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Ultrasonic guided wave (UGW) has shown great potential in the field of structural health monitoring of rail tracks due to its long-
range capability and full cross section coverage. However, the practical application of UGW has been hindered by the complicated
signal interpretation because of the natures of multiple modes and dispersion. Therefore, it is desirable that the effective UGW
modes with high excitability and least dispersion can be identified and extracted for practical applications. In this paper, a
numerical study on the guided wave propagation was carried out on a standard rail with 56E1 profile. Firstly, Floquet-Bloch theory
was applied to obtain the dispersion curves of guided wave in a rail. Then, a 3D FE model was built to investigate the UGW
propagation along the rail within the frequency range of 0-120 kHz. Wavenumber-frequency analysis method was applied to
decompose and identify the propagating UGW modes. With a carefully designed 2D bandpass filter, a specific mode W0 was
extracted in the wavenumber-frequency domain. Finally, a frequency band sweep technique was also proposed to get the optimal
frequency band to achieve a pure and least-dispersive UGW mode along the rail web. The proposed method provides an effective
way to extract efficient UGW modes to assess the integrity of the rail track, as well as other waveguides with complex geometry.

1. Introduction

Ultrasonic guided wave (UGW) has continuously attracted
researchers’ attention in the fields of nondestructive testing
(NDT) and structural health monitoring (SHM) in railway
engineering [1-3]. Rose et al. firstly discussed the potential
application of defect detection in rail based on UGW
technology [1, 2]. Since then, various researches have been
conducted from theoretical study to engineering application.
Yue et al. studied the dispersion characteristics and prop-
agation properties of the guided wave along the rail foot [4].
Zhou et al. developed a 3D diagnostic imaging technique
based on time-of-flight signal features [5]. The advantages of
UGW include long-range capability, full coverage across the
whole cross section of the rail track, and rapid inspection
with few transducers. However, due to the complex cross
section of rail track compared to the plate or pipe, there are
much more UGW modes propagating along the rail [6].
Moreover, most UGW modes are dispersive, making the

interpretation of ultrasonic signals very difficult in practical
applications. Therefore, of the first but not the least im-
portance, the knowledge of dispersion curves and corre-
sponding mode shapes should be obtained before applying
UGW for rail inspection system [7, 8]. The dispersion curves
contain the information regarding how available wave
modes propagate. This information can help to explain the
results and provide guidance for sensor deployment [9, 10].

So far, there are various methods developed by re-
searchers to calculate the dispersion curves of UGW.
Generally, available methods can be categorized as analyt-
ical, semianalytical, and numerical methods. Among them,
analytical method has been developed only for the wave-
guides with simple cross section, such as plates and pipes.
But when the geometry of waveguides becomes as complex
as a rail track, it is impossible to obtain the dispersion curves
analytically. Thus, numerical techniques have been devel-
oped. Nowadays, one of the most popular techniques to
calculate the dispersion curves for waveguides with complex
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cross section is semianalytical finite element (SAFE). Instead
of handling the three-dimension problem directly, it only
requires two-dimension discretization for the cross section
plane [7, 11, 12]. The SAFE method can efficiently solve the
eigenvalue problem in terms of wavenumber at a given
frequency, or in terms of frequency at a given wavenumber.
Recently, efforts were also made to implement SAFE method
in the commercially available finite element package [13].
Ramatlo et al. built a hybrid method coupling a 3D FEM
model of the arbitrary discontinuity with two SAFE models
of the rail to represent the semi-infinite incoming and
outgoing waveguides [14]. Still, the main disadvantage is that
it is difficult to include periodically discrete supports due to
the analytical description of the wave propagation along the
rail.

An alternative approach to calculate dispersion curves is
wave finite element (WFE) method. It has been developed to
handle the waveguide with appropriate boundary conditions
based on commercial finite element (FE) packages. Thomp-
son developed FE methods with a short length of rail with
periodic condition to investigate the wheel-rail noise gener-
ation, but this method failed at the range of high frequencies
[15]. Later, Ryue et al. investigated wave propagating in a rail
track up to 80kHz with symmetric and antisymmetric
boundary conditions [16, 17]. Sanderson and Smith proposed
a three-dimension FE model based on eigenfrequency anal-
ysis to obtain the dispersion curves of rail [18]. In these
methods, however, the process should be repeated by
changing the length of unit cell until all the modes are ob-
tained. The process of WFE to calculate dispersion curves can
be improved and accelerated based on the Floquet-Bloch (FB)
theory. It controls periodic coefficients to trace the eigen-
frequencies with varying wavenumber; thus, there is no need
to change the length of rail section [19]. The FB theory has
been applied for dispersion analysis of different periodic
systems, especially for the photonic crystal structures [20, 21].
There are two remarkable merits by applying FB theory.
Firstly, the full advantages of existing commercial FE packages
can be maintained, including available element types, material
libraries, and well-developed iterative numerical algorithms.
Thus, there is no need to define element and formulate FE
process. Secondly, even complex rail system with supporting
layers, such pads and sleepers, can generally be modelled
without additional difficulties. To the best of the authors’
knowledge, there is still no prior study on applying FB theory
to effectively calculate dispersion curves for rail tracks.

Furthermore, to develop UGW inspection or moni-
toring system, it is desirable to excite a single UGW mode
in a well-controlled direction. A narrowband signal
should be excited after dedicated frequency tuning and
tailor-made sensor deployment [22]. Loveday proposed
phased array design of four ultrasonic transducers to
control over which modes were excited and sensed
preferentially in one direction along the rail [3, 23]. Their
system requires permanent sensors attachment with ac-
curate phase delay, but extra propagating modes still exist.
Xing et al. presented a mathematical model composed of a
modal vibration factor and a modal orthogonal factor to
select a suitable UGW mode for detecting a specific crack
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on a rail [24]. However, arrayed transducer deployment
and excitation is not always available for the uneven and
inaccessible surface of rails. Moreover, the closeness of
dispersion curves and mode repulsion makes it practically
difficult to exclude unwanted modes [25]. Even more
UGW modes may show up due to mode conversion at
discontinuity. Therefore, complex UGW signals with
multiple modes are much more common. To apply such
UGW signal for defect detection in rail track, the first
priority is to identify and extract the effective propagating
modes. Loveday et al. proposed a mode extraction method
based on the orthogonality of mode shapes in rail with
laser vibrometer [6]. This method was verified for the
excitation with a continuous sinusoidal wave at a single
frequency. However, a short pulse excitation is more
common and single wave mode information should be
extracted from such wide bandwidth. Alleyne proposed
two-dimension Fourier transform (2D-FFT) to analyse
propagating multimodal Lamb waves in the wavenumber-
frequency domain and identified individual Lamb wave
modes [26]. By applying a proper 2D bandpass filter in the
wavenumber-frequency domain, Tian and Lu decom-
posed wave modes in the plate and extracted single-mode
Lamb wave [27]. Inspired by the filtering method in plates,
the broadband UGW signal in the rail excited by con-
ventional ultrasonic transducer or laser pulse can be
analysed in the wavenumber-frequency domain. How-
ever, there are much more UGW modes existing in rail,
compared to Lamb wave in plates. It leads to the fact that
dispersion curve of adjacent mode is very close. Therefore,
careful study on the mode identification and extraction
should be carried out in rail, which has not been discussed

yet.

In this paper, we will focus on the study of extraction of
efficient ultrasonic guided wave mode in rail track based on
Floquet-Bloch theory. The paper will be organized as follows.
The numerical implementation and the obtained dispersion
curves based on FB theory are presented in Section 2. Basic
theory for extracting specific UGW modes from broadband
excitation is introduced in Section 3. Numerical experiments
based on 3D FE model are carried out to illustrate the
process to extract a least-dispersive UGW mode along rail
web, as described in Section 4. Finally, conclusions are
drawn in Section 5.

2. Dispersion Curves Calculation Based on
Floquet-Bloch Theory

2.1. Numerical Implementation of FB Theory. To facilitate the
dispersive analysis in the rail, FB theory is applied in this
study and implemented in a commercial FE software in
COMSOL Multiphysics. A unit cell of rail with a small
segment is chosen for calculation, whose length is deter-
mined by the maximum frequency of interest. There is a
maximum value for the incident wavenumber, corre-
sponding to a minimum wavelength A,,;, =2"L, where L is
the length of unit cell. FB periodic boundary conditions are
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applied to both ends along the direction of wave propagation
to make this model an infinite structure, and FB is defined as

Ugs = usrce7 ks (rdsr rm) 5 ( 1)

where u is the displacement and r is the distance; dst and src
refer to the destination and source plane, respectively; and k;
refers to incident wavenumber. With an eigenfrequency
study in a structural module, the natural frequencies and
mode shapes are calculated for a given incident wavenumber
k;. By sweeping wavenumber k;, all the eigenfrequencies are
obtained. The resulting wavenumber-frequency pairs form
k-f dispersion relation, which can be further converted to
dispersion curves regarding phase velocity cp-f and group
velocity cg-f. The general process to calculate dispersion
curves based on FB theory is illustrated in Figure 1.

w
CP = E,
(2)
ow
Cg = ﬁ

2.2. Dispersion Curves of Guided Wave in a Rail Track. A
standard rail with the profile of 56E1 was chosen for the
study here, and a three-dimension model was designed and
built. Figure 2 shows the cross section of rail 56E1 and three-
dimension geometry of the designed model. In this work, the
discrete supports, such as rail pad and sleeper, will not be
considered to avoid the uncertainty in determining wave-
number-frequency pair at high frequency [16]. FB bound-
aries were set at both ends of the rail and other boundaries
were stress-free. Moreover, there are two approaches to
reduce the computation cost for rail by applying higher-
order elements and geometrical symmetry if applicable [28].
In the convergence study, mesh size of commonly used
quadratic element should be chosen as 10 nodes per
wavelength, while approximately half the wavelength is
enough for quartic (4th order) element. Therefore, quartic
Lagrange elements available in COMSOL Multiphysics were
chosen to minimize the element number and save com-
putation amount. Apart from this, the introduction of
symmetric and antisymmetric boundary was applied to
categorize all the UGW modes into two separate groups. In
this case, the simple linear elastic material model was taken
into consideration. The material properties are listed in
Table 1.

Followed by the process as Figure 1, the dispersion curve
can be obtained for this rail. The length of unit cell was set as
L=10mm to calculate the exact UGW modes in the fre-
quency up to 120 kHz. Here, only the first 60 wave modes
were calculated at the frequency range of 0-120 kHz, which
covers the frequency of interest in UGW for the rail. The
corresponding dispersion curves regarding phase velocity
and group velocity are as shown in Figure 3. There are
thousands of points occupying the f-k domain, corre-
sponding to various wave modes consisting of the dispersion
curves. At the upper right in Figure 3(a) and bottom right in
Figure 3(b), the missing curves imply that there are more

than 60 modes at frequencies higher than 80 kHz. The results
indicate that almost numerous kinds of UGW modes could
possibly exist in a rail under different boundary conditions
and proper excitations. Moreover, because there are much
more UGW modes than those of well-known waveguides,
such as plate and pipes, the UGW modes are very close to
each other. Such closeness of adjacent modes makes it
difficult to identify and separate specific UGW mode in rail.

From the observation of the dispersion curves, several
conclusions can be drawn. Firstly, when the frequency is
increasing, all the wave modes become less dispersive and
converge to a relatively low velocity, which is very close to
surface wave speed. Therefore, high-order UGW mode
cluster in high frequency has high potential for small defect
detection in a rail. Secondly, high-order UGW modes are
more dispersive than those of the low-order ones at a certain
frequency, implying that low-order modes are much more
preferential for UGW long-range application in rail tracks.

3. Basic Theory for Extraction of Specific
UGW Mode

3.1. Frequency Wavenumber Decomposition. In this section,
general procedures to extract a specific UGW mode from
broadband excitation will be illustrated. At first, frequency
wavenumber decomposition will be introduced to identify a
specific mode. Then, frequency band sweep is illustrated to
choose the optimal frequency from broadband. To transform the
time-space wavefield u (¢, x) into the wavenumber-frequency
domain, two-dimension fast Fourier transform is required. The
corresponding wavefield U (f,k) in wavenumber-frequency
domain can be written as [26]

X=X, t=t,

U(fk =Y Y ultx)e /®V Atax, (3)

x=x, t=t;

where x = x,, ..., x,, is the space vector; t = ¢, ...,t, is the
time step; f is the frequency; k refers to the wavenumber
vector; and Ax and At are the spatial and temporal intervals,
respectively. The wavefield in wavenumber-frequency do-
main can effectively identify and separate the different UGW
modes. Then, window functions can be applied to filter out
the unwanted components.

Thus, if a 2D bandpass filter W(f, k) is designed, the
filtered spectrum in wavenumber-frequency domain is [27]

Utier (f> K) = U (f, )W (f, k), (4)

where U(f, k) refers to the full spectrum. 2D filter W(f, k) is
designed around the dispersion curve of the desired UGW
mode to retain the desired components of the spectrum.
Therefore, the center of the 2D filter is set to be the theo-
retical dispersion curve of the desired UGW mode. Then, the
major remaining energy is the desired UGW mode. Spe-
cifically, the 2D bandpass filter can be designed as

W(f,k) =W (/IW,(f,k), (5)

where W(f) is a frequency band, corresponding to the
excitation by sensors, and Wi(f, k) is a wavenumber band
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FIGURE 1: The process to calculate dispersion curves based on FB theory.
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FIGURE 2: Geometry model of a rail track. (a) Cross section and (b) 3D geometry.

TaBLE 1: Material property of the rail.
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Young’s modulus, E (GPa) Poisson’s ratio, v

centered at the theoretical dispersion curve k(f) of the de-
sired UGW mode. After the filtering process, the filtered
spectrum can be transformed back by an inverse Fourier
transform (IFFT) to reconstructed space-time domain signal
uﬁlter(t’ X) [27]

k=

ES

m S=fn i
Uﬁlter (f’ k)e] (Grft= ) AfAk’
fi

1
Ufilter (t’ X) = E
k=

ES

1 f

(6)

where Af and Ak are the frequency and wavenumber in-
tervals, respectively. Therefore, individual modes can be
decomposed and reconstructed from the general UGW
signals based on wavenumber-frequency analysis.

3.2. Frequency Band Sweep. For a UGW system with
broadband excitation, each mode is generally dispersive. To
obtain a less dispersive UGW signal, a specific frequency
band should be determined for receiving sensing system.
Then, this frequency band can be adopted as W) in the 2D
f-k filter W(f, k). Thus, effective UGW propagating along the
rail is acquired. In the case of arbitrary excitation, the most
favorable frequency band is not known a priori. Therefore, a
sweep study on the frequency band (f;, f,) in the range of
interest should be implemented for practical applications.

The frequency band (f;, f,) can be obtained by using the
simple bandpass filter:
1, fi<f<f,

Wf(f) :{O, else, (7)
fl:fmin’fu:fmin+NfAf’

where f;and f, are the lower and upper frequency limits, Afis
frequency resolution, and N * Af is the frequency bandwidth
of the receiving system. The frequency band sweep is carried
out by sweeping lower frequency limit and frequency
bandwidth. For each frequency band (f;, f,), the relative
amplitude is calculated using equation (4) for a distant
position. The maximum amplitude indicates the most
sensitive frequency band to sense the UGW mode. With a
procedure of the frequency band sweep, the frequency range
of the receiving systems can be determined for the extraction
of efficient UGW. This methodology can be applied to
determine the sensor bandwidth and the filter in laser-based
UGW system.

4. 3D FE Modelling of Wave Propagation in
Rail Track

4.1. 3D FE Model Setup. Transient guided waves propagation
in rail is of importance to provide a visual and compre-
hensive way to study the case-based UGW modes in rails.
Different UGW modes can be studied by a certain combi-
nation of boundary condition and excitation. In this study, a
three-dimension FE model was established to simulate
broadband UGW by commercial finite element software
Abaqus, shown in Figure 4. The length of the investigated
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FiGure 4: FE model for wave propagation in a rail.

rail is 2m. A central difference method to integrate the
equations of wave motion explicitly through time is adopted
in the Abaqus/Explicit solver. The kinematic conditions at
one increment can be calculated by previous increment. This
explicit method is especially well-suited to solve high-speed
dynamic events such as elastic wave propagation. In con-
sideration of generating ultrasonic waves in rail with a
broadband up to the frequency of 120 kHz, a short pulse with
almost flat response within the frequency range was used as
the excitation signal, which is shown in Figure 5. Compared
to point source generation, line-source generation was better
at creating a directed surface wave to give a strong indication
to the presence of a surface flaw [29]. Therefore, in the study,
a pulse excitation was applied on a line at the rail web with
displacement boundary condition.

Element size is essential to achieve adequate accuracy in FE
based wave propagation modelling. Courant-Friedrichs—Lewy
(CFL) condition should be satisfied that element sizes are small
enough to calculate the wave propagation of the highest

frequency. To ensure enough accuracy of calculation, we chose
the element size as 10 nodes per minimum wavelength, i.e.,
surface wavelength at the largest frequency. Consider that tens
of kilo Hertz is the typical frequency range in UGW testing in
rails; this work focused on the frequency range from 20 kHz to
120kHz. On this basis, element size of 3 mm was adopted. To
reduce the size of the whole model and to minimize the
multiple end reflections and mode conversion, absorbing layers
with increasing damping (ALID) were applied at both ends of
the rail [30]. There were 30 successive layers added for both
ends, symmetrically. The thickness of each layer was 3 mm,
which was equal to the element size. Stiffness proportional
damping was set as 0 to limit the effects on stable time in-
crement. Mass proportional damping across absorbing layers
was set as a(x) = a,, xP. The maximum damping was set as
®pay = 1 X 107 and p was set to be 3. The whole model was
meshed with C3D8R element. Consequently, there are 692831
elements and 774530 nodes. The total number of variables in
the model is 2323590. The time increment was chosen as the
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FIGURE 5: Broadband excitation signal: (a) A-scan waveform and (b) its spectrum.

default value, because the software automatically calculated the
stable time step according to the minimum mesh size.

4.2. UGW Propagation in Rail. 'The UGW propagation along
rail at different moments, t=0.01 ms, 0.4 ms, and 0.8 ms, is
shown in Figure 6. From the results, there are serval obvious
wave modes propagating along rail head, rail web, and rail
foot, simultaneously. The main energy is focused along the
rail web. To identify the existing UGW modes, linear re-
ceivers were applied along the center of rail web. Figure 7(a)
shows B-scan signal of the wavefield along the rail web. The
contour band represents the out-of-plane displacement in x-
direction, which could be easily measured by laser vibr-
ometers in practical applications. It is clear to see that the
waveform is constantly changing with the propagation
distance as expected due to the multimodal and dispersive
nature. It is difficult to identify each UGW mode and
separate them in time-space wave field. Therefore, 2D
Fourier transform was applied to convert the time-space
wavefield into wavenumber-frequency domain, shown in
Figure 7(b). The horizontal axis is the positive frequency and
vertical axis is the positive wavenumber. From the results in
wavenumber-frequency domain, UGW modes can be dis-
cernible. In order to identify the existing UGW modes in
rails, the theoretically predicted dispersion curves in Section
2 were applied for comparison. The results show that the f-k
spectrum matches well with the predicted dispersion curves
based on FB theory. Although there are numerous UGW
modes observed within 0-120 kHz, only several dominant
wave modes can be clearly identified. Specifically, the most
dominant mode with most excited energy, here denoted as
WO, can be clearly observed and separated from other
modes. Because this W0 mode possesses most of the energy,

it is reasonably considered to be the effective propagating
UGW mode along the rail web. Therefore, W0 mode should
be well extracted for the application of SHM for rails.

4.3. Extraction of Least-Dispersive UGW Mode. A 2D f-k
bandpass filter is designed as equation (5), while the fre-
quency filter Wf) =1 is across all the frequency and the
wavenumber  filter Wi(f, k) is designed as
W (f,k) =0.5[1 + cos(|k — k(f)I/D,)]. Considering the
closeness of various UGW modes in rails, high resolution in
f-k domain is required to separate all the modes. Therefore,
the wavenumber bandwidth D, should be chosen as small
as possible to exclude other modes. Here, a small value is
chosen as D, = 20m. Moreover, the wavenumber incre-
ment is reduced to 0.5m via polynomial interpolation to
match with the k-f result from FE simulation. Therefore, the
dominant mode WO was filtered and the resulting spectrum
for retaining the dominant mode is shown in Figure 8(a).
This dominant UGW mode along rail web can also be
confirmed from the dispersion analysis of rail track in
Section 2 and the 3D mode shape of WO at 60 kHz is shown
in Figure 7. It is clear to see that most energy propagates
along the rail web and the peak displacement appears at the
central line.

Although a pure mode WO is successfully extracted from
the original multimodal signal, the dispersion curve is
nonlinear in the frequency of 0-120kHz, especially at low
frequency around 20 kHz. This nonlinearity at low frequency
will make the UGW waveform change along the propagation
distance. Therefore, in order to effectively apply mode W0
for SHM application in rails, a specific frequency band of the
excitation and receiving system should be defined to extract
the nondispersive or least-dispersive part. To choose the
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FIGURE 6: Wave propagation in a rail at time of (a) t=0.01 ms, (b) t=0.4ms, and (c) t=0.8ms.
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FIGURE 7: UGW signal from the rail web in (a) time-space domain and (b) wavenumber-frequency domain compared with theoretical

dispersion curves.

specific frequency band for sensing system, a frequency band
sweep was applied to investigate the effective amplitude of
the reconstructed signal. The original signal was received at
1 m away from the excitation position. The initial frequency
was set as 20kHz, because our main focus is the field of
ultrasonics. The amplitudes were normalized with the
maximum value, and the result is as shown in Figure 9. The
higher the amplitude, the more effective the UGW propagate
along the rail web. From the results, the effective amplitude

was obtained with a frequency band of 25-120 kHz, cor-
responding to the least-dispersive part of dominant mode
WO.

Therefore, with the selected frequency band of
25-120 kHz, the spectrum was filtered as in Figure 10(a). To
observe the wavefield of the single UGW mode WO in space-
time domain, the filtered spectrum of WO was then trans-
formed using the inverse 2D FFT. Figure 10(b) gives the
comparison between the original full wavefield and the
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extracted wavefields. The time-space wavefield presented
reveals that the W0 mode is almost nondispersive and able to
propagate with a long distance along the rail web. The energy
is much more focused in waveform after the filtered WO
mode is reconstructed. There is only wave broadening due to
the slightly dispersive nature in the relatively large frequency
range 25-120kHz, but no more extra wave packets in the
signal, denoting that single mode has been extracted.
Therefore, the filtering technique and frequency band sweep
approach can be applied to extract effective UGW mode
under a general broadband excitation along rail web.

5. Conclusions

The natures of multimode and dispersion have always been
difficult issues in the assessment of integrity of rails based on
UGW technology. Due to the complex cross section of rails and
continuous train-rail interaction of the railway system, it is not
easy to obtain a single mode even with delicate sensor de-
ployment. Moreover, although measured signals with broad-
band excitation can provide rich information regarding UGW
propagation in rails, useful information cannot be extracted in
time or frequency domains. In this article, we present a
methodology to extract efficient UGW in rails using wave-
number-frequency analysis based on FB theory.

Firstly, dispersive analysis was implemented using WFE
based on Floquet-Bloch theory. The complex cross section of
rail, as well as the available element types and material li-
brary, can be handled with commercially available FE
software. By sweeping an incident wavenumber, the dis-
persive curves were obtained for a rail of 56E1. Then, a 3D FE
numerical model was built to investigate the UGW prop-
agation along the rail within the frequency range of
0-120kHz. The time-space wavefield along rail web was
analysed by wavenumber-frequency method. The results
show the feasibility to verify the dispersion curves and
identify specific modes. By carefully designing a 2D band-
pass filter based on the predicted dispersion curves and
selected wavelength bandwidth D, it is able to extract and
reconstruct dominant mode WO. Further, the frequency
range of W0 mode with least dispersion was determined
based on a frequency band sweep technique. Thus, a pure
and least-dispersive  UGW mode was identified and
extracted under a broadband excitation. The corresponding
optimal frequency range is 25-120 kHz. This mode has high
potential for evaluation of the integrity of the rail web.

The principle and basic methodology introduced in this
paper are also effective for the investigation of other areas of
the rail track, such as rail head or rail foot.
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