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In this paper, a fault diagnosis method based on symmetric polar coordinate image and Fuzzy C-Means clustering algorithm is
proposed to solve the problem that the fault signal of axial piston pump is not intuitive under the time-domain waveform diagram.
In this paper, the sampled vibration signals of axial piston pump were denoised firstly by the combination of ensemble empirical
mode decomposition and Pearson correlation coefficient. Secondly, the data, after noise reduction, was converted into images,
called snowflake images, according to symmetric polar coordinate method. Different fault types of axial piston pump can be
identified by observing the snowflake images. After that, in order to evaluate the research results objectively, the obtained images
were converted into Gray-Level Cooccurrence Matrixes. ,eir multiple eigenvalues were extracted, and the eigenvectors
consisting of multiple eigenvalues were classified by Fuzzy C-Means clustering algorithm. Finally, according to the accuracy of
classification results, the feasibility of applying the symmetric polar coordinate method to axial piston pump fault diagnosis has
been validated.

1. Introduction

With their outstanding advantages, such as light weight,
great power-mass ratio, flexible control, and fast response
speed, hydraulic systems have received extremely high at-
tention and extensive applications in industry, agriculture,
and national defence [1]. ,e hydraulic pump, as the power
component of the hydraulic system, converts the mechanical
energy, provided by the prime mover, into the pressure
energy of the working medium. A working mechanism of
hydraulic system can be driven only by pressure energy of
the workingmedium.,us, hydraulic pump is also called the
heart of hydraulic system [2, 3].

Once the hydraulic pump fails, it will affect the entire
system. Sometimes, the faults even lead to terrible safety
accidents. In addition, many developed countries around the
world have put forward the concept of intelligent

production; and the fault diagnosis technology of equipment
is one of the important contents [4, 5]. ,erefore, research
on fault diagnosis technology for hydraulic pumps is par-
ticularly important for equipment safety and intellectuali-
zation [6, 7]. In this paper, a new algorithm based on
symmetric polar coordinate method and Fuzzy C-Means
(FCM) clustering was proposed for fault diagnosis of axial
piston pump. ,e method can project the time-domain
vibration signals into the polar coordinate through the
symmetrical polar coordinate. ,en the snowflake images
were generated according to the mirror symmetry plane
rotation angle φ and angle magnification factor k. After that,
the snowflake images were transformed into Gray-Level
Cooccurrence Matrix (GLCM), which is easy to calculate by
computer. ,e eigenvalues of the matrix were extracted.
Finally, the FCM algorithm was used to cluster the eigen-
values to achieve the purpose of fault diagnosis. In addition,
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the vibration signals of the axial piston pump always have
noise interference. ,is paper adopted a method, combi-
nation of ensemble empirical mode decomposition (EEMD)
and Pearson correlation coefficient, to denoise the signal.

,e difference between the method described in this
paper and the traditional methods is that the symmetric
polar coordinate is employed. ,is method has the advan-
tages of small computation and symmetrical distribution.
Hence, compared with the traditional methods that generate
the time-domain waveform and frequency domain wave-
form, the image generated by the symmetric polar coordi-
nate can reflect the tiny difference of the signals more clearly.
Because of the advantages of the symmetric polar coordi-
nate, the diagnosis rate based on it is higher.

Four types of vibration signals of axial piston pumps
have been sampled, such as swash plate wear, loose slipper,
sliding shoe wear, and normal operation, through experi-
ments. ,e diagnosis methods introduced in this paper are
used to analyse these types of signals. ,e operation finally
gets the FCM clustering result.,e analysis results show that
the method proposed in this paper has a high accuracy rate
for the fault diagnosis of the axial piston pump.

2. Related Theories and Methods

2.1. Noise Reduction Algorithm Combined EEMD with
Pearson Correlation Coefficient. Axial plunger pump is a
typical rotating machine [8, 9]. When a certain part of it is
worn or cracked, it will generate some abnormal vibration
signals through the periodic rotation of the pump [10, 11].
However, the installation of vibration sensors cannot alter
the space structure of the pump.,e vibration sensors hence
can only be installed on the shell of pump. In the process of
vibration signals transmitting to the sensors, noise will in-
evitably be mixed into the signals and reduces the signal-
noise ratio [12, 13]. ,erefore, the sampled original signals
are nonstationary and nonlinear signals [14, 15].

Because of the characteristics of the vibration signals,
being nonstationary and nonlinear, this paper adopted the
method of EEMD combined with Pearson correlation co-
efficient to denoise the original vibration signals.

2.1.1. Empirical Mode Decomposition. In 1998, American
scientist Norden E. Huang proposed a new method, Hilbert-
Huang Transform (HHT), for processing nonstationary
signals. Empirical mode decomposition (EMD) was also
introduced firstly as an important part of this method. ,e
EMD algorithm flow chart is shown in Figure 1.

According to the flow chart shown in Figure 1, the
concrete steps of the EMD algorithm are as follows:

Step 1: Parameters are initialized, and all local extremes
are computed from the signal x(t).
Step 2: ,e upper envelope E1(t) and lower envelope
E2(t) of signal x(t) are constructed by cubic splines; then
the mean of the envelopes mi(t) is calculated.

mi(t) �
E1(t) + E2(t)

2
. (1)

Step 3: ,e mean mi(t) is subtracted from the single
x(t); then the ith component hi(t) is gained.

hi(t) � x(t) − mi(t). (2)

Step 4: If the component hi(t) is in accordance with the
conditions of Intrinsic Mode Function (IMF), hi(t) will
be taken as the ith IMF component ci(t), the difference
between x(t) and hi(t) is denoted as the residual r(t) and
i is added with 1. Otherwise, x(t) will be set as hi(t), and
steps 1–3 should be repeated.
Step 5: If the residual r(t) is monotonous, the de-
composition will be stopped. Otherwise, x(t) will be set
as r(t), and steps 1–4 will be repeated.

Finally, the original signal x(t) can be expressed as

x(t) � 􏽘
N

i�1
ci(t) + r(t), (3)

where i� 1,2,3, . . ., N; N is the number of IMF components
obtained by decomposition [16].

Compared with previous signal processing methods,
EMD can decompose signals without setting any basis
functions. It has advantages of intuitiveness, directness, and
posterior and self-adaptation. Based on these advantages,
EMD can be used theoretically to decompose various signals,
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Figure 1: EMD flow chart.
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including nonstationary and nonlinear signals. ,erefore,
EMD was applied to various engineering fields as soon as it
was proposed.

However, EMD has end effects and modal aliasing.,ese
problems affect the quality and performance of decompo-
sition. Because of these defects, Wu and Huang proposed
EEMD in 2009 [17].

2.1.2. Ensemble Empirical Mode Decomposition. ,e EEMD
is based on EMD, and it can effectively avoid modal aliasing.
Its principle of decomposition is the following: an original
signal is added with multiple groups of Gaussian white noise
with zero mean. ,en the EMD algorithm is executed on the
processed signal, and the signal will be automatically
decomposed into different frequency bands. Because the
Gaussian white noise average value is zero, the white noise
can be eliminated from the signal through averaging op-
eration and restore to the original signal [18]. ,e EEMD
algorithm flow chart is shown in Figure 2.

According to the flow chart shown in Figure 2, the
concrete steps of the EEMD algorithm are as follows:

Step 1: ,e EMD execution timesM and the amplitude
coefficient of Gaussian white noise a are initialized,
respectively, and i is set as 1.
Step 2: Gaussian white noise ni(t), with a zero-mean
value and a constant standard deviation, is added to the
original signal x(t) many times to obtain a new signal
xi(t):

xi(t) � x(t) + ni(t), (4)

where ni(t) is the ith time Gaussian white noise se-
quence added.
Step 3: EMD is performed on xi(t) and several IMF
components cij(t) and a residual ri(t) are obtained,
where cij(t) is the jth IMF obtained by EMD after
adding the ith Gaussian white noise to the signal x(t).
ri(t) is the residual after the ith EMD.
Step 4: If i<M, i will be added with 1 and steps 2 and 3
will be repeated until i�M.
Step 5: ,e average of all IMF components cj(t) and
residual r(t) are obtained after M times EMD:

cj(t) �
1

M
􏽘

M

i�1
cij(t),

r(t) �
1

M
􏽘

M

i�1
ri(t),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(5)

where i� 1,2,3, . . ., M, j� 1,2,3, . . ., N, and N is the number
of IMF components. cj(t) is the ith IMF component of
EEMD. r(t) is the residual of EEMD.

,e original signal can be reconstructed with multiple
cj(t) and a r(t) [19]:

x(t) � 􏽘
N

j�1
cj(t) + r(t). (6)

2.1.3. Pearson Correlation Coefficient. ,e correlation co-
efficient was first proposed by the statistician Carl Pearson in
the 19th century. He established the maximum likelihood
method, based on the correlation and regression statistical
concepts previously proposed by Galton, Weldon, and
others. He used the correlation coefficient r to represent the
correlation degree of bivariate normal distribution. It should
be noted that the Pearson correlation coefficient is only one
type of correlation coefficients. ,e correlation coefficients
described below refer to the Pearson correlation coefficient.
,e formula is as follows [20, 21]:
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Figure 2: EEMD flow chart.
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r(X, Y) �
Cov(X, Y)

�������������
Var|X| · Var|Y|

√ , (7)

where Cov(X, Y) is the covariance of X and Y; Var|X| and
Var|Y| are the variances of X and Y, respectively. ,e value
range of the correlation coefficient r is from −1 to 1. If r> 0,
X and Y will be positively correlated. If r< 0, X and Y will be
negatively correlated. If r� 1, X and Y will be identical. If
r� 0, X and Y will have zero correlation. If r� −1, X will be
equal to minus Y.

2.1.4. Simulation Signal-Noise Reduction. In order to verify
the effectiveness of the noise reduction algorithm combined
EEMD with Pearson correlation coefficient, a set of simu-
lated signals are constructed and processed with this algo-
rithm. ,eir sampling frequency is 10 kHz, sampling time is
2 s, and sampling number is 20000. ,e mathematical ex-
pression of the original signal x(t) is as follows:

x(t) � x1(t) + x2(t),

x1(t) � 1.5 sin 2π · 35t +
π
2

􏼒 􏼓,

x2(t) � t · 1.5 sin 3π · 7t +
π
3

􏼒 􏼓,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(8)

where x1(t) is a Sine signal and x2(t) is an amplitude-
modulated signal.

White Gaussian noise of 8 dB was added to the original
signal x(t). ,e original signal x(t), the noise signal, and the
synthetic signal are shown in Figure 3.

,e synthetic signal decomposed by EEMD is shown in
Figure 4(a), and each component is observed in the fre-
quency domain, as shown in Figure 4(b).

,e Pearson correlation coefficients between each
component and the original signal are calculated, and the
results are shown in Table 1.

,e signal is reconstructed through the two components
with the greatest correlation coefficients, as shown in
Figure 5.

In Figure 5, the reconstructed signal is basically con-
sistent with the original simulation signal. After calculation,
the correlation coefficient between the reduced noise signal
and the original signal is 99.55%, which proves that this
method can effectively reduce the noise in the noised signal.

2.2. Symmetrical Polar Coordinate Algorithm. ,e sym-
metrical polar coordinate algorithm transforms the sampled
time-domain signal into polar coordinate and expresses it in
the form of image. ,is image is called a snowflake image.
Because of its symmetry, snowflake images can well show the
differences between each other. In addition, they are more
intuitive than time-domain waveform graphs to show the
difference between different fault types.

,e basic principle of the symmetrical polar coordinate
algorithm is as follows:

,e amplitude of signal at time i is x(i) and at time i+ l it
is x(i + l). It can be converted to a point P(r(i), α(i), β(i)) in
polar coordinate by the following formulas:

r(i) �
x(i) − xmin

xmax − xmin
,

α(i) � φ +
x(i + l) − xmin

xmax − xmin
k,

β(i) � φ −
x(i + l) − xmin

xmax − xmin
k,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(9)

where r(i) is the polar coordinate radius; xmax is the max-
imum amplitude in the signal; xmin is the minimum am-
plitude in the signal; α(i) is the rotation angle in the counter-
clockwise direction from the mirror symmetry plane; φ is the
rotation angle of the mirror symmetry plane; k is the angle
magnification factor; β(i) represents the rotation angle in the
clockwise direction from the mirror symmetry plane [22].
,e physical quantities are represented in polar coordinate
as shown in Figure 6.

,e size of φ is inversely proportional to the number of
mirror planes. If φ is too large, the number of petals in the
snowflake image will be too small and the information
contained by the graphics will be less. But φ cannot be too
small. If it is too small, the number of petals will be toomany,
even overlapping. It will lead to the graphics being too
chaotic to find the characteristics [23]. Usually φ is set as 60°,
and the resulting mirror plane angles are 0°, 60°, 120°, 180°,
240°, and 300°. ,ese six mirror planes are evenly distributed
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Figure 3:,e original signal x(t), the noise signal, and the synthetic
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in polar coordinate to form a six-petal snowflake image. ,e
value of l is proportional to the width of petals of the
snowflake images; generally, 3∼10 is better. ,e value of k
represents the maximum angle that half of the petals can
cover. ,e selection of the value of k will directly affect the
degree of overlap between the petals. Generally, 20°∼60° is
better [24].

2.3. Gray-Level Cooccurrence Matrix and Its Eigenvalues.
,e statistical method of Gray-Level Cooccurrence Matrix
(GLCM) was proposed by Haralick et al. in the early 1970s. It
is a universal image analysis method for images that have
texture information in the spatial distribution relationship
between pixels. ,e GLCM is generated as follows: take one
pixel (x, y) and another pixel (x+dx, y + dy) in the gray image.

dx is the deviation between two pixels in x direction. dy is
similar to dx. ,e gray values of these two pixels are gi and gj,
respectively. ,e relationship of pixels is shown in Figure 7.

,e calculation formula of the probability P(gi, gj, δ, θ)

is as follows:
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Table 1: Correlation coefficients of each component and original
signal.

IMF 1 2 3 4 5
r 0.7256 0.6330 0.0010 −0.0067 0.0112
IMF 6 7 8 9
r 6.3124e− 04 0.0102 −0.0107 −0.0118
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P gi, gj, δ, θ􏼐 􏼑 � (x, y), x + dx, y + dy􏼐 􏼑􏽨 􏽩
􏼌􏼌􏼌􏼌f(x, y)􏽮

� gi, f x + dx, y + dy􏼐 􏼑 � gj􏽯,
(10)

where i� 0, 1, 2, . . ., N− 1, j� 0, 1, 2, . . ., N− 1, and N is the
gray level of the image; x, y are the horizontal and vertical
values of coordinate of a certain pixel in the image, x� 0, 1, 2,
. . ., Lx− 1, y� 0, 1, 2, . . ., Ly− 1, Lx, Ly are the number of rows
and columns of image pixels, respectively; δ is the distance
between two pixels; and θ is the angle between the con-
necting line of two pixels and the horizontal line [25].

,ere are N2 combinations of gi and gj. Arranging the
probability of each combination into a square matrix is the
GLCM. ,e structure of the matrix is shown in Figure 8.

Because the deviation values dx and dy could take dif-
ferent values, the GLCM can be obtained under different
position relationships. Generally, the generation direction θ
of the GLCM takes four directions (0°, 45°, 90°, and 135°), as
shown in Figure 9. Different generated directions reflect the
texture features of different directions of the image, and the
GLCM obtained from different parameters is also different
[26].

Since the GLCM cannot directly reflect the texture of the
image, some statistics based on the matrix are usually used as
classification features. R Haralick et al. proposed a total of 14
eigenvalues of GLCM. In this paper, four commonly and
effectively used statistical features are employed: Angular
Second Moment (ASM), Contrast (Con), Correlation (Cor),
and Homogeneity (Hom).

2.3.1. Angular Second Moment. ,e ASM of the GLCM is
also called energy. ,is feature value is the sum of the
squares of each matrix element. It reflects the uniformity of
the texture distribution of an image and the thickness of the
texture. ,e formula is

ASM � 􏽘
N

i�1
􏽘

N

j�1
P gi, gj, δ, θ􏼐 􏼑

2
, i � 1, 2, . . . , (11)

2.3.2. Contrast. Con reflects the sharpness of the image and
the gray-level difference of the texture. ,e greater the gray-
level difference, the greater edge the contrast value. ,e
formula is

O

φ

φ

r (i)

α (i)

β (i)

r (i)

Figure 6: Schematic diagram of symmetric polar coordinate.
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Con � 􏽘
N

i�1
􏽘

N

j�1
(i − j)

2
P gi, gj, δ, θ􏼐 􏼑. (12)

2.3.3. Correlation. Cor reflects the degree of similarity of
grayscale images in the row and column directions. ,e
higher the degree of similarity, the greater the autocorre-
lation. ,e formulas are

Cor �
􏽐

N
i�1 􏽐

N
j�1 ijP gi, gj, δ, θ􏼐 􏼑􏽨 􏽩 − μiμj

σiσj

,

μi � 􏽘
N

i�1
􏽘

N

j�1
iP gi, gj, δ, θ􏼐 􏼑,

μj � 􏽘
N

i�1
􏽘

N

j�1
jP gi, gj, δ, θ􏼐 􏼑,

σ2i � 􏽘
N

i�1
􏽘

N

j�1
P gi, gj, δ, θ􏼐 􏼑 i − μi( 􏼁

2
,

σ2j � 􏽘
N

i�1
􏽘

N

j�1
P gi, gj, δ, θ􏼐 􏼑 j − μj􏼐 􏼑

2
.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(13)

2.3.4. Homogeneity. Hom reflects the degree of local
changes in the image texture. When the local area differs
greatly, the value is large and vice versa. ,e formula is

Hom � 􏽘
N

i�1
􏽘

N

j�1

P gi, gj, δ, θ􏼐 􏼑

1 +(i − j)
2 . (14)

2.4. FuzzyC-MeansClusteringAlgorithm. In most clustering
problems, the samples in the data set cannot be clearly
classified into a certain category. It is even wrong to specify a
sample to a specific category. Lotfi Zadeh, an American
automatic control expert, is the “Father of Fuzzy Sets.” He
proposed fuzzy set theory and fuzzy logic to solve these
problems in the clustering process in the middle of the 20th
century. ,ese theories were quickly applied in many fields

and the emergence of Fuzzy C-means (FCM) clustering
algorithm also credits to this. ,e FCM algorithm does not
give a certain limit to the category, also called cluster, like the
K-means clustering algorithm. But there is a weight for each
sample and category, which shows the membership of the
sample to the category. ,e sum of the memberships of all
samples to all categories is 1. Compared with the weights
given by statistical methods, this method can better avoid the
difficulty of selecting statistical models and give a natural
and nonprobabilistic classification result [27, 28].

,e core of FCM is minimizing the objective function Jm,
the sum of squares of errors. ,e formula is as follow:

Jm � 􏽘
N

i�1
􏽘

C

j�1
u

m
ij xi − cj

�����

�����
2
, 1≤m< +∞, (15)

where N is the total number of samples; C is the number of
categories; m is the weighted index number; uij is the
membership of sample xi to category j; and cj represents the
center of category j.

,e flow of the FCM is continuously iterating the
membership degree uij and the category center cj to make the
objective function reach the best. ,e calculation formulas
for these two values are as follows [29, 30]:

uij �
1

􏽐
C
k�1 xi − cj

�����

�����/ xi − ck

����
����􏼒 􏼓

(2/m− 1)
,

cj �
􏽐

N
i�1 u

m
ij xi

􏽐
N
i�1 u

m
ij

.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(16)

3. Experimental System and Fault
Data Sampling

In order to obtain the data required for this paper, our
research team has built a hydraulic pump failure simulation
test bench. ,e hydraulic schematic diagram is shown in
Figure 7.

In Figure 10, the tested plunger pump 10 was connected
to the motor. ,ere was also a vane pump 3 to provide
sufficient hydraulic oil to the tested plunger pump. A direct-
acting relief valve 23 was used to ensure the stable pressure of
the oil source.,e pilot-operated proportional relief valve 21
and pilot-operated relief valve 22 were switched by the two-
position three-way electromagnetic directional valve 19. It
could establish the different working pressures of the tested
plunger pump. ,ere were three vibration sensors 11, which
were, respectively, fixed on the plunger pump housing along
the radial horizontal direction x, radial vertical direction y,
and axial direction z. Most importantly, this test device could
sample the front’s and the rear’s pressure information of the
tested plunger pump and the motor speed information at the
same time. ,e basic parameters of some main components
are shown in Table 2. ,e picture of the test bench is shown
in Figure 11.

g1 g2

g5 g4 g3

Figure 9: Gray-Level Cooccurrence Matrix generation directions.
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,e software of data acquisition used was NI’s Lab-
VIEW, and the acquisition card was a USB6221 data ac-
quisition card. ,e acquisition system can guarantee a
20 kHz acquisition rate per channel. ,e front panel of the
acquisition program is shown in Figure 12.

Before the experiment, the corresponding faulty parts
had been prepared. ,ey included the grinding swash
plate and the sliding shoe and pulling the plunger and the
sliding shoe artificially. In the experiment, the normal
equipment operated under a pressure of 10MPa, the
computer sampled vibration signals in the x, y, and z
directions, and the sampling frequency was 20 kHz. After
that, the previously prepared faulty parts were replaced
one by one into the normal plunger pump. ,en, the
vibration signals under the faults were sampled under the
same conditions.
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Signal detection,
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2. filter
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7. pressure
gauge switch

8. pressure
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10. plunger pump

13. flowmeter
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12. frequency
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11. vibration sensors
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switch 

18. pressure gauge 19. stop valve 

20. electromagnetic
directional valve 

21. pressure oil
filter 
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25.filter

26. liquid
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Pressure signal

Vibration signal

Motor speed

Pressure signal

16. pressure
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15. temperature
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6. pressure
sensor

5. temperature
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NI USB-6221

Figure 10: Hydraulic schematic diagram of hydraulic pump failure simulation test bench.

Table 2: Main components involved in the test bench.

Component name Remarks
Y132-M4 motor Rated speed 1480 r/min
FR-E740-7.5K-CHT frequency
converter Rated current 17A

YD-72D acceleration sensor Frequency range 1Hz∼18 kHz, charge sensitivity 0.342 pC/ms−2

MCY14-1B plunger pump 7 plunger, theoretical displacement 10ml/r, nominal pressure 31.5MPa, rated speed 1500 rpm

DHF-6A charge amplifier Gain 0.1m V∼1V/pc, power supply voltage AC220V/50Hz, frequency response
0.3Hz∼100 kHz

USB6221 data acquisition card 16 analog inputs, input voltage −10V∼10V, sampling rate 250 kS/s

Tank

Plunger pump

Vane pump

MotorVibration
sensor of y

Vibration
sensor of x

Vibration
sensor of z

Figure 11: Physical test bench picture.
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,e three-direction vibration signals of the axial piston
pump sampled in the normal state are shown in Figure 13.

,e amplitude of the vibration signals in the z-axis di-
rection is significantly higher than that in the other two
directions as shown in Figure 13. It means that the z-axis
direction is the most sensitive to the vibration of the piston
pump. For this reason, this article used the z-axis direction
vibration signals to diagnose the faults of the axial piston
pump.

4. Data Processing and Diagnostic Analysis

4.1. Noise Reduction. After calculation, each circle corre-
sponds to 800 data points, so the data length is set as 1000 to
include a complete turn. In this paper, MATLAB was used to
perform all calculations. Before the noise reducing Fast
Fourier Transform (FFT) algorithm was used on the various
vibration signals sampled from the axial piston pump and
frequency spectrum diagrams were generated. ,ese dia-
grams reflected the distribution of each signal in the fre-
quency domain, as shown in Figure 14.

In this paper, the swash plate wear vibration signals were
taken as an example to explain the process of noise reduction

Figure 12: LabVIEW acquisition program front panel.
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Figure 13: Time-domain diagrams of vibration signals of axial
piston pump.
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by the method combined EEMD with the Pearson corre-
lation coefficient. ,e noise reduction processes for other
conditions are similar.

First, the sampled vibration signals were decomposed by
the EEMD algorithm and obtained each IMF component
signal, as shown in Figure 15.

0

0.002

0.004

0.006

0.008
A

m
pl

itu
de

 (V
)

2000 4000 6000 8000 100000
Frequency (Hz)

(a)

0

0.002

0.004

0.006

0.008

A
m

pl
itu

de
 (V

)

2000 4000 6000 8000 100000
Frequency (Hz)

(b)

0

0.002

0.004

0.006

0.008

0.01

A
m

pl
itu

de
 (V

)

2000 4000 6000 8000 100000
Frequency (Hz)

(c)

0

0.002

0.004

0.006

0.008

0.01

A
m

pl
itu

de
 (V

)
2000 4000 6000 8000 100000

Frequency (Hz)

(d)

Figure 14: Frequency spectrum diagrams of various signals of axial piston pump. (a) Normal. (b) Swash plate wear. (c) Loose slipper.
(d) Sliding shoe wear.
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Figure 15: Vibration signals of EEMD diagrams. (a) IMFs 1–7. (b) IMFs 8–14.
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Second, the FFT was applied to each component to
observe the distribution of each component in the frequency
domain, as shown in Figure 16.

According to the observation of Figure 16, the first and
second components distributed widely in the frequency
domain. ,ey were considered to be noise components.

,ird, the Pearson correlation coefficients between the
original signal and the components are calculated, except the
first and second IMF components. ,e results are shown in
Table 3.

Finally, according to the correlation coefficients between
each IMF component and the original signal, the five
components with the largest correlation coefficients were
selected to reconstruct the signal and reduce noise. ,e
frequency spectrum diagram of swash plate wear signal after
noise reduction is shown in Figure 17.

Compared with the original vibration signal, the noise in
the high frequency part of the signal has been better elimi-
nated after noise reduction, as shown in Figure 17. It could be
considered that the noise reduction effect was obvious.

Considering the change of signals themselves in the
process of signal sampled, the distribution of each group of
signals on the IMF components might not be completely
consistent. For this reason, certain fixed IMF components
were not suitable for all signals’ reconstruction.,erefore, in
the noise reduction process of each signal, the Pearson
correlation coefficients between each IMF component and
the original signal need to be calculated; and the five
components, except the first and second, with the largest
correlation coefficients were selected to reconstruct the
signals. ,is could reduce the loss of useful information of
each signal.

4.2. Ee Snowflake Images Generated. 80 sets of vibration
signals were obtained after noise reduction, and each state
has 20 sets equally. ,ese signals were substituted into the
polar coordinate algorithm and 80 snowflake images were
obtained. In this paper, φ was set as 60°, and the resulting
mirror plane angles were 0°, 60°, 120°, 180°, 240°, and 300°; l
was 4; and k was 30°. Figure 18 shows the snowflake images
corresponding to various conditions.
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Figure 16: Frequency spectrum diagrams of each component after EEMD decomposition. (a) IMFs 1–7. (b) IMFs 8–14.

Table 3: Correlation coefficient of each component and original
signal.

IMF 3 4 5 6 7 8
r 0.547 0.393 0.507 0.325 0.376 0.302
IMF 9 10 11 12 13 14
r 0.278 0.113 0.084 0.067 0.029 0.006
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Figure 17: Frequency spectrum diagram of swash plate wear signal
after noise reduction.
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It is intuitive to show the difference between the
snowflake images of normal state and various fault states, as
shown in Figure 18. Among them, (1) the snowflake image’s
petals of the normal state were in the shape of a long water
drop. ,ey were thick and not curved and were evenly
distributed on the entire circumference. (2) ,e image’s
petals of the swash plate wear like short and thick water
drop. Each two petals between the two mirror planes were
closer, but on both sides of a single mirror plane they were
relatively distant. ,e centroid of petals was farther from the
center of the circle. (3),e image’s petals of the loose slipper
were curved water drop. Each two petals on both sides of a
single mirror plane were close first and then separated as the

distance increased in the radial direction. A single petal was
slender near the center, thicker away from the center, and
with more divergent points at the end. (4),e image’s petals
of the sliding shoe wear were crescent-shaped. ,e petals
were arc-shaped near the mirror plane and flat away from
the mirror plane. A single petal was thin at both ends and
thick in the middle, with fewer divergent points.

4.3. Gray-Level Cooccurrence Matrix Generated and Feature
Extraction. In normal circumstances, the gray level of a gray
image is generally 256 levels, from 0 to 255. However, in the
calculation process, 256 levels will produce a tremendous

(a) (b)

(c) (d)

Figure 18: Snowflake images of various states. (a) Normal. (b) Swash plate wear. (c) Loose slipper. (d) Sliding shoe wear.
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amount of computation. For example, the snowflakes in 4.2
have 469× 469 pixels. If a computer uses 256 gray levels and
operates this picture, it is going to calculate 1.4×1010 times.
On the premise of ensuring the image texture as much as
possible, the number of operations can be reduced by re-
ducing the gray level. Usually, the gray level is compressed to
16 or 8 to reduce the size of the GLCM. In this paper, the
gray scale is set to 16 levels.

Using the GLCM algorithm, the snowflake images
generated in Section 4.2 were converted into matrixes in the
four directions of 0°, 45°, 90°, and 135°. ,ere were 80
matrixes generated in each state, and a total of 320 matrixes
were gotten.,en, the respective eigenvalues like ASM, Con,
Cor, and Hom were calculated for each matrix. Finally, the
four eigenvalues of each state were averaged as the

eigenvalue benchmark of the GLCM of this state. ,e av-
erage results are shown in Table 4.

4.4. Fuzzy C-Means Clustering Results. In this paper, 80
samples were used to train algorithm.,ese 80 samples were
20 normal samples, 20 swash plate wear samples, 20 loose
slipper samples, and 20 sliding shoe wear samples. Similarly,
there were 80 samples as a test set. ,ey were in identical
condition but were different in data.,e numbers of samples
and eigenvalues contained in the training set and test set are
shown in Table 5.

,ese eigenvalues of test samples were put into the FCM
algorithm for calculation, and the classification results are
shown in Figure 19. When drawing the classification results,
the dimensionality was reduced to realize its drawing in the
three-dimensional space [31].

After being clustered by the FCM algorithm, the four
states of the axial piston pump, the normal state and the
three types of failure states, were clearly separated, which is
shown in Figure 19. ,e accuracy rate of the classification
results is shown in Table 6.

Table 4: ,e eigenvalue benchmarks of the four conditions of axial
piston pump.

State name ASM Con Cor Hom
Normal 0.67 0.72 0.94 0.96
Swash plate wear 0.78 1.11 0.87 0.97
Loose slipper 0.85 0.66 0.88 0.98
Sliding shoe wear 0.86 1.17 0.99 0.97

Table 5: ,e numbers of samples contained in the training set and
test set.

State name
Training Test

Samples Eigenvalues Samples Eigenvalues
Normal 20 80 20 80
Swash plate wear 20 80 20 80
Loose slipper 20 80 20 80
Sliding shoe wear 20 80 20 80
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Figure 19: Clustering results of symmetrical polar coordinate
combined with GLCM.

Table 6: Classification accuracy rate of symmetrical polar coor-
dinate combined with GLCM.

State name Accuracy rate (%)
Normal 100
Swash plate wear 100
Loose slipper 95
Sliding shoe wear 100
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Figure 20: Clustering results by use of EMD combined with energy
eigenvalues.
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In addition, this paper has used EMD to decompose the
same data. ,e three IMF components with the greatest
correlation with the original signal were selected.,e energy
feature values of these components were extracted. ,en the
FCM clustering algorithm was used to classify these feature
values. ,e clustering result is shown in Figure 20.

Compared with the classification results shown in Fig-
ure 19, the classification of the four types of states in Fig-
ure 20 is not clear. ,e classification accuracy rate is also
lower, as shown in Table 7. ,us, the effectiveness and
superiority of the method proposed in this paper are proved.

5. Conclusions

In this paper, a fault diagnosis algorithm for axial piston
pump was proposed which was primarily based on sym-
metrical polar coordinate image and FCM. First, the noise
reduction algorithm, combined EEMD with Pearson cor-
relation coefficients, was employed to preprocess the original
signals. Second, the symmetrical polar coordinate algorithm
converted the processed samples into snowflake images.
,ird, the snowflake images were transformed to GLCM.
Fourth, the eigenvalues corresponding to the sample could
be gotten by the eigenvalue of GLCM algorithm, and the
samples of eigenvalues were gained. Finally, the FCM al-
gorithm performed clustering on samples according to the
clustering center and completed the fault diagnosis.,rough
the above content, the conclusions can be drawn:

(1) Compared with time-domain waveform diagram,
the state’s snowflake images, drawn by the sym-
metrical polar coordinate algorithm, could reflect the
difference of the fault and normal types of the axial
piston pump more intuitively. Because people’s eyes
are more sensitive to symmetrical patterns, the type
of fault can be identified directly by observing the
snowflake images.

(2) Due to the images having a high degree of differ-
entiation for each state, these GLCM eigenvalues
samples, derived from the image, represent the
characteristics of the failure state more effectively,
and the result of FCM clustering was exact. After
statistics, the comprehensive accuracy rate of the
fault diagnosis algorithm proposed in this paper was
98.75%.

(3) Compared with the EMD method of extracting
energy eigenvalues, the accuracy of the method
proposed in this paper was significantly higher, and
the accuracy rate of the EMD method was only

92.5%. ,e superiority of the method proposed in
this paper has been proved.

,e method proposed in this paper is feasible and is
more effective than other departed methods in fault diag-
nosis. ,is is a research topic worthy of further study.
Moreover, this fault diagnosis algorithm can be extended to
other rotatingmachinery.We will continue to study this area
in the future.
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