrum is
extracted. In order to solve the problem that hydraulic pump
vibration signal is easy to be interfered by noise, a combined
noise reduction method based on EWT and energy index is
proposed. Firstly, EWTmethod is applied to decompose the
original vibration signal. -en, according to the energy
index, the decomposed Intrinsic Mode Function (IMF) is
screened and reconstructed, so as to achieve the original
signal denoising.

2.1. Empirical Wavelet Transform. EWT divides the signal
on the Fourier spectrum and then establishes a filter for
filtering. In the frequency domain, suppose that the angular
frequency of the signal is ω(ω ∈ [0, π]), and decompose
[0, π] into N intervals of different bandwidths. -is interval
is called Λn, and each segment is expressed as

Λn � ωn− 1,ωn , n � 1, 2, . . . , N, (1)

U
N
n�1Λn � [0, π], (2)

with each ωn as the center; a transition section is defined, and
the width of the transition section is Tn � 2τn, as shown in
Figure 1.

After confirming intervalΛn, the band-pass filter on each
Λn is an empirical wavelet. According to the definition
method of wavelet theory, all empirical wavelet is con-
structed. -e definitions of empirical wavelet scaling
function φn(ω) and wavelet function ψn(ω) in the frequency
domain can be expressed as

φn(ω) �

1; if |ω|≤ (1 − c)ωn,

cos
π
2
β

1
2cωn

|ω| − (1 − c)ωn(   ; if (1 − c)ωn ≤ |ω|≤ (1 + c)ωn,

0; otherwise,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(3)

ψn(ω) �

1; if (1 + c)ωn ≤ |ω|≤ (1 − c)ωn+1

cos
π
2
β

1
2cωn+1

|ω| − (1 − c)ωn+1(   ; if (1 − c)ωn+1 ≤ |ω|≤ (1 + c)ωn+1,

sin
π
2
β

1
2cωn

|ω| − (1 − c)ωn(   ; if (1 − c)ωn ≤ |ω|≤ (1 + c)ωn,

0; otherwise,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(4)

Shock and Vibration 3



where 0< c< 1, τn � cωn, and (c<minn(ωn+1 − ωn/
ωn+1 + ωn)); according to the literature [34],
β(x) � x4(35 − 84x + 70x2 − 20x3).

-e key in EWT algorithm process is to divide the
Fourier spectrum. -ere are N consecutive bandwidths in

the range of 0 to π, where ω0 � 0 and ωN � π. -e remaining
(N − 1) boundaries are determined by searching the local
maximum values of the spectrum [15]. Mark M as the
number of maxima; when M≥N, the first N − 1maxima are
retained, and when M<N, all maxima are retained and N is
modified. Finally, the intermediate frequency between two
local maxima is taken as ωn(n � 1, 2, . . . , N − 1).

In this regard, mark the original signal as f(t), whose
spectrum is f (ω). According to the traditional wavelet
transform method, the empirical wavelet transform
We

f(n, t) is defined, and the Fourier transform and the
inverse transform are denoted as F[·] and F− 1[·], respec-
tively. -en the detailed coefficient and approximate coef-
ficient are, respectively,

W
e
f(n, t) � 〈f(t),ψn(t)〉 �  f(τ)ψn(τ − t)dτ � F

− 1
f
∧

(ω)ψn

∧
(ω) , (5)

W
e
f(0, t) � 〈f(t), φ1(t)〉 �  f(τ)φ1(τ − t)dτ � F

− 1
f
∧

(ω)φ1
∧

(ω) . (6)

In the above equations, ψn(t) is the empirical wavelet
function; φ1(t) is the scale function; ψn(ω) and φ1(ω) are the
Fourier transforms of ψn(t) and φ1(t), respectively; ψn(t)

and φ1(t) are the complex conjugates of ψn(t) and φ1(t),
respectively. -e reconstruction of the original signal is

f(t) � W
e
f(0, t)∗φ1(t) + 

N

n�1
W

e
f(n, t)∗ψn(t)

� F
− 1 W

e

f(0,ω)φ1(ω) + 
N

n�1

W
e

f(n,ω)ψn(ω)⎡⎣ ⎤⎦.

(7)

In the above equation, the symbol ∗ represents con-
volution. W

e

f(0,ω) and W
e

f(n,ω) are the Fourier transforms
of We

f(0, t) and We
f(n, t), respectively. -e mode compo-

nents of the empirical wavelet transform are defined as
follows:

f0(t) � W
e
f(0, t)∗φ1(t), (8)

fn(t) � W
e
f(n, t)∗ψn(t), n � 1, 2, . . . , N. (9)

-emode components obtained by the empirical wavelet
transform are subjected to Hilbert transform to obtain the
relevant instantaneous frequency and instantaneous am-
plitude. Finally, the time-frequency distribution of the signal
can be obtained.

2.2. Using Energy Value as an Evaluation Index of Vibration
SignalDenoising. In the early stage of failure of the hydraulic
pump, due to the high-speed rotation of the machine, pe-
riodic vibration and shock will occur. -erefore, the signal
energy value can be used to characterize the proportion of

information carried by each IMF component after signal
decomposition. After calculating the energy proportion of
each IMF component, the IMF components are rearranged
in descending order according to the energy proportion.-e
IMF components with accumulated energy ≥80% are
reconstructed to obtain denoised vibration signals and
pressure signals. -e energy calculation formula of n-th IMF
component is as follows:

En � 

K

i�1
fn(i)

2
, (10)

where fn(t) represents the n-th IMF component after de-
composition of the original signal.K is the number of sample
points of the original signal.

2.3. Simulation Signal Analysis. In order to verify the ef-
fectiveness of the denoising algorithm, signals fsig(t) with
different frequencies and different amplitudes were artifi-
cially simulated. Add 15 dB Gaussian white noise to the
signal fsig(t) to obtain the signal fo(t) to be denoised.

fsig(t) � cos(6πt) + 2 cos(40πt) + 0.5 cos 20πt + 10πt
2

 ,

(11)

fo(t) � fsig(t) + noise (12)

Among them, noise represents the added noise and the
signal-to-noise ratio (SNR) = 15 dB. -e original signal and
the signal after adding noise are shown in Figure 2.

Use EWT to decompose the noisy signal fo(t). After
decomposition, the IMF components with cumulative

2τ1 2τ2 2τ3 2τn 2τn+1 τn

ω1 ω2 ω3 ωn ωn+1 π

Figure 1: Frequency band distribution.
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energy ≥80% are extracted and reconstructed to obtain the
simulated signal after noise reduction. In order to verify the
effectiveness of the denoising method proposed in this
paper, the EEMD and CEEMD methods are used to de-
compose and denoise the original noise signal fo(t) [1]. -e
comparison of denoising effects is shown in Figure 3.

In Figure 3, themethods based on EEMDandCEEMDhave
poor reconstruction effects on the original signal after de-
composition and denoising.-e energy criterion adopted in this
paper as the selection criterion of IMF components led CEEMD
denoising method eliminates part of the original signal, so its
SNR is lower than 15dB. Meanwhile, the signal denoising
method based on EWT can effectively denoise the original
signal. In order to be able to quantitatively analyze the effects of
the three signal denoising methods, this paper compares the
SNRof the three denoising signals, as shown inTable 1.-e SNR
of the signal denoising method based on EWT is obviously
higher than the other two methods; it proves the effectiveness of
the EWT-based signal denoisingmethod proposed in this paper.

3. Feature Extraction and Feature Fusion

3.1. Time-Domain Feature Extraction. Time-domain analysis
methods include amplitude-domain analysis and correlation
analysis.When a hydraulic pump fails, the statistical characteristic
parameters of the amplitude of its vibration signal and pressure
signal will also change with the type of its failure. -erefore, the
amplitude-domain statistical analysis can be used for the fault
diagnosis of the axial piston pump [35]. Table 2 shows common
statistics used to describe signal characteristics in the time do-
main. Suppose that the original signal f(i) is denoised and the
denoised signal x(i) is obtained, where i � 1, 2, 3, . . . , K, and K
is the number of sample points of the original signal.

3.2. Frequency-Domain Feature Extraction. Compared with
the wavelet transform, the wavelet packet transform has
improved the ability of the frequency-domain localization of
the signal. -e application of the wavelet packet decom-
position can realize a more comprehensive frequency-do-
main analysis of the signal. -e wavelet packet

decomposition of the vibration and pressure denoised signal
can extract the energy characteristics of each frequency band
as the frequency-domain characteristics of the signal.

-e signals were decomposed by three-layer wavelet
packet, and the decomposition tree structure is shown in
Figure 4. -ree-layer wavelet packet decomposition was per-
formed on the denoised signalx(i).-e formula for calculating
the signal energy at n-th node of the wavelet packet is

En � 
K

i�1
xn(i)

2
. (13)

In the above equation, xn(i) is the reconstructed signal at
the n-th node of the wavelet packet, n � 1, 2, . . . , 8, and K is
the number of sample points of the original signal.

After the wavelet packet decomposition, the subbands are
rearranged, and the corresponding relationship between the
wavelet packet nodes and energy features is shown in Table 3.

4. Fault Recognition Method Based on
Convolutional Neural Network

-eneural network approximates a large number of neurons
to fit nonlinear relationships by organization and update.
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Figure 2: Time-domain diagram of fsig(t) signal and fo(t) signal.

4

0

–2

2

–4

A
m

pl
itu

de

Original signal fsig (t)
Denoising signal by EEMD

Original signal fsig (t)
Denoising signal by CEEMD

Original signal fsig (t)
Denoising signal by EWT

0.00 0.25 0.50 0.75 1.00
Time t/s

4

0

–2

2

–4

A
m

pl
itu

de

4

0

–2

2

–4

A
m

pl
itu

de

Figure 3: Comparison of denoising effects of simulated signals.

Table 1: SNR comparison analysis.

Denoising method EEMD CEEMD EWT
Signal-to-noise ratio (SNR)/dB 18.07 12.22 28.38
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With this advantage, it is applied to various fields and has
achieved great success [36]. CNN conducts data training
through the convolution layer and pooling layer. When
using it for training, it is not necessary to perform explicit
feature extraction but to complete learning through training
data in an implicit manner. -e convolutional neural net-
work is inspired by biology, and its layout structure is more
like a real biological neural network. Its weight sharing
makes the network simpler, especially with the feature that
the image of multidimensional input vector can be directly
input into the network, which avoids the complexity of data

reconstruction in the process of feature extraction and
classification [37]. CNN has unique advantages in speech,
image, and signal processing because of its network structure
with local weight sharing. CNN has functions such as local
perception and pooling, which are highly invariant to de-
formations such as translation, tilt, and zoom [38]. -ere-
fore, it is widely used in image, video, and signal processing
and other related recognition fields.

4.1. One-Dimensional Convolutional Neural Network
Structure. A typical convolutional neural network is initially
composed by convolutional layer and pooling layer alter-
nately, and finally fully connected layer is connected before
the output layer, as shown in Figure 5. By processing the
convolutional layer and the pooling layer, the pixels of the
obtained two-dimensional feature map are sequentially
spliced and input into the fully connected layer, and finally
the classification output is realized in the output layer.

-e convolutional neural networks are widely used in the
field of image recognition and have unique advantages in
signal processing, such as speech signals and time series. -e
analyzed vibration signal is also a one-dimensional time
series, and the input layer, convolution kernel, and learned
features are all one-dimensional [39]. -e specific structure
of 1D-CNN is shown in Figure 6.

-e principle of 1D-CNN is to use the convolution kernel
to move along the input sample to obtain the characteristics of
the input sample and form a feature vector. In this way, because
the weights of the convolution kernel are different, the feature
vectors obtained are not the same. In the convolutional layer,
the convolution kernel extracts the same feature on each se-
quence segment of the input sample. -en it performs local
connection and weight sharing, so that there is no need to
consider the particularity of the local location, which greatly

Table 2: Time-domain feature extraction method.

Time-domain statistical characteristics Time-domain statistical feature calculation formula
Mean P1 � 

K
i�1 x(i)/K

Absolute mean P2 � 
K
i�1 |x(i)|/K

Effective value P3 �

������������


K
i�1 [x(i)]2/K



Average power P4 � 
K
i�1 [x(i)]2/K

RMS P5 � (
K
i�1

�����
|x(i)|


/K)2

Peak P6 � max(|x(i)|)

Peak-to-peak P7 � max[x(i)] − min[x(i)]

Variance P8 � 
K
i�1 [x(i) − P1]

2/(K − 1)

Standard deviation P9 �

���������������������


K
i�1 [x(i) − P1]

2/(K − 1)



Skewness P10 � 
K
i�1 [x(i) − P1]

3/K
Kurtosis P11 � 

K
i�1 [x(i) − P1]

4/K
Shape factor P12 � P3/P2
Crest factor P13 � P6/P3
Impulse factor P14 � P6/P2
Clearance factor P15 � P6/P5
Skewness factor P16 � P10/P9

3

Kurtosis factor P17 � P11/P9
4

x (0,0)

x (1,0) x (1,1)

x (2,0) x (2,1) x (2,2) x (2,3)

x (3,0) x (3,1) x (3,2) x (3,3) x (3,4) x (3,5) x (3,6) x (3,7)

Figure 4: -ree-layer decomposition tree structure of wavelet
packet.

Table 3: Correspondence between wavelet packet nodes and en-
ergy features.

Node Energy characteristics
x (3, 0) E1
x (3, 1) E2
x (3, 2) E4
x (3, 3) E3
x (3, 4) E7
x (3, 5) E8
x (3, 6) E6
x (3, 7) E5
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reduces the network parameters. Because the weight of the
convolution kernel is different, the network can get different
information at the same position of the sample. In CNN, the
convolutional layer and the pooling layer are closely connected.
-e pooling layer can reduce the sensitivity of the network
output to translation and zooming, making the classification
task easier.

4.2. Convolutional Layer. -e convolutional layer of neural
network has more than one convolution kernel as the local
receptive field for learning data feature. Each convolution
kernel will act on the entire receptive fieldmultiple times and
weight sharing can also be used to reduce the amount of
network parameters.

In the convolutional layer, the convolution kernel per-
forms a convolution operation on the feature vector output
by the previous layer and uses a nonlinear activation
function to construct the output feature vector. -e output
of each layer is the convolution result of multiple input
features, and the calculation process is [40]

Xl
cm � f1 

Xl− 1
n ∈Mm

Xl− 1
n ∗K

l
nm + b

l
cm

⎛⎜⎜⎝ ⎞⎟⎟⎠. (14)

In the above equation, Xl
cm represents the m-th feature

map obtained after activation of the l-th convolutional layer;
f1(·) is the activation function of convolutional layer;Kl

nm is
the convolution kernel connecting the n-th feature map in
layer l-1 and them-th feature map in layer l; bl

cm is the bias of
the m-th feature map of the l-th convolutional layer; Mm is
the set of selected input feature maps. In this paper, the
Rectified Linear Unit (ReLU) was selected as the activation
function f1(·). -e advantage of ReLU is to make the output
of some neurons be 0, which improves the sparsity of the
network and reduces the interdependence of parameters,
which relieves occurrence of overfitting problem.

4.3. Pooling Layer. Generally, the feature map obtained after
processing by the convolutional network has a large di-
mension, which makes subsequent classification difficult to

Classify 
and output

Input 
samples

Convolution 
layer

Pooling 
layer

Fully connected 
layer

Feature map Feature map

Figure 6: One-dimensional convolutional neural network structure diagram.

Feature
map

K (5 × 5) K (2 × 2)

K (5 × 5)

Convolution Pooling Convolution Fully connected

Data Feature extraction
Pattern

recognition
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Figure 5: Typical convolutional neural network structure diagram.
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perform. -erefore, a downsampling layer is usually fol-
lowed after the convolutional layer, which is also called a
pooling layer. -e operation of the pooling layer can not
only reduce the dimension of features but also ensure the
invariance of feature positions [39]. -e representation is

Xl
pm � f2 w

l
mdown Xl

cm  + b
l
pm , (15)

where Xl
pm is the feature map obtained from the m-th

pooling of pooling layer l; f2(·) is the activation function of
pooling layer. In this paper, ReLU was selected as the ac-
tivation function f2(·); down (.) is the pooling function; wl

m

is the weight of them-th output feature map in layer l; bl
pm is

the bias of the feature map obtained from the m-th pooling
of pooling layer l.

After the feature map is obtained through the con-
volutional layer, each feature map is generally pooled. -ere
are two commonly used pooling methods: one is the
maximum pooling method, and the other is the average
pooling method. -ey are expressed as follows.

4.3.1. Average Pooling. Take the average value of feature
points in the pooling domain, set the matrix of down-
sampling pooling domain as t × t, and the calculation
process is

s � down Outt×t(  �
1

t × t


t

i�1


t

j�1
outij⎛⎝ ⎞⎠, (16)

whereOutt×t is the pooling domain; outij is the element of i-
th row and j-th column ofOutt×t; s is the output value of the
characteristic points in the pooled domain obtained after the
pooling function.

4.3.2. Maximum Pooling.

s � down Outt×t(  � max
i,j∈[1,t]

outij , (17)

where maxi,j∈[1,t](outij) is the largest element from the
pooled domain.

-e maximum pooling sampling method can retain the
texture features of the signal in the largest range, while the
average pooling sampling method can retain the overall
characteristics of the data. Refer to models such as NIN and
GoogLeNet, which use maximum pooling in the early stage
and average pooling in the later stage. -erefore, this article
also uses the method of maximum pooling and then average
pooling to build a 1D-CNN model.

4.4. FullyConnectedLayer. -e output part of CNN includes
full connection end to end of the output of the last pooling
layer. Finally, the Softmax classifier is used to solve the
multiclassification problem. -e output of the fully con-
nected layer is

xl
� f3 Wlxl− 1

+ bl
 . (18)

In the above equation, xl− 1 is the input vector of fully
connected neural network; xl is the output vector of fully
connected neural network;Wl is the weight matrix of layer l;
bl is the bias vector of layer l.f3(·) is the activation function
of fully connected layer. In this paper, ReLU was selected as
the activation function f3(·).

4.5. Dropout Layer. In order to prevent the network from
overfitting, the dropout layer is introduced in this article.
-e dropout layer will randomly deactivate some nodes of
the neural network, so that the neural network will not make
a neuron’s weight too large during the training process.
Because the input features of this node may be eliminated,
the neural network will not overly rely on any single input
feature. In the process of training the neural network
containing the dropout layer, the essence is to train multiple
subneural networks. Finally, in the process of testing, in
order to improve the robustness of the fault diagnosis model,
the subneural networks are combined, similar to a voting
mechanism for fault diagnosis.

5. Hydraulic Pump Fault Diagnosis System
Based on Industrial IoT Cloud Platform

5.1. Axial Piston Pump Failure Simulation Test Bench. -e
schematic diagram of the fault simulation test bench used in
this article is shown in Figure 7. -e vane pump supplies oil
to the axial piston pump. -e axial piston pump provides
pressure oil for the system. -e test bench can simulate
typical faults such as single shoe loosening failure, single
shoe slipping failure, single shoe wear failure, swash plate
wear failure, and center spring failure to meet the test
verification requirements.

During the test, the solenoid valve 16 is energized, and
the pilot-operated overflow valve 19 is adjusted to set the
system pressure to 15MPa. -e models and performance
parameters of the motors, axial piston pumps, sensors, and
data acquisition cards selected for this test bench are shown
in Table 4.

-e hydraulic pump installation arrangement of the test
bench adopts the top-mounted type (horizontal type). -is
arrangement is not only conducive to pump disassembly and
fault injection but also conducive to the installation of
sensors. -e sensor layout is shown in Figure 8.

-roughout the experiment process, the vibration signal
and pressure signal of the pump under six different con-
ditions were acquisited, which were the normal working
state, single slipper loosing fault, single slipper off fault,
single slipper wear fault, swash plate wear fault, and center
spring fault. Some pictures of the fault elements are shown in
Figure 9.

-is experiment uses WebAccess/MCM to compile the
data acquisition program and chooses the PCI-1747 data
acquisition card produced by Advantech, with the highest
sampling frequency of 250 kS/s. During the sampling pro-
cess, set the sampling frequency to 20 kHz and the sampling
time to 1 s. -e front panel of the acquisition program is
shown in Figure 10.
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Figure 7: Hydraulic system diagram of hydraulic pump failure simulation test bench. 1, oil tank; 2, 21, and 17, filter; 3, vane pump; 4 and 15,
stop valve; 5 and 13, pressure gauge switch; 6 and 14, pressure; 7 and 10, flow meter; 8, axial piston; 9, vibration sensor; 11, frequency
converter; 12, check valve; 16, two-position three-way solenoid valve; 18, pilot-operated proportional overflow valve; 19, pilot-operated
overflow value; 20, overflow value; 22, temperature meter; 23, impulse sound level meter.

Table 4: Types and performance parameters of test components.

Num. Component name Component model Component performance parameters
1 Motor Y132M-4 Rated speed: 1480 rpm
2 Axial piston pump MCY14-1B -eoretical displacement: 10ml/r, rated pressure: 31.5MPa, 7 pistons
3 Data acquisition card PCI-1747 Maximum sampling rate: 250kS/s
4 Vibration sensor YD72D Frequency range: 0.3Hz–18 kHz
5 Pressure sensor SYB-351 Measuring range: 0–25MPa

Vibration
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y

z

Sound
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pump

Axial piston
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Figure 8: Hydraulic pump failure simulation test bench.
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5.2. Signal Denoising of EWT Based on IMF Energy Contri-
bution Rate. Intercept part of the pump outlet pressure
signal and vibration signals of the single slipper off fault for
analysis. Use EWT to decompose and denoise the original
signal. -e comparison between original signals and
denoised signals is shown in Figure 11.

Define the outlet pressure signal of the axial piston pump
as p, the axial vibration signal of the axial piston pump as x,
the vertical vibration signal as y, and the horizontal vibration
signal as z. -e layout of the vibration sensor is shown in
Figure 12.

In order to study the denoising effect of the three
denoising methods against the vibration signal, the x-di-
rection vibration signal under the condition of the swash
plate wear fault is analyzed and the denoising results of the
three denoising methods are compared, as shown in Fig-
ure 13. -ere are still a large number of redundant noise
signals in the signal after EEMD denoising. Although, from
the point of view of signal-to-noise ratio, CEEMD algorithm
has better denoising effect, its loss to the original signal is
relatively large. EWT-based signal denoising methods are
better than EEMD and CEEMD methods.

5.3. Feature Extraction andFeature Fusion. -e original data
used in this paper are all one-dimensional time series signals.
Since the prerequisite for implementing the deep learning
fault diagnosis algorithm is to have a large number of

training samples, this paper adopts the method of over-
lapping training samples to expand the training data. -e
segmentation diagram is shown in Figure 14. In this article,
the length of each sample is 800 points, and the length of the
overlapping part is 600 points.

-e test samples are selected from the pressure signal
and vibration signals in three directions of the axial
piston pump in the normal working state and the five fault
states. -e specific test sample information is shown in
Table 5.

Each sample of the axial piston pump under different
working conditions extracts the time-domain characteristic
parameters P1 − P17 and frequency-domain characteristic
parameters E1 − E8 of its pressure signal and the three-way
vibration signals.-erefore, 25 characteristic parameters can
be extracted from each signal. -e characteristic parameters
of the four signals in each working state of the axial piston
pump are connected end to end for feature fusion to form
the characteristic vector in the working state.

5.4. Fault Diagnosis Algorithm Based on CNN. -e one-di-
mensional convolutional neural network model used in this
article is shown in Figure 15: (1)-e input data is the feature
vector containing the characteristic parameters of the axial
piston pump outlet pressure signal and the vibration signals
in the x-, y-, and z-directions, with a dimension of 100. (2) In
convolutional layer 1 and convolutional layer 2, respectively,
100 filters with a convolution kernel size of 4 are defined. (3)
-emaximum pooling layer selects a pooling size of 2. (4) In
convolutional layer 3 and convolutional layer 4, respectively,
160 filters with a convolution kernel size of 4 are defined. (5)
-e average pooling layer chooses a pooling size of 3. (6)-e
dropout method layer will randomly assign zero weights to
neurons in the network, and this article chooses a dropout
ratio of 0.5.

-e ratio of the training set to the test set is selected as 3 :
2 and the number of iterations is 60. -e recognition ac-
curacy rate curves of the training set and the test set are
shown in Figure 16. At the same time, the loss function
curves of the training set and the test set are shown in
Figure 17. Compare the EWT-CNN fault diagnosis algo-
rithm proposed in this paper with the fault diagnosis al-
gorithms based on EEMD-CNN and CEEMD-CNN. -e
recognition accuracy rates of different fault diagnosis al-
gorithms are shown in Table 6. -e EWT-CNN fault

Normal
Fault

(a)

Normal
Fault

(b)

NormalFault

(c) (d)

Figure 9: Some pictures of the fault elements. (a) Single slipper off fault. (b) Single slipper wear fault. (c) Center spring fault. (d) Swash plate
wear fault.

Pressure signal Vibration signal of x direction

Vibration signal of y direction Vibration signal of z direction

Figure 10: Data acquisition system based on WebAccess/MCM.
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diagnosis algorithm proposed in this paper has a signifi-
cantly higher recognition accuracy than the other two al-
gorithms, and the recognition accuracy rate reaches 99.51%.

In order to verify the axial plunger pump multipath signal
characteristic parameters’ influence on model identification
accuracy rate, the axial piston pump fault diagnosis is carried
out only by using the characteristic parameters of the one signal
in the pump outlet pressure signal p, x-direction of the vibration

signal, y-direction of the vibration signal, and z-direction of the
vibration signal. Comparison results are as shown in Figure 18.
Comparative analysis shows that the characteristic parameter
with the highest accuracy of model recognition is the pump
outlet pressure signal p, followed by the x-direction vibration
signal. -erefore, axial piston pump outlet pressure signals p
and x vibration signals contain more axial piston pump fault
information.

Oil tank

Axial piston 
pump

A

x A z

y

zMotor

Coupling

Vibration 
sensor

x

y

Figure 12: Vibration sensor layout.
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5.5. t-SNE Visual Analysis. -e t-distributed random
neighbor embedding (t-SNE) algorithm is currently the best
data dimensionality reduction and visualizationmethod. For
computers, there is no problem in processing high-di-
mensional data, but humans can only perceive three di-
mensions. In order to make the internal processing results of
the convolutional neural network be more visualized, it is
necessary to visualize high-dimensional data. -erefore, this
paper uses the t-SNE algorithm to reduce the dimensionality
of the output results of some layers of 1D-CNN into two
dimensions for visual display.

Analyze and visualize the features learned from the
input layer, convolution layer 2, convolution layer 4, and

output layer of the convolutional neural network. As
shown in Figure 19, the features of the input layer cannot
separate the six types of working states. It can be seen that
the input features cannot realize the classification of
samples; the features of convolutional layer 2 can initially
realize the division between each state, but state 3 (single
slipper off fault) is doped part of the samples of state 4
(single slipper wear fault). -e classification effect is not
obvious. -e features of convolutional layer 4 can basi-
cally realize the obvious division between each state, but
state 4 (single slipper wear fault) is doped part of the
samples of state 3 (single slipper off fault), which does not
achieve effective fault diagnosis. -e characteristics of the
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Figure 13: Comparison of denoising effects of three different denoising methods.

Sample 1

Overlapping 
part

Sample 2 Sample n

Figure 14: Schematic diagram of sample segmentation.

Table 5: Number of samples and sample labeling method.

Working status Data length Feature vector Sample size Category mark
Normal working state 800 25× 4 90 1
Single slipper loosing fault 800 25× 4 90 2
Single slipper off fault 800 25× 4 90 3
Single slipper wear fault 800 25× 4 90 4
Swash plate wear fault 800 25× 4 90 5
Center spring fault 800 25× 4 90 6
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output layer can completely realize the division between
states and the effect is obvious. -is shows that the EWT-
CNN has powerful feature extraction and fault diagnosis
ability.

5.6. Cloud Platform Realization of Fault DiagnosisMethod for
Axial Piston Pump. Traditional fault diagnosis algorithms
mainly focus on local data acquisition of single or
multiple devices and real-time fault diagnosis locally.

-is makes the equipment’s condition monitoring and
fault diagnosis system costly and cannot realize the re-
mote monitoring and remote data analysis of the
equipment. With the development of intelligent science
and information science, people can realize modernized
management of equipment and equipment monitoring
automation, informatization, and interaction through
intelligent means. -is can ensure the normal operation
of the equipment and improve the overall management
and service level of the equipment, so as to ensure the

Input layer

Convolution layer 1

Convolution layer 2

Maximum pooling layer

Convolution layer 3

Convolution layer 4

Average pooling layer

Dropout layer

Fully connected layer

Output layer (Softmax) 

Figure 15: One-dimensional convolutional neural network structure.
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Figure 16: Change curves of sample recognition accuracy rate during model iteration.
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smooth operation of the equipment and improve the
management level and service level of the equipment as a
whole.

-erefore, this paper proposes an axial piston pump
fault diagnosis algorithm based on cloud platform and
deep learning. -e deep learning algorithm is a new al-
gorithm model based on big data. At the same time, the
cloud platform is a new platform developed under the
Internet technology. -e platform can process a large
amount of data in a short period of time and return the
processing results to customers in an integrated form. In
the past, multiple devices in a workshop needed a fault

diagnosis system deployment mode of data processing and
computing platform. Cloud platform can realize simul-
taneous online monitoring of multiple locations and
multiple devices, with lower cost, faster processing speed,
and higher platform utilization, which is suitable for
deploying the fault diagnosis model of the axial piston
pump in the cloud.

-e fault diagnosis algorithm based on cloud platform
proposed in this paper is mainly composed of three parts,
as shown in Figure 20. -e deployment mode of each
functional module of the specific model is shown in
Figure 21.
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Table 6: Comparison of recognition accuracy rate of different fault diagnosis methods.

Fault diagnosis method Recognition accuracy (%)
EWT-CNN 99.51
EEMD-CNN 96.35
CEEMD-CNN 98.15
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(1) -e axial piston pump data acquisition system is
mainly used to collect the pressure signal and three
directions vibration signals of the axial piston pump.

(2) Edge-side feature extraction and feature fusion
algorithm based on WebAccess/MCM. Firstly,
WebAccess/MCM denoises the original signal.
-en the time-domain feature extraction and fre-
quency-domain feature extraction are performed
on the denoised signal. -e next step is to perform
feature fusion on the extracted features. Finally,
upload the fused features to the WISE-PaaS cloud
platform.

(3) 1D-CNN fault diagnosis model: deploy the trained
fault diagnosismodel to theWISE-PaaS cloud platform
to realize online condition monitoring and fault di-
agnosis of the axial piston pump. -e diagnosis results
are displayed on the cloud platform in real time.

6. Conclusion

-is paper proposes a fault diagnosis algorithm for axial
piston pump based on EWT and 1D-CNN. Based on EWT,
the original vibration signal and pressure signal of the axial
piston pump are decomposed and denoised; then, extract
and fuse the time-domain and frequency-domain features of
the signal after denoising; finally, 1D-CNN is used to realize
the fault diagnosis of axial piston pump on the cloud
platform in real time. -rough comparing the method
proposed in this paper with the EEMD and CEEMD
methods, the results show the following:

(1) Compared with the EEMD and CEEMD methods,
the EWT-based signal decomposition and noise
reduction method proposed in this paper can ef-
fectively eliminate the noise components of the axial
piston pump vibration signal and pressure signal. It
has better signal denoising effect.

(2) Using the method of time-domain and frequency-
domain feature fusion, compared with the fault di-
agnosis method based on a single signal feature, it
can obtain more comprehensive feature information
of the axial piston pump. At the same time, the fault
diagnosis method of axial piston pump based on
multiple signals has higher recognition accuracy rate.

(3) As a deep-learning-based method, one-dimensional
convolutional neural network can effectively extract
the more abstract features of the vibration signal and
pressure signal characteristic parameters of the axial
piston pump, which can effectively improve the
accuracy rate of the fault diagnosis and recognition
of the axial piston pump.

(4) A fault diagnosis algorithm for axial plunger pump
based on the industrial Internet of -ings cloud
platform is proposed. Deploying the fault diagnosis
model on the cloud platform can not only improve
the data processing capability of the algorithm but
also reduce the hardware cost of the diagnostic
system, so as to realize the unified management and
fault diagnosis of multiple devices in remote places.
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