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/e blasting vibration signals show obvious zoning propagation characteristics. Because of not considering the specific
influences of geological and topographical conditions, the existing zoning methods of blasting vibration cannot fully
describe the internal details of blasting vibration signals. /erefore, a new zoning method of blasting vibration based on
energy proportion was proposed in this paper, in which the energy proportion in low, medium, and high frequency bands
after multiresolution wavelet analysis is used as the zoning index to distinguish the different characteristics of blasting
vibration signals in different zones. Based on the proposed zoning method, 343 sets of measured blasting vibration signals
were used to train and test the SVM classification models with four different types of kernel functions. /e testing results
demonstrate that the zoning method of blasting vibration based on energy proportion has high feasibility, flexibility, and
reliability, and the SVM classification models with RBF have higher accuracy than models with other kernel functions in
blasting vibration zoning prediction.

1. Introduction

Blasting technology not only brings convenience to en-
gineering construction but also causes a series of negative
effects, among which blasting vibration effect is the most
serious. Under the influences of blasting vibration effect,
the buildings around the blasting zone may be damaged
and cracked and may even collapse [1–3]. /e degree of
blasting vibration effect is closely related to characteristics
of blasting vibration signals. /erefore, the study on the
characteristics of blasting vibration signals is of great
theoretical and practical significance for the prediction
and control of blasting vibration effect. /e peak particle
velocity (PPV) is considered to be the most important
parameter to represent the characteristics of blasting vi-
bration signals. Many researchers have focused on de-
veloping empirical equations and statistical models for
estimating PPV [4–8]. In the last few years, artificial in-
telligent (AI) methods have been widely employed for

PPV prediction, such as artificial neural network (ANN)
[9], support vector machine (SVM) [10–12], classification
and regression tree (CART) [13], imperialistic competi-
tive algorithm (ICA) [14], genetic algorithm (GA) [15, 16],
particle swarm optimization (PSO) [17, 18], nested ex-
treme learning machine (Nested-ELM) [19], and so on. In
addition to PPV, dominant frequency is also considered as
another important index to characterize blasting vibration
signals, which has been studied by more and more
scholars. Guo et al. [20], Zhou et al. [21], Peng et al. [22],
and Gao et al. [23] analyzed the attenuation mechanism
and attenuation law of dominant frequency of blasting
vibration. Lu et al. [24], Li et al. [25], Liu et al. [26], and
Gou et al. [27] proposed the theoretical formulas or
prediction models with intelligent algorithms for domi-
nant frequency.

Because of the very complex propagation mechanism
and the strong randomness, fuzziness, and uncertainty of
blasting vibration, the characteristics of blasting vibration
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signals are quite different in different zones. Some re-
searchers have tried to study the zoning method of blasting
vibration and analyze signal characteristics in each zone. Li
et al. [28], Pang and Chen [29], and Zhang et al. [30] took the
different values of scaled charge or scaled distance as zoning
indexes. Meng [31] and Wang [32] selected PPV as the
threshold for blasting vibration zoning. /e existing zoning
indexes such as scaled charge, scaled distance, and PPV only
reflect the intensity of blasting vibration signals or its main
influence factors including the charge weight and distance
from explosion source. Because of not considering the
specific influences of geological and topographical condi-
tions, the existing zoning methods of blasting vibration
cannot fully describe the detailed characteristics of blasting
vibration signals.

Support vector machine (SVM) is a very powerful
multifunctional intelligent learning algorithm, which can
perform linear or nonlinear regression, classification, and
even outlier detection. And the SVM regression algorithm
has been effectively applied in the prediction of blasting
vibration intensity [10–12]. Because of keeping the original
signal details, the time-domain signals can be used for
characteristic extraction and classification with the help of
appropriate algorithms [33–36]. Compared with other
classification algorithms, the SVM classification algorithm
has the advantages of relatively small sample demand, low
structural risk, and nonlinearity [37], and it has been widely
used in various fields [38–40]. Yang and Wu [41] used SVM
classification algorithm to discriminate blasting vibration
and rock fracture microseismic signals and achieved good
classification results. However, how to identify and classify
the detailed characteristics of the same blasting vibration
signals in different zones remains to be further studied.
/erefore, a new blasting vibration zoning method based on
energy proportion was proposed in this paper. 343 sets of
measured blasting vibration signals were selected for mul-
tiresolution wavelet analysis, and the energy distribution
characteristics of each subfrequency band were studied.
/en, using the proposed zoning method of blasting vi-
bration based on energy proportion, the blasting vibration
signals were divided into different blasting vibration zones.
Finally, the zoning results were used as samples to train and
test the SVM classification models with four different kernel
functions. /e testing results demonstrate that the new
zoning method of blasting vibration based on energy pro-
portion proposed in this paper has high feasibility, flexibility,
and reliability, and the SVM classification models with RBF
have high prediction accuracy.

/e main contributions are given as follows:

(i) A new blasting vibration zoning method based on
energy proportion was proposed, in which the energy
proportion in low,medium, and high frequency band
after multiresolution wavelet analysis is used as the
zoning index to distinguish the different character-
istics of blasting vibration signals in different zones.

(ii) 343 sets of measured blasting vibration signals were
used to train and test the SVM classification models
with four different kernel functions based on the

proposed zoning method. /e comparison results
show that the SVM classification models with RBF
have higher accuracy than models with other kernel
functions in blasting vibration zoning prediction.

(iii) It is proved that the zoning method of blasting
vibration based on energy proportion has high
feasibility, flexibility, and reliability, and the SVM
classification models with RBF have high prediction
accuracy./e proposed zoning method and its SVM
models can not only provide theoretical guidance
for studying the specific characteristics of blasting
vibration signals in each zone but also provide an
important basis for the prediction, control, and
safety standards for blasting vibration.

2. Classification Principle of SVM Algorithm

SVM is a machine learning method developed from sta-
tistical learning theory, and it has been widely used in
solving various classification problems due to its excellent
performance [42–45]. /e classification principle of SVM
algorithm is as follows [46–48].

It is assumed that the training sample set
(xi, yi), i � 1, 2, . . . , l􏼈 􏼉 with size l consists of two categories
to keep generality. When xi is the first category, yi � 1; when
xi is the second category, yi � −1.

If the sample is linearly separable, there is a classification
hyperplane:

wx + b � 0. (1)

/en, make the sample set meet

wxi + b≥ 1, yi � 1,

wxi + b≤ − 1, yi � −1,
􏼨

i � 1, 2, . . . , l,

(2)

where w, x, xi ∈ R, w, b, are the parameters to be deter-
mined; w is the normal vector of classification hyperplane
wx + b � 0.

/e margin between sample point xi and classification
hyperplane is defined as

εi � yi wxi + b( 􏼁 � wxi + b
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌, (3)

where w is normalized and defined as geometric margin:

δi �
wxi + b

‖w‖
. (4)

In order to classify the sample set correctly, it is necessary
to select an optimal classification hyperplane among the
numerous classification hyperplanes to maximize the distance
δ between the sample set and the classification hyperplane.

When ε � |wxi + b| � 1, the distance between the two
types of sample points is 2((|wxi + b|)/‖w‖) � (2/‖w‖). And
the goal is to find the optimal classification hyperplane under
the constraint of formula (2) to make (2/‖w‖) maximum and
(‖w‖2/2) minimum.

/erefore, the linear separable SVM problem is trans-
formed into a quadratic programming problem:
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min
1
2
‖w‖

2
,

constraint condition: yi wxi + b( 􏼁( 􏼁≥ 1, i � 1, 2, . . . , l.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(5)

Because the objective function and constraint condition are
convex, according to the optimization theory, there is a unique
global minimum solution to this problem. Use the Lagrange
multiplier method and the KKT (Karush–Kuhn–Tucker)
condition:

αi yi xxi( 􏼁 + b( 􏼁 − 1( 􏼁 � 0. (6)

/e optimal classification function can be obtained:

f(x) � sgn 􏽘
l

i�1
α∗i yi xxi( 􏼁 + b

∗⎡⎣ ⎤⎦, (7)

where sgn is the symbolic function, a∗ and b∗ are the pa-
rameters to determine the optimal hyperplane partition, and
(xxi) is the dot product of two vectors.

Most problems in engineering practice are nonlinear
separable problems, and the quadratic programming
problems can bemodified as follows by introducing the slack
variable ξi:

min
1
2
‖w‖

2
+ C 􏽘

i

ξi, ξi ≥ 0,

constraint condition: yi wxi + b( 􏼁( 􏼁≥ 1 − ξi, i � 1, 2, . . . , l,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(8)

where ξi is the slack variable and C is the penalty coefficient.
Cortes and Vapnik [49] proposed that the kernel

function K(xi, xj) satisfying Mercer conditions should be
used instead of dot product operations to solve duality
problems:

K xi, xj􏼐 􏼑 � Φ xi( 􏼁Φ xj􏼐 􏼑. (9)

And the optimal classification function is

f(x) � sgn w
∗Φ(x) + b

∗
( 􏼁 � sgn 􏽘

l

i�1
α∗i yiΦ xi( 􏼁 ·Φ(x) + b

∗⎛⎝ ⎞⎠

� sgn 􏽘
l

i�1
α∗i yiK xi, x( 􏼁 + b

∗⎛⎝ ⎞⎠.

(10)

/e kernel functions commonly used in SVMmodels are
shown in Table 1.

3. Proposal of a NewZoningMethod of Blasting
Vibration Based on Energy Proportion

3.1. Principle ofWaveletAnalysis. Fourier analysis has solved
many problems in signal processing. However, Fourier
analysis can only obtain the whole spectrum of the signals,
and it has shortcomings in analyzing local characteristics
and processing time-varying nonstationary signals. /ere-
fore, wavelet analysis [50], a new time-frequency analysis
method, came into being. It retains the advantages of Fourier
transform and makes up for the shortcomings in local
analysis. Based on different wavelet functions [51], wavelet

analysis can accurately reveal the distribution characteristics
of signals in time and frequency domain simultaneously.

Meet the condition [52, 53]

􏽚
+∞

−∞
|Ψ(ω)|

2
|ω|

− 1dω< 0, (11)

where Ψ(ω) is the frequency-domain representation of the
square integrable function ϕ(t) and ϕ(t) is a basic wavelet or
wavelet function.

In the wavelet transform, the basic wavelet function first
moves the displacement τ and then makes the inner product
with the signal X(t) in different scales of a:

WTx(a, τ) �
1
��
a

√ 􏽚
+∞

−∞
x(t)ϕ∗

t − τ
a

􏼒 􏼓dt, a> 0, (12)

where a is the scale factor expanding or contracting with the
basic wavelet function ϕ(t) and τ is the response dis-
placement whose value can be positive or negative. Because
both a and τ are continuous variables, the wavelet transform
is also called continuous wavelet transform.

/e equivalent frequency-domain representation of
equation (12) is as follows:

WTx(a, τ) �

��
a

√

2π
􏽚

+∞

−∞
X(ω)Ψ∗(aω)e

+jωτdω, (13)

where X(ω) is the frequency-domain representation of x(t).

3.2. Multiresolution Wavelet Analysis of Blasting Vibration
Signals. /eblasting zone of groundwork excavation project
in Rizhao District is about 260m long and 120m wide, and
the excavation depth is 1–6m. /e geomorphic unit of the

Table 1: Kernel functions in SVM models.

Types of kernel functions Expressions
Linear kernel function(LKF) K(x, xi) � xxi

Polynomial kernel function
(PKF) K(x, xi) � (xxi + 1)d

Radial basis function (RBF) K(x, xi) � exp(−g · ‖x − xi‖
2)

Sigmoid kernel function (SKF) K(x, xi) � tanh(k(xxi) + θ)
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site belongs to the low mountain or hilly area in the Yellow
Sea land, and the geomorphic morphological type belongs to
the structural denudation residual hill. /e bedrock of the
site is granite and gneiss, which forms different degrees of
weathering zones from top to bottom because of experi-
encing a long period of geological process. /e short-hole
expanding blasting method is mainly adopted in the exca-
vation project. /e hole diameter is 38mm, the hole spacing
is about 1.2m, the row spacing is 1m, and the hole depth is
1.6m.

In order to control the vibration effect caused by blasting
excavation safely, the monitoring work of blasting vibration
was carried out in the engineering site during the whole
construction process. A large number of blasting vibration
signals were measured by IDTS3850 blasting vibration
testers and their matching speed sensors. Among them, 343
sets of effective typical signals in the same direction were
selected as the sample data of signal identification and
zoning in this paper.

/e Sadovsky formula is deformed as follows:

v � K
r

Q(1/3)
􏼠 􏼡

−α

, (14)

where v is PPV (cm/s), K and α are the coefficients related to
blasting methods and site conditions, (r/Q(1/3)) is the scaled
distance (m/kg1/3), r is the distance from explosion source
(m), and Q is the maximum charge per delay (kg).

/e zoning method of blasting vibration based on scaled
distance in reference [54] is shown in Table 2.

Using the above zoning method, 343 sets of measured
blasting vibration signals were divided into different blasting
vibration zones. /en, the multiresolution wavelet analysis was
carried out on the 343 sets of signals, and the wavelet basis
function db8 of dbN wavelet system constructed by Inrid
Daubechies was selected [55]. Because the sampling frequency of
the blasting vibration testers used in this test is 10000Hz,
according to the sampling theorem, the Nyquist frequency is
10000/2� 5000Hz. Since the principle frequency of general
buildings is in the range of 2∼10Hz, the blasting vibration signal
at eachmeasuring point is decomposed by wavelet with the scale
of 11, and the corresponding 12 frequency bands are as follows:
0∼2.441Hz, 2.441∼4.882Hz, 4.882∼9.765Hz, 9.765∼19.531Hz,
19.531∼39.062Hz, 39.062∼78.125Hz, 78.125∼156.25Hz,
156.25∼312.5Hz, 312.5∼625Hz, 625∼1250Hz, 1250∼2500Hz,
and 2500∼5000Hz.

Limited by the space, some sets of typical blasting vi-
bration data in the near, medium, and far zones are listed
here, as shown in Table 3. /e dominant frequency, PPV,
and energy proportion results of each subfrequency band of
the signals listed in Table 3 by multiresolution wavelet
analysis are shown in Tables 4–9.

3.3. A New Zoning Method of Blasting Vibration Based on
EnergyProportion. It can be seen from Tables 4 to 6 that the
zoning method of blasting vibration based on scaled dis-
tance basically conforms to the decay law of blasting vi-
bration frequency: the frequency band of blasting vibration
signals in the near zone is mainly high frequency band

(≥78.125), the frequency band in the medium zone is
mainly medium frequency band (9.7657∼78.125), and the
frequency band in the far zone is mainly low frequency
band (0∼9.7657). According to the blasting vibration
zoning method based on scaled distance, signal 28 in Ta-
ble 4 is divided into blasting vibration near zone, and the
frequency is mainly in the high frequency band. Signal 57 in
Table 5 is divided into medium zone, and the frequency is
mainly in the medium frequency band. Signal 71 in Table 6
is divided into far zone, and the frequency is mainly in the
low frequency band. /e above zoning method effectively
reflects the frequency decay characteristics of the near,
medium, and far zones, which has a certain guiding role in
studying the propagation law and characteristics of blasting
vibration waves in different zones.

However, the limitations of the blasting vibration zoning
method based on scaled distance are obvious. Tables 7 to 9
show the corresponding wavelet analysis results of blasting
vibration signals selected separately from near, medium, and
far zones based on scaled distance. /rough observation, it
can be seen that the frequency-band energy proportions of
the signals in some blasting vibration zones show the
characteristics of other zones, and the examples are as
follows. Signal 10 in Table 7 is divided into blasting vibration
near zone based on scaled distance; according to the decay
law of blasting vibration frequency, the frequency in the near
zone should be mainly in the high frequency band, but the
dominant energy of the signal is mainly concentrated in the
medium frequency band. Signal 6 in Table 8 is divided into
blasting vibration medium zone based on scaled distance;
according to the decay law of blasting vibration frequency,
the frequency in the medium zone should be mainly in the
medium frequency band, but the dominant energy of the
signal is mainly concentrated in the low frequency band.
Signal 5 in Table 9 is divided into blasting vibration far zone
based on scaled distance; according to the decay law of
blasting vibration frequency, the frequency in the far zone
should be mainly in the low frequency band, but the
dominant energy of the signal is mainly concentrated in the
high frequency band./e existence of these special examples
limits the study on the propagation characteristics of the
blasting vibration signals in different zones and further
affects the control of blasting vibration and the formulation
of blasting safety standards.

/erefore, it is more reasonable to take the relative
energy proportion of each frequency band as the index to
divide blasting vibration zones, and a new zoning method of
blasting vibration based on energy proportion was proposed
in this paper, as shown in Figure 1.

/e zoning method of blasting vibration based on energy
proportion can be described as follows:

Table 2: Blasting vibration zoning method based on scaled
distance.

(r/Q(1/3)) Blasting vibration zones
(0, 12) Blasting vibration near zone
(12, 22) Blasting vibration medium zone
(22, +∞) Blasting vibration far zone
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Table 5: Dominant frequency, PPV, and energy proportion of each subfrequency band at measuring point 57 in the medium zone.

Frequency band (Hz) Dominant frequency (Hz) PPV (cm/s) Energy proportion (%)
0∼2.4415 0.6 0.0036 0.2496
2.4415∼4.8829 4.3 0.0004 0.0005
4.8829∼9.7657 7.3 0.0010 0.0016
9.7657∼19.5313 15.3 0.0208 0.2916
19.5313∼39.0625 38.5 0.2108 17.0179
39.0625∼78.125 50.7 0.5771 79.6341
78.125∼156.25 110.5 0.1483 2.5940
156.25∼312.5 177.6 0.0358 0.1868
312.5∼625 332.6 0.0114 0.0160
625∼1250 748.3 0.0027 0.0029
1250∼2500 2150.9 0.0026 0.0026
2500∼5000 3251.3 0.0021 0.0024

Table 6: Dominant frequency, PPV, and energy proportion of each subfrequency band at measuring point 71 in the far zone.

Frequency band (Hz) Dominant frequency (Hz) PPV (cm/s) Energy proportion (%)
0∼2.4415 0.6 0.0453 97.8809
2.4415∼4.8829 4.3 0.0005 0.0013
4.8829∼9.7657 9.2 0.0005 0.0015
9.7657∼19.5313 17.1 0.0043 0.0404
19.5313∼39.0625 29.9 0.0224 0.5545
39.0625∼78.125 51.3 0.0355 1.0447
78.125∼156.25 80 0.0213 0.1552
156.25∼312.5 235 0.0499 0.2468
312.5∼625 355.2 0.0227 0.0561
625∼1250 943 0.0079 0.0061
1250∼2500 1761.5 0.0147 0.0071
2500∼5000 2505.5 0.0176 0.0054

Table 3: Typical blasting vibration data in the near, medium, and far zones.

No. Charge (kg) Distance (m) Scaled distance (m/kg1/3) Blasting vibration zone PPV (cm/s) Dominant frequency (Hz)
28 6.5 15 8.0375 Near zone 2.3444 323.4863
57 10 36.9 17.1275 Medium zone 0.8069 50.6592
71 11 63 28.3276 Far zone 0.0900 51.8799
10 20 26.9 9.9100 Near zone 0.6891 51.8799
6 9 35 16.8264 Medium zone 0.5264 222.1680
5 17.5 78.7 30.3130 Far zone 0.7203 42.7246

Table 4: Dominant frequency, PPV, and energy proportion of each subfrequency band at measuring point 28 in the near zone.

Frequency band (Hz) Dominant frequency (Hz) PPV (cm/s) Energy proportion (%)
0∼2.4415 1.8 0.0454 9.5090
2.4415∼4.8829 3.7 0.0134 0.1108
4.8829∼9.7657 6.1 0.0287 0.2129
9.7657∼19.5313 12.8 0.0325 0.1905
19.5313∼39.0625 28.1 0.0430 0.1714
39.0625∼78.125 72 0.3041 2.9811
78.125∼156.25 153.8 0.3302 1.9983
156.25∼312.5 305.8 1.8699 64.5484
312.5∼625 331.4 1.2202 19.7658
625∼1250 919.2 0.2458 0.4337
1250∼2500 1256.7 0.0841 0.0740
2500∼5000 2774 0.0300 0.0040
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Step 1. Input the blasting vibration signal.
Step 2. Carry out multiresolution wavelet analysis on

the blasting vibration signal.
Step 3. Obtain the energy proportion of each sub-

frequency band.
Step 4. Determine which zone the blasting vibration

signal belongs to according to the following

conditions. (1) When the energy proportion of
high frequency band is higher than that of
medium frequency band and low frequency
band, the corresponding signal is divided into
blasting vibration near zone. (2) When the
energy proportion of medium frequency band
is higher than that of high frequency band and
low frequency band, the corresponding signal is
divided into blasting vibration medium zone.
(3) When the energy proportion of low fre-
quency band is higher than that of high fre-
quency band and medium frequency band, the
corresponding signal is divided into blasting
vibration far zone.

According to the zoning method of blasting vibration
based on energy proportion, the frequency of signal 28 in
Table 4 is mainly in the high frequency band, which is
divided into blasting vibration near zone. /e frequency
of signal 57 in Table 5 is mainly in the medium frequency
band, which is divided into blasting vibration medium
zone. /e frequency of signal 71 in Table 6 is mainly in the
low frequency band, which is divided into blasting vi-
bration far zone. /e frequency of signal 10 in Table 7 is
mainly in the medium frequency band, which is divided
into blasting vibration medium zone. /e frequency of
signal 6 in Table 8 is mainly in the low frequency band,
which is divided into blasting vibration far zone. /e
frequency of signal 5 in Table 9 is mainly in the high
frequency band, which is divided into blasting vibration
near zone.

4. SVM Classification Models of Blasting
Vibration Zoning Method

Having enough samples with good typicality and high
precision is an important condition for SVM modelling.
343 sets of representative effective signals were selected
from a large number of measured blasting vibration sig-
nals, and the results by wavelet multiresolution analysis
were taken as samples of SVM classification models. Ta-
ble 10 shows the energy proportion results of 343 sets of
measured blasting vibration signals after multiresolution
wavelet analysis and the classification results by the

Table 8: Dominant frequency, PPV, and energy proportion of each
subfrequency band at measuring point 6 in the medium zone.

Frequency band
(Hz)

Dominant
frequency (Hz)

PPV
(cm/s)

Energy
proportion (%)

0∼2.4415 1.2 0.0408 70.2143
2.4415∼4.8829 3.7 0.0012 0.0072
4.8829∼9.7657 7.9 0.0026 0.0153
9.7657∼19.5313 14.0 0.0045 0.0193
19.5313∼39.0625 25.0 0.0125 0.1006
39.0625∼78.125 53.7 0.0780 1.5408
78.125∼156.25 153.8 0.1529 4.6620
156.25∼312.5 219.1 0.4386 17.6503
312.5∼625 316.8 0.2489 5.5965
625∼1250 752.0 0.0745 0.1226
1250∼2500 2197.3 0.0291 0.0416
2500∼5000 2802.7 0.0438 0.0295

Table 9: Dominant frequency, PPV, and energy proportion of each
subfrequency band at measuring point 5 in the far zone.

Frequency band
(Hz)

Dominant
frequency (Hz)

PPV
(cm/s)

Energy
proportion (%)

0∼2.4415 1.8 0.0030 0.2050
2.4415∼4.8829 3.7 0.0019 0.0180
4.8829∼9.7657 6.7 0.0019 0.0167
9.7657∼19.5313 14.6 0.0064 0.0730
19.5313∼39.0625 34.8 0.1199 12.3613
39.0625∼78.125 48.8 0.1981 14.5865
78.125∼156.25 121.5 0.2304 10.6664
156.25∼312.5 227.7 0.5570 51.9499
312.5∼625 330.8 0.2260 10.0215
625∼1250 912.5 0.0082 0.0485
1250∼2500 2269.9 0.0031 0.0337
2500∼5000 2730.1 0.0038 0.0195

Table 7: Dominant frequency, PPV, and energy proportion of each subfrequency band at measuring point 10 in the near zone.

Frequency band (Hz) Dominant frequency (Hz) PPV (cm/s) Energy proportion (%)
0∼2.4415 2.4 0.0040 0.2963
2.4415∼4.8829 2.4 0.0023 0.0132
4.8829∼9.7657 8.5 0.0025 0.0242
9.7657∼19.5313 17.7 0.0755 4.8651
19.5313∼39.0625 36.6 0.2197 25.3723
39.0625∼78.125 51.9 0.5305 66.5348
78.125∼156.25 94.6 0.1026 2.8272
156.25∼312.5 210.0 0.0130 0.0323
312.5∼625 360.7 0.0060 0.0123
625∼1250 731.2 0.0023 0.0090
1250∼2500 1907.3 0.0025 0.0073
2500∼5000 3092.7 0.0026 0.0059
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blasting vibration zoning method proposed in Section 3.3.
Labels 1 to 3 represent blasting vibration near, medium,
and far zones, respectively.

Using simple random sampling method, 257 sets of
samples (75% of the total number of samples) in Table 10
were selected as training samples of SVM classification
models and the SVM classification models were established.
Among the 257 sets of training samples, there are 28 sets of
samples in the near zone, 195 sets of samples in the medium
zone, and 34 sets of samples in the far zone. /e remaining
86 sets of samples (25% of the total number of samples) were
taken as testing samples to verify the established models.
Among the 86 sets of testing samples, there are 28 sets of
samples in the near zone, 45 sets of samples in the medium
zone, and 13 sets of samples in the far zone. As shown in
Table 10, samples 1 to 257 are training samples, and samples
258 to 343 are testing samples.

In order to reduce the influence of the large difference
between the parameters of the samples on the performance
of prediction models, all sample data should be normalized
according to the following formula before the training of
SVM classification models [56]:

Xij �
2 xij − xmin(i)􏼐 􏼑

xmax(i) − xmin(i)
− 1, (15)

where xij is the measured value of the ith variable in the jth
sample and xmax(i) and xmin(i)are the maximum and
minimum measured values of the ith variables.

All the sample data in Table 10 were normalized to [−1,
1] by formula (15). After the classification of the models was
completed, the classification results were also anti-nor-
malized by using this formula.

Four types of kernel functions including LKF, PKF, RBF,
and SKF were used to train SVM classification models, and
different parameters were selected by the cross validation
method for SVM classification models with any type of
kernel function./en, the optimal parameters were obtained

for training models, and the blasting vibration zoning
models based on energy proportion were established.

/e accuracy of SVM classification models is evaluated
by the following formula:

accuracy �
Nc

Nt

× 100%, (16)

where Nc is number of samples correctly classified and Nt is
total number of samples.

/e flowchart of SVM classification models of the
proposed blasting vibration zoning method in this paper is
shown in Figure 2.

/e detailed steps of SVM classification models are as
follows:

Step 1. /e data are normalized and divided into
training samples and testing samples.
Step 2. Initialize the parameters of SVM classification
models, which include penalty coefficient and kernel
function parameters.
Step 3. Optimize the penalty coefficient and kernel pa-
rameters. In SVM training, the penalty coefficient and
kernel function parameters take discrete values in a
certain range, and then the optimal values with the highest
accuracy are obtained by the cross validation method.
Step 4. /e optimal parameters obtained in Step 3 are
used as the parameters of SVM classification models to
classify the testing samples. If the end conditions are
met, the SVM classification models and the classifi-
cation accuracy are saved. Otherwise, return to Step 3.
Step 5. Output the SVM classification models with four
kernel functions and their classification accuracy.

/e parameters and accuracy of SVM classification
models with four kernel functions based on the 343 sets of
samples are shown in Table 11.

It can be seen from Table 11 that the average values of
classification accuracy of SVM models with LKF, PKF, RBF,

Blasting vibration signal

Multiresolution wavelet analysis

Energy proportion of each subfrequency band 

Blasting vibration near zone Blasting vibration medium zone

Blasting vibration far zone
NoNo

Yes Yes

Energy proportion of high frequency band
>energy proportion of medium frequency band

&
Energy proportion of high frequency band
>energy proportion of low frequency band

Energy proportion of medium frequency band
>energy proportion of low frequency band

&
Energy proportion of medium frequency band

>energy proportion of high frequency band

Figure 1: Flowchart of the zoning method of blasting vibration based on energy proportion.
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Table 10: Samples of SVM classification models.

No. PD1 PD2 PD3 PD4 PD5 PD6 PD7 PD8 PD9 PD10 PD11 PD12 Types
1 34.9899 0.0006 0.0053 0.0837 4.6407 55.7647 3.5752 0.7976 0.1192 0.0087 0.0086 0.0057 2
2 0.4266 0.0057 0.0325 0.9285 5.0815 69.3728 22.8396 1.282 0.0199 0.0039 0.0038 0.0033 2
3 10.1402 0.0009 0.0036 0.3908 10.61 69.7286 8.7192 0.3669 0.0357 0.0014 0.0015 0.0013 2
4 49.9183 0.0017 0.0049 0.3082 6.5566 32.9399 9.4449 0.7546 0.0362 0.0134 0.0132 0.0081 3
5 0.669 0.3257 0.3221 0.3979 0.9096 19.9203 49.1775 8.13 15.3682 2.0379 2.6942 0.0477 1
6 5.3003 0.0229 0.4616 1.1009 2.7226 25.3614 10.2591 40.1265 14.2514 0.2683 0.1195 0.0056 1
7 20.8464 0.4202 0.4336 0.4739 0.2685 0.8827 4.3216 15.2323 56.4006 0.4078 0.3068 0.0055 1
8 0.2394 0.0056 0.1217 0.8419 16.961 77.2803 4.4831 0.0613 0.0025 0.001 0.0011 0.0011 2
9 3.552 1.4435 0.9823 2.4488 20.0208 34.9933 32.1278 2.9461 0.8424 0.3046 0.123 0.2153 2
10 1.2521 0.8527 0.6572 0.3043 0.7247 2.9896 35.9766 33.3059 19.3597 3.0272 1.5348 0.0152 1
11 19.5308 0.22 0.3121 0.1818 0.2147 0.7938 0.8867 34.9105 41.4989 0.9115 0.5299 0.0093 1
12 0.0423 0.002 0.0051 0.6367 4.7189 84.4154 10.1338 0.0437 0.0006 0.0005 0.0005 0.0005 2
13 9.5117 0.0009 0.0031 0.9062 70.0943 18.7993 0.6401 0.0257 0.0064 0.0042 0.0042 0.0038 2
14 9.9489 0.0012 0.0978 0.6183 28.6976 58.4203 2.1463 0.0408 0.0102 0.0073 0.0059 0.0053 2
15 0.2728 0.0038 0.1004 0.5473 13.5466 80.2582 5.2088 0.0574 0.0017 0.0009 0.001 0.001 2
... ... ... ... ... ... ... ... ... ... ... ... ... ...
329 45.168 0.0029 0.112 0.3264 15.502 20.2044 16.4387 2.0677 0.1224 0.0257 0.0167 0.0133 3
330 1.2114 0.017 0.0515 0.3248 10.7671 45.9149 40.0368 1.5904 0.0439 0.0175 0.014 0.0108 2
331 65.8766 0.0094 0.0163 0.1364 6.6911 13.4421 11.9669 1.2144 0.5079 0.0615 0.0417 0.0358 3
332 0.2774 0.0207 0.0791 0.1799 8.379 67.579 22.7869 0.6862 0.005 0.0025 0.002 0.0022 2
333 13.1182 0.0008 0.0144 0.0923 16.8056 59.9594 8.3206 1.612 0.0538 0.0095 0.0075 0.0059 2
334 0.4644 0.0267 0.1362 0.9169 5.8446 72.4972 19.0858 1.0113 0.0067 0.0036 0.0032 0.0034 2
335 23.3669 0.001 0.0079 1.3397 21.1059 34.2772 17.7088 2.0573 0.0974 0.0166 0.0119 0.0093 2
336 0.9944 0.0034 0.1349 1.4361 8.5149 51.1464 36.9286 0.7893 0.0194 0.0119 0.0123 0.0083 2
337 12.0654 0.0007 0.0019 0.2775 11.6415 71.6843 4.0703 0.2333 0.021 0.0014 0.0015 0.0013 2
338 76.8729 0.0027 0.0203 0.1738 4.5146 12.6639 5.4112 0.2615 0.0361 0.0157 0.0163 0.011 3
339 1.7324 0.0013 0.0571 0.3428 1.4073 84.1498 10.6934 1.519 0.0651 0.0111 0.0112 0.0095 2
340 26.6758 0.0012 0.0165 0.2755 18.7241 46.8901 6.8235 0.5219 0.0629 0.0027 0.0031 0.0027 2
341 85.1141 0.0011 0.0043 0.0881 2.8739 7.9185 3.4547 0.406 0.0724 0.0264 0.0252 0.0153 3
342 0.2431 0.0013 0.0351 0.204 5.1819 83.2178 9.4493 1.6365 0.0255 0.0018 0.002 0.0017 2
343 8.4562 0.0004 0.003 0.0743 7.5993 74.9625 8.3907 0.4444 0.0654 0.0014 0.0013 0.0012 2
Note. PD1∼PD12, respectively, represent frequency bands of 0∼2.441Hz, 2.441∼4.882Hz, 4.882∼9.765Hz, 9.765∼19.531Hz, 19.531∼39.062Hz,
39.062∼78.125Hz, 78.125∼156.25Hz, 156.25∼312.5Hz, 312.5∼625Hz, 625∼1250Hz, 1250∼2500Hz, and 2500∼5000Hz.

Training samples

Set penalty coefficient range

Set the range of kernel function parameters

SVM model training

Cross validation

Optimal penalty coefficient and kernel function parameters

Testing samples

No

Yes

Samples of SVM classification models

K (i), K (1) = LKF, K (2) = PKF, K ( 3) = RBF, K (4) = SKF

i = 1

Sample classification

i = i + 1

Output the SVM classification models and classification accuracy

Testing sample input

i ≥ 4

Figure 2: Flowchart of SVM classification models.
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and SKF are 97.7907%, 92.1930%, 98.7209%, and 97.7907%,
respectively, among which the accuracy of SVM model with
RBF is the highest. Based on the SVM classification models
with RBF of Nos. 21 to 27, the accuracy to classify the
training samples is 99.2218% and the accuracy to classify the
testing samples is 98.8372%. Based on the SVM classification
model with RBF of No. 28, the accuracy to classify the
training samples is 100% and the accuracy to classify the
testing samples is 98.8372%. Based on the SVM classification
model with RBF of No. 29, the accuracy to classify the
training samples is 99.6109% and the accuracy to classify the
testing samples is 98.8372%. Based on the SVM classification
model with RBF of No. 30, the accuracy to classify the
training samples is 99.2218% and the accuracy to classify the
testing samples is 97.6744%. All the SVM classification

models with RBF of different parameters selected by the
cross validation method show good prediction effect in
blasting vibration zoning prediction, and the prediction
accuracy of all the SVMmodels with RBF is more than 97.5%
without overfitting. /e classification results show that the
zoning method of blasting vibration based on energy pro-
portion proposed in this paper has high feasibility, flexibility,
and reliability, and the classification algorithm of SVM
models with RBF has high accuracy in blasting vibration
zoning prediction.

/e prediction results of testing samples by SVM clas-
sification models with RBF of Nos. 21 to 29 in Table 11 are
shown in Figure 3, and the prediction results of testing
samples by SVM classification model with RBF of No. 30 in
Table 11 are shown in Figure 4. It can be found that all the

Table 11: Parameters and prediction accuracy of SVM classification models with different kernel functions.

No.

Kernel functions SVM classification models

Types Parameters Values c Iterations Number of support
vectors

Accuracy of training
samples

Accuracy of
testing
samples

Average values of
prediction accuracy

1

LKF — —

4.5948 35 35 99.2218 97.6744

97.7907

2 48.5029 92 20 100 96.5116
3 8 40 29 99.2218 97.6744
4 13.9288 92 26 100 97.6744
5 6.9644 41 30 99.2218 97.6744
6 24.2515 92 22 100 98.8372
7 21.1121 92 23 100 98.8372
8 10.5561 76 29 99.6109 97.6744
9 4 35 35 99.2218 97.6744
10 6.0629 46 31 99.2218 97.6744
11

PKF d

1 0.0045 28 114 75.8755 53.3256

92.1930

12 2 4 82 21 100 96.5116
13 3 27.8576 48 21 100 97.6744
14 4 32 24 22 100 97.6744
15 5 42.2243 24 22 100 96.5116
16 6 36.7583 22 23 100 95.3488
17 7 32 21 23 100 95.3488
18 8 42.2243 20 25 100 96.5116
19 9 42.2243 17 26 100 96.5116
20 10 55.7152 17 28 100 96.5116
21

RBF g

0.1649 27.8576 54 33 99.2218 98.8372

98.7209

22 0.0625 73.5167 35 30 99.2218 98.8372
23 0.0947 24.2515 31 35 99.2218 98.8372
24 0.1250 21.1121 37 36 99.2218 98.8372
25 0.1088 32 32 32 99.2218 98.8372
26 0.1436 32 47 33 99.2218 98.8372
27 0.1250 27.8576 33 34 99.2218 98.8372
28 0.1436 48.5029 137 32 100 98.8372
29 0.1649 21.1121 39 34 99.6109 98.8372
30 0.0136 168.8970 34 35 99.2218 97.6744
31

SKF k

0.0825 84.4485 35 35 99.2218 97.6744

97.7907

32 0.0625 97.0059 25 35 99.2218 97.6744
33 0.0947 445.7219 75 24 100 98.8372
34 0.0718 168.8970 43 28 99.2218 97.6744
35 0.0825 168.8970 60 29 99.2218 97.6744
36 0.0421 675.5881 68 22 100 98.8372
37 0.0825 388.0234 80 24 100 97.6744
38 0.0947 222.8609 54 26 99.6109 97.6744
39 0.1895 36.7583 48 51 99.2218 96.5116
40 0.0272 168.8970 25 35 99.2218 97.6744
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SVM classification models with RBF of Nos. 21 to 30 of
different parameters in Table 11 classify sample 19 (corre-
sponding to sample 276 in Table 10) incorrectly, and the
SVM classification model with RBF of No. 30 classifies
sample 3 (corresponding to sample 260 in Table 10) in-
correctly. /e energy proportions of sample 19 in frequency
band 0∼2.4415Hz (43.6350%) and sample 3 in frequency

band 39.062∼78.125Hz (28.3373%) are both more than 10%.
It is considered that the energy proportion of the two fre-
quency bands cannot be ignored according to reference [57].
/erefore, the SVM classification models with RBF cannot
identify and classify samples 19 and 3 correctly, which re-
flects the influence of sample typicality on the prediction
effect of the SVM classification algorithm.
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Figure 3: Prediction results of testing samples by SVM classification models of Nos. 21 to 29.
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Figure 4: Prediction results of testing samples by SVM classification model of No. 30.
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5. Conclusions

/e automatic identification and classification of blasting
vibration signals in different zones is a complex subject,
which is a powerful means to study the detailed charac-
teristics for blasting vibration signals. Because of not con-
sidering the specific influences of geological and
topographical conditions, the existing zoning methods for
blasting vibration have some limitations. In this study, a new
blasting vibration zoning method based on energy pro-
portion was proposed./e energy proportion characteristics
of each subfrequency band were extracted by multi-
resolution wavelet analysis, and the blasting vibration near,
medium, and far zones were divided corresponding to the
dominant energy proportion of high, medium, and low
frequency bands.

Based on the proposed zoning method, 257 sets of
measured blasting vibration signals were selected as training
samples and 86 sets were selected as testing samples to train
and test the SVM classification models with four different
kernel functions of LKF, PKF, RBF, and SKF. All the SVM
classification models with RBF of different parameters se-
lected by the cross validation method show good prediction
effect in blasting vibration zoning prediction, and the pre-
diction accuracy of all the SVM models with RBF is more
than 97.5% without overfitting. It is proved that the zoning
method of blasting vibration based on energy proportion
proposed in this paper has high feasibility, flexibility, and
reliability, and the SVM classification models with RBF have
high prediction accuracy.

However, there may be some mistakes in the classifi-
cation of atypical signals when the number of signal samples
in some blasting vibration zones is relatively small [58] and
the energy proportion of signals in other frequency band is
more than 10%. As in this paper, because there are more
samples in the medium zone than those in the near and far
zones, SVM classification models are very good for the
classification of atypical signals in the medium zone, and
even the accuracy is 100%. /erefore, in the future work, we
can increase the number of signal samples in the near and far
zones to enhance the identification ability of SVM classi-
fication models for atypical signals and further improve the
classification accuracy.

/e frequency bands of the near, medium, and far
zones by the proposed zoning method of blasting vibra-
tion based on energy proportion are basically in accor-
dance with the frequency bands of blasting vibration
safety standard in “blasting safety regulations” [59]: (0,
10), (10, 50), (50, 100). /erefore, the zoning method can
not only provide theoretical guidance for studying the
specific characteristics of blasting vibration signals in each
vibration zone but also provide an important basis for the
prediction, control, and safety standards for blasting
vibration.
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