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Dimensional analysis is applied to study the pounding response of two inelastic multidegree of freedom (MDOF) structures under
simplified earthquake excitation. +e forces and deformations of the collision processes are simulated by adopting the improved
Kelvin poundingmodel.+e inelastic characteristics of MDOF structures are described by the bilinear interstory resistancemodel,
and the representations of dimensionless impact force and the dimensionless motion equation in the pounding process are
derived. On the basis of the above-mentioned theoretical deduction, the superiority of the improved Kelvin model is verified by
comparing the impact response of the improved Kelvin model and the Kelvin model. Finally, the validity of the proposed
theoretical method is further proved by the comparison between results from the shaking table tests of adjacent four-story and
three-story steel frame structures and the corresponding numerical results obtained by the MATLAB program.

1. Introduction

+e past decades have witnessed numerous earthquake
disasters, causing a great number of casualties and tre-
mendous property losses [1–4]. During earthquakes, a great
number of adjacent structures suffered severe damage owing
to the induced structural pounding effects, which have been
recorded in investigations of the Mexico earthquake of 1985
[5], the ChiChi earthquake of 1999 [6], the Wenchuan
earthquake of 2008 [7], the earthquakes in Iraq of 2017 [8],
and so on.

To this end, the pounding responses of adjacent mul-
tidegree of freedom (MDOF) structures have recently
aroused the interests of many researchers including Maison
and Kasai [9], Anagnostopoulos and Spiliopoulos [10],
Mahmoud and Jankowshi [11], and Jankowshi [12]. It is
found that the pounding between adjacent constructions
beneath seismic excitation is associated with the charac-
teristics of ground motions, which are also additionally

affected by the characteristics of the adjacent structures.
Structural collision is a higher-order nonlinear phenomenon
affected by multiple parameters, and therefore the funda-
mental situation in analyzing the pounding responses of
adjacent constructions underneath seismic excitations has to
address plenty of parameters [13]. Dimensional analysis [14]
with fewer dimensionless Π parameters can reduce the
number of parameters while at the same time preserving the
basic behaviors of the adjacent structural collision responses.

Makris and Black [15, 16] were the first to study the
response of structures under earthquake excitations using a
dimensionless method. +ereby, dimensional analysis was
welcomed by many scholars in studying the impact of ad-
jacent elastic constructions. Zhang and Tang [17] investi-
gated the effect of the soil-structure interaction on the
structure underneath earthquake ground motion con-
structions using dimensional analysis. Dimitrakopoulos
et al. [18–20] analyzed the pounding response between
multiple SDOF constructions via a dimensionless method.

Hindawi
Shock and Vibration
Volume 2021, Article ID 6801821, 18 pages
https://doi.org/10.1155/2021/6801821

mailto:hyhwqy@163.com
https://orcid.org/0000-0001-7706-3614
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/6801821


+e pounding of structures with fewer dimensionless pa-
rameters Π is described by using Buckingham Π, in which
the number of parameters that govern structural collision
responses is significantly reduced. Zhai et al. [13] combined
the dimensionless method with the contact element method
to study the pounding responses between a single elastic
oscillator and an inflexible barrier, in which the Kelvin
model is employed to simulate the impact forces. Further-
more, descriptions of the forces and deformations of
structures during the contact phase are written in the real-
time domain. Wu et al. [21] chose a more accurate impact
model, the modified Kelvin model [22], to study collisions
between an elastic SDOF structure and a rigid body,
overcoming the disadvantage of the Kelvin impact model
and revealing the rules of structural pounding. In the above-
mentioned research, adjacent structures are mostly sim-
plified into linear SDOF structures. Nevertheless, poundings
of adjacent structures are nonlinear problems, which may
occur at each story of adjacent structures under earthquake
excitations. +erefore, it is more realistic to model the ad-
jacent structures as nonlinear MDOF structural models
when studying the pounding response.

In this paper, the pounding response of two inelastic
MDOF constructions undergoing simplified earthquake
excitations is investigated by using the dimensional analysis
and an improved Kelvin model. +e inelastic characteristics
of the MDOF structures are simulated by using the bilinear
interstory resistance model [23], and MATLAB is used to
deduce the expression for the dimensionless pounding force
and the dimensionless equation of motion in the pounding
process. +e calculation results are compared to the cor-
responding results yielded by the Kelvin pounding model.
Lastly, the shaking table tests of adjacent steel frame
structures are performed, whose results are compared with
the numerical simulations in order to verify the correctness
and effectiveness of the proposed method.

2. Computational Models and the
Dimensionless Equation of Motion

2.1. Impact AnalyticalModel. +e pounding force generated
during the collision of two adjacent inelastic MDOF
structures is simulated by using an improved Kelvin
pounding analytical model. +e improved Kelvin analytical
model is shown in Figure 1, and the pounding force can be
expressed as

F � kδ(t) + c _δ(t), (1)

where k is the contact unit stiffness coefficient and δ(t) and
_δ(t) are the relative penetrating displacement and velocity
for two objects in pounding, respectively. +e damping
coefficient c can be expressed as follows:

c � ξδ(t), (2)

in which the damping constant ξ is

ξ �
3k(1 − e)

2e V1 − V2( 
. (3)

Here, the coefficient of restitution is represented by e (an
elastic pounding without energy loss is implied by e � 1 and
complete plastic pounding is implied by e � 0). V1 and V2
indicate the velocities at which two objects collide.

Equations (1)–(3) show that the time-varying damping
coefficients c have overcome the theoretical shortcomings of
the Kelvin model, which involve the uniform energy loss in
the contact and rebound stages of pounding, including the
pounding force at the beginning of the collision and the
pulling force during the rebound phase of the collision.

2.2. Equation of Motion. +e adjacent three-story structures
are used to illustrate the calculation model of seismic
pounding (see Figure 2). As can be seen in Figure 2, themass,
stiffness, and damping coefficient of the left structure for
each story are mi, (i � 1, 2, 3), Ki, (i � 1, 2, 3), and
Ci, (i � 1, 2, 3), respectively. +e mass, stiffness, and
damping coefficient of the right structure for each story are
mj (j � 1, 2, 3), Kj (j � 1, 2, 3), and Cj (j � 1, 2, 3), re-
spectively. +e original interval in the middle of the adjacent
structures is d. For the study of structural nonlinearity, the
constitutive relationship of the structures is simulated by
using the bilinear interstory resistance model [24].

Only the acceleration amplitude and angular frequency
of ground motion are required to study the seismic
pounding responses of adjacent inelastic MDOF structures
by using the dimensional analysis method. Consequently,
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Figure 1: Improved Kelvin analytical model.
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Figure 2: Adjacent MDOF pounding models.
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the seismic excitation can be simulated with a simplified
model. Two models are used to simplify the simulations of
the ground motion, which are the harmonic and pulse
excitation models [25]. +e ground motion excitation is
assumed to be sinusoidal excitation in this paper. +e ac-
celeration amplitude is represented by ap, and the circular
frequency is represented by ωp.

Under sinusoidal excitation, the equations of motion for
the adjacent inelastic MDOF structures are

€MX(t) + _CX(t) + Fs(t) + Fp(t) � −M €Xg (t), (4a)

_X(t) �

_X1(t)

_X2(t)

_X3(t)

_X4(t)

_X5(t)

_X6(t)
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€Xg(t)

€Xg(t)
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,

(4b)

M �

m1

m2

m3

m4

m5

m6
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Fs(t) �

Fs1(t) − Fs2(t)

Fs2(t) − Fs3(t)

Fs3(t)

Fs4(t) − Fs5(t)

Fs5(t) − Fs6(t)

Fs6(t)
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,

Fp(t) �

Fp14(t)

Fp25(t)

Fp36(t)

−Fp14(t)

−Fp25(t)

−Fp36(t)
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,

(4d)

where €Xg(t) is the acceleration and €Xg(t) � ap sin(ωpt).
Xi(t), _Xi(t), €Xi(t) (i � 1, . . . , 6) are the displacement,
velocity, and acceleration responses of each story for
adjacent structures at different times t, respectively. Fsi(t)

indicates the inelastic story shear force at different times
t. +e incremental form of the inelastic resistance is
ΔFsi(t) � Ki(t) · ΔXi (i � 1, . . . , 6), in which ΔXi is the
story drift, Ki is the stiffness of the structure, and it is
related to the yielding displacement uyi of each structure
(uya for the left structure and uyb for the right structure).
M is the matrix of the structural mass and Fp(t) is the
matrix of the pounding force. +e damping matrix C is
the Rayleigh damping matrix, expressed as

C �

diag a0 3×3 0

0 diag a0r 3×3

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦M +

diag a1 3×3 0

0 diag a1r 3×3

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦K, (5a)

K �

K1(t) + K2(t) −K2(t) 0
−K2(t) K2(t) + K3(t) −K3(t) 0

0 −K3(t) K3(t)

K4(t) + K5(t) −K5(t) 0
0 −K5(t) K5(t) + K6(t) −K6(t)

0 −K6(t) K6(t)
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, (5b)
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where

a0 �
2ξω1aω2a

ω1a + ω2a

,

a0r �
2ξω1bω2b

ω1b + ω2b

,

a1 �
2ξ

ω1a + ω2a

.

(5c)

In equation (5c), ω1a is the angular frequencies of the
first and ω2a is second modes for the left structure; ω1b is the
angular frequencies of the first and ω2b is second modes for
the right structure, respectively; and the angular frequency ω
can be obtained by solving |K − Mω2| � 0. ξ � 0.05 is the
structural damping ratio assigned to the first two modes.

In this paper, the mass of each floor for the left structure
and right structure is assumed to be equal, that is,
mi � ma(i � 1, 2, 3) and mj � mb(j � 4, 5, 6). In addition,
the stiffness of each floor for the left and right structures is
assumed to be equal, that is, Ki(t) � Ka (i � 1, 2, 3) and
Kj(t) � Kb � μKa(j � 4, 5, 6) during the elastic stage. μ is
the stiffness ratio of the right structure story to the left
structure story (μ � (Ka/Kb)). During the plastic stage, the
stiffness of each story for the left structure and right
structure is Ki(t) � αKa and Kj(t) � αKb, respectively,
where α is the postyielding stiffness ratio.

According to the above assumptions and the physical
quantity characterizing the energy scale of excitation le
(le � (ap/ω2

p) with the dimensionless expression of [L])
proposed by Makris and Black [15, 16], the mass mb of each
floor, the amplitude ap(m/s2), and the circular frequency
ωp(s−1) of the sinusoidal excitation of the right MDOF
structure are selected as the basic quantity. And, the fol-
lowing quantities are rewritten:

t �
τ
ωp

,

Xi(t) � xi(τ) · le �
xi(τ) · ap

ω2
p

,

_Xi(t) �
_xi(τ) · ap

ωp

,

€Xi(t) � €xi(τ) · ap,

(6)

where τ is the dimensionless movement time. xi(τ), _xi(τ),
€xi(τ)(i � 1, 2) are the relative displacement, relative ve-
locity, and relative acceleration of each floor for the two
structures, respectively.

Substituting equation (6) into equation (4a), the di-
mensionless equation of motion for adjacent inelastic
MDOF structures can be obtained as

€mx(τ) +
C

mbωp

_x(τ) +
Fs

mbωp

+
Fp

mbωp

� −€xg (τ), (7a)

where

m �

ma

mb

ma

mb

ma

mb

1

1

1
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_x(τ) �

_x1(τ)

_x2(τ)

_x3(τ)

_x4(τ)

_x5(τ)

_x6(τ)
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€xg(τ) �

sin τ
sin τ
sin τ
sin τ
sin τ
sin τ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(7c)

By using the definition of the modified Kelvin pounding
model [22] as mentioned in equation (1), the following
conclusions are obtained.

When xi − xj > (d/le), pounding occurs, and the ex-
pression of the pounding force is

Fpij �
mamb

ma + mb

ω2
xi − xj −

d

le
  ·

ap

ω2
p

+
3(1 − e)

2e Vi − Vj 
·

mamb

ma + mb

ω2
_xi − _xj  ·

ap

ωp

xi − xj −
d

le
  ·

ap

ω2
p

. (8a)
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When x1 − x2 <d/le, no pounding occurs, and the
pounding force can be expressed as

Fpij � 0. (8b)

Substituting equation (6) into equation (8a), when
pounding occurs, the dimensionless pounding force can be
obtained:

Fpij

mbap

�
ma/mb( 

ma/mb(  + 1
ω
ωp

 

2

· xi − xj −
d

le
  +

3(1 − e)

2e
·

1
vi − vj

·
ω
ωp

 

2

· _xi − _xj  · xi − xj −
d

le
 ⎡⎣ ⎤⎦, (8c)

where v1 and v2 are the dimensionless velocities (v � V ·

(ωp/ap)) when pounding occurs between the left and right
structures, respectively. ω is the angular frequency of the
contact element, and ω �

���������������
β(ma + mb)/mamb


. β is the

stiffness of the contact element.

Substituting equation (6) into the damping matrix and
the stiffness matrix as shown in equations (5a) and (5b), the
dimensionless damping matrix and stiffness matrix can be
obtained as

C
mbωp

�

diag
a0

ωp

 
3×3

0

0 diag
a0r

ωp

 
3×3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

m +

diag a1ωp 3×3 0

0 diag a1rωp 3×3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
K

mbω
2
p

, (9a)

K
mbω

2
p

�

2Ka(t)

mbω
2
p

−
Ka(t)

mbω
2
p

0

−
Ka(t)

mbω
2
p

2Ka(t)

mbω
2
p

−
Ka(t)

mbω
2
p

0

0 −
Ka(t)

mbω
2
p

Ka(t)

mbω
2
p

2μKa(t)

mbω
2
p

−
μKa(t)

mbω
2
p

0

0 −
μKa(t)

mbω
2
p

2μKa(t)

mbω
2
p

−
μKa(t)

mbω
2
p

0 −
μKa(t)

mbω
2
p

μKa(t)

mbω
2
p

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (9b)
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where

a0

ωp

�
2ξ ω1a/ωp  ω2a/ωp 

ω1a/ωp  + ω2a/ωp 
,

a0r

ωp

�
2ξ ω1b/ωp  ω2b/ωp 

ω1b/ωp  + ω2b/ωp 
,

a1ωp �
2ξ

ω1a/ωp  + ω2a/ωp 
,

a1rωp �
2ξ

ω1b/ωp  + ω2b/ωp 
.

(9c)

+e matrix of the dimensionless inelastic resistance
Fs/mbap is related to the dimensionless story shear force of
Fsi/mbap. Because both adjacent structures are inelastic and
ΔFsi/mbap � Ki(t) · Δxi/mbap, the dimensionless inelastic
resisting force matrix Fs/mbap is relevant to the dimen-
sionless story stiffness Ki(t)/mbap, dimensionless yield
displacement uy/le, and postyielding stiffness ratio α.

2.3. Dimensionless Equation of Motion Based on the Buck-
inghamΠ5eorem. On the basis of the Π theorem and the
equation of motion of the pounding between two inelastic
MDOF structures obtained above, the pounding reaction
of two inelastic MDOF structures is characterized by the
peak displacement Xmax and peak velocity _Xmax of the
stories of the structures. +e parameters controlling the
pounding response are the masses ma and mb, the stiffness
Ka of the left structure, the stiffness ratio μ(μ � (Ka/Kb))

measured from the right to left structure, the yield dis-
placements uy1 and uy2, the damping ratio ξ, the initial
spacing d between the adjacent inelastic MDOF struc-
tures, the postyielding stiffness ratio α, the recovery co-
efficient e of the contact element, the angular frequency ω,
the amplitude ap, and the angular frequency ωp of the
sinusoidal excitation.

+e expression of the pounding response function of the
two inelastic MDOF structures through the Π theorem:

Xmax

_Xmax
 � f ma, mb, Ka, μ, uya, uyb, ξ, α,ω, e, d, ap,ωp .

(10)

From equation (10), the equation contains a total of 13
variables and only three basic dimensions, mass [M], length
[L], and time [T], are involved. On the basis of the Π
theorem, the number of independent dimensionless Π-pa-
rameters can be reduced as (13 variables)-(3 reference
dimensions)� 10 Π-parameters. In the former section
(Section 1.2), the mass mb of the right MDOF structure,
amplitude ap, and angular frequency ωp of the sinusoidal
excitation are chosen as the basic variables. +e equations of
motion of the two inelastic MDOF structures are dimen-
sionless, and the modified expression of equation (10) is

Xmaxω
2
p

ap

_Xmaxωp

ap

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

� ϕ
ma

mb

,
Ka

mbω
2
p

, μ,
uyaω

2
p

ap

,
uybω

2
p

ap

, ξ, α,
ω
ωp

, e,
dω2

p

ap

⎛⎝ ⎞⎠.

(11)

Also,

Πu �
Xmaxω

2
p

ap

,

Πv �
_Xmaxωp

ap

,

Πm �
m1

m2
,

Πω1 �
ω1

ωp

,

Πω2 �
ω2

ωp

,

Πuy1 �
uy1ω

2
p

ap

,

Πuy2 �
uy2ω

2
p

ap

,

Πξ � ξ,

Πα � α,

Πωcon �
ω
ωp

,

Πe � e,Πd �
dω2

p

ap

.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(12)

Equation (11) can be rewritten as

Πu

Πv

 � ϕ Πm,Πω1,Πω2,Πuy1,Πuy2,Πξ ,Πα,Πωcon,Πe,Πd ,

(13)

where Πm � ma/mb is the mass ratio of the left to the right
structure. Πk � (Ka/mbω2

p) is the dimensionless stiffness
story of the left structure. Πuyi � uyiω2

p/ap(i � a, b) is the
ratio of the yield displacement uyi to the excitation energy
scale le � ap/ω2

p of each structure, that is, the dimensionless
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yield displacement. Πuyi and Πα are the parameters
characterizing the structural inelasticity. Furthermore,
Πω con and Πd with Πe are the parameters that characterize
the pounding properties; among them, the ratio of the
angular frequency of the contact element to the sinusoidal
excitation is represented by Πωcon � (ω/ωp).

3. Numerical Solution of the Pounding
Response of Adjacent Inelastic
MDOF Structures

Equation (7a) is solved by using the Newmark-β method
[25], in which the parameters are taken as c � 1/2, β � 1/4.
+e time step is Δτ � 0.001. +e following dimensionless
Π-parameters are used

Πm � ma/mb(  � 0.25,

Πk � 5,

Πμ � 10,

Πuya � 0.1,

Πuyb � 0.06,

Πξ � 0.05,

Πα � 0.1,

Πωcon � 65,

Πe � 0.4,

Πd � 0.5.

(14)

+rough the MATLAB program, the numerical proce-
dure has been realized. +e analysis results of the dis-
placement, pounding force, and velocity histories of the
adjacent inelastic MDOF structures are shown in
Figures 3–5 for the first story, the second story, and the third
story, respectively. +e displacement histories, velocity
histories, and pounding force contrast curve for the third
story of the two adjacent structures with the improved
Kelvin model and Kelvin model considering pounding and
nonpounding are shown in Figure 6.

Figures 3(a)–5(a) show that the curves corresponding to
the left and right structures of the three stories have 8 co-
incidences, indicating that, during the excitation time
τ � 0 ∼ 50 s, there were 8 collisions on each story. Addi-
tionally, 8 mutations arise in the pounding force histories
shown in Figures 3(b)–5(b), which are consistent with the
previous conclusions. Moreover, the magnitude of the
pounding force recorded on each story is not much different.
+erefore, it is unreasonable to consider the collision effect
of the highest story if the collision model is simplified to
ignore the collision effect of the remaining stories. In ad-
dition, the left structure with a small mass and stiffness is
obviously suppressed in positive displacement after
pounding and produces a larger negative displacement than
the right structure; however, the peak displacement response
of the left structure is significantly reduced compared to the
nonpounding situation (as shown in Figures 3(a)–5(a)). +e

right structure with a larger mass and stiffness has a sig-
nificantly increased displacement response after pounding.

Moreover, pounding has an obvious influence on the
velocity response of adjacent structures, as shown in
Figures 3(c)–5(c).+e velocity histories of the two structures
change dramatically after pounding, and the velocity re-
sponse of the left structure changes from positive to negative
while the velocity response of the right structure increases.
+erefore, the instantaneous sharp change in the velocity
response is one of the basic features of the collision of the
structure.

+e hysteresis curve of each story of the two adjacent
inelastic structures under the parameters of this paper is
given in Figures 3(d)–5(d) and Figures 3(e)–5(e). +e figures
show that the first and the second story of both structures are
entering the plastic stage; however, the hysteretic curve of
the third story structure is a straight line, indicating that it is
already in the elastic stage.

In addition to the velocity histories, Figure 6 compares the
collision force history of the third story that is obtained by the
improved Kelvin model and the Kelvin model. From the
velocity histories of both structures, the histories of the two
pounding models basically coincide, which proves the cor-
rectness of the numerical solution method obtained by the
improved Kelvin model. From the time history curves of
pounding force obtained using the two pounding models
shown in Figure 6(c), a negative pulling force occurs during
the rebound phase when the pounding process is simulated by
using the Kelvin model. However, there exists no negative
pulling force when the modified Kelvin model is used to
simulate the pounding process. +is is also a good display of
the velocity histories as shown in Figures 6(a) and 6(b). In the
enlarged part of the two figures, due to the tension of the
Kelvin model during the rebound phase, the velocity histories
will decrease during the pounding rebound phase, but this is
not the case with the velocity histories obtained by the im-
proved Kelvin model. +erefore, the improved Kelvin model
can overcome the shortcomings of the Kelvinmodel, represent
the real physical phenomena, and reflect the physical laws.

4. Shaking Table Pounding Test of Adjacent
Multistory Structures

To further verify the correctness and effectiveness of the
theoretical method proposed in this paper, the shaking table
pounding test of adjacent four-story and three-story steel
frame structure models is carried out, and the experimental
model is numerically simulated such that the test results are
dimensionless after being compared to the numerical sim-
ulation results.

4.1. Design of the Scale Structure Model. +e experiment is
based on the existing shaking table set up at Huazhong
University of Science and Technology (HUST). +e plan
dimension of the shaking table is 4m× 4m, and the max-
imum load is 1.5×104 kg. According to the size of the
shaking table and the similarity theorem, the geometric
similarity ratio of the shaking table test Sl is 1 : 16.
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Figure 3: Displacement, velocity, pounding force histories, and hysteresis curves for the first story of adjacent buildings. (a) Displacement
histories. (b) Pounding force histories. (c) Velocity histories. (d) Hysteresis curve of the left structure. (e) Hysteresis curve of the right
structure.
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Figure 4: Displacement, velocity, pounding force histories, and hysteresis curves for the second story of adjacent buildings. (a) Dis-
placement histories. (b) Pounding histories. (c) Velocity histories. (d) Hysteresis curve of the left structure. (e) Hysteresis curve of the right
structure.
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Figure 5: Displacement, velocity, pounding force histories, and hysteresis curves for the third story of adjacent buildings. (a) Displacement
histories. (b) Pounding histories. (c) Velocity histories. (d) Hysteresis curve of the left structure. (e) Hysteresis curve of the right structure.
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Considering the convenience of material selection, the scale
model structure of the test will be modeled with the same
structural material (Q235 steel) as the original model
structure. +erefore, the scaled model has the same density
and modulus of elasticity as the original model, where
SE � Sρ � 1. According to the similarity criterion, the sim-
ilarity relations for the parameters of the scale model can be
determined, as shown in Table 1.

+e geometric similarity ratio can be determined
according to Table 1, and the structural dimensions of the
two adjacent multistory steel frame scaling models are de-
termined as follows:

Structure A: four-story structure, 1.6m× 0.8m, story
height 0.8m

Structure B: three-story structure, 1.6m× 0.8m, story
height 0.8m

To ensure that the design of the original model conforms
to the actual situation, the standard value of the constant
load of the prototype structure story (excluding floor self-
weight) is 1.5 kN/m2. According to the Code for Load of
Building Structures (GB50009-2012), the standard value for
the story live load is 2.0 kN/m2. Considering that the first
story of the experimental scale model simulates four stories
of the original structure, the standard value of the constant
load of the story and the live load of the story can be de-
termined as 6.0 kN/m2 and 8.0 kN/m2, respectively. +us,
through calculation, the additional mass of the top story is
0.32 t for scale structures A and B and 1.3 t for the other
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Figure 6: Two structures using the modified Kelvin model and the Kelvin model to consider the pounding of the third story. (a) Velocity
histories of the left structure. (b) Velocity histories of the right structure. (c) Pounding force comparison curve.
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stories. A C20 prefabricated concrete slab is used as an
additional mass of the story in this test.

According to the calculation from the similarity theory, the
detailed information of the various components of the scale
model is shown in Table 2. Figure 7 shows detailed dimensions
of the scale model, and Figure 8 shows the test model.

Since the test model is bolted according to the fixed holes
reserved on the shaking table, the distance between the
adjacent steel frames is constant during the test; however, the
neighboring structures cannot collide during the test be-
cause of the large distance between the two reserved holes.
+erefore, a scalable pounding element is designed that
consists of an impacting and receiving end and is located on
the second and third stories of the adjacent steel frames,
respectively. To ensure that point-to-surface pounding oc-
curs between the impacting end and the receiving end, a
section of an 8mm thick steel rod is welded at the center of

the front end of the receiver. +e detailed designs of the
pounding end and the actual pounding endmodel are shown
in Figure 9.

4.2. Design of the Test Scheme

4.2.1. Scheme of Measurement. +e shaking table test is
mainly used to study the pounding reaction between ad-
jacent steel frames. +e main recorded data include the
displacement and acceleration responses of each story and
the shaking table. +erefore, the IMC and DH5922 dynamic
acquisition instruments are selected for data acquisition,
where the IMC dynamic acquisition instrument is used to
collect the displacement and the DH5922 dynamic acqui-
sition instrument is used to collect the acceleration. +e
arrangement of the displacement and acceleration mea-
surement points is shown in Figure 10.

Table 1: Similarity ratios of the test models.

Physical quantity Symbol Dimension Similarity coefficient
Length Sl L 1/16
Modulus of elasticity SE ML−1T−2 1
Rigidity Sk MT−2 1/16
Acceleration Sa L/T2 1
Time ST T 1/4
Speed Sv L/T 1/4
Displacement Sx L 1/16
Quality (the self-weight and additional mass) Sm M 1/256

Table 2: +e main components of the scale model for the test.

Component types Section/mm Length/m
Column 1 L110× 8 0.8
Beam 1 L110×12 1.38
Beam 2 L110×12 0.58
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Figure 7: Detailed dimension diagram of the scale model. (a) Elevation of the scale model. (b) Top view of the scale model.
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(a) (b)

Figure 8: Model diagram of the test. (a) Elevation of the test model. (b) Top view of the test model.
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Figure 9: Pounding end design. (a) Diagram of the pounding element. (b) Charts of impact elements for the test models.
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Figure 10: Layout of the measuring points.
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Figure 11: Relative displacement histories of the top and third story of structure A under pounding and nonpounding loading. (a) Histories
of the relative displacement of the top story. (b) Histories of the relative displacement of the third story.
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Figure 12: Acceleration histories of the top and third story of structure A under pounding and nonpounding loading. (a, b) Acceleration
response histories of the top structure. (c, d) Acceleration response histories of the third story structure.
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+ere are two test conditions selected: no pounding and
pounding with an adjacent spacing of 2mm. Taking the case
of no pounding as an example, the loading process of the
whole test is as follows: first, the white noise is used to sweep
the frequency of the two steel frames to check whether the
dynamic characteristics of the structure have changed.+en,
a sinusoidal wave (the frequency of the sinusoidal wave is
20 rad/s) with a peak acceleration of 0.2 g being selected for
loading, and finally, a white noise sweep is performed. To
date, the first loading condition has been completed.

4.3. Results of the Test. Figure 11 shows the relative dis-
placement response histories of the top and third stories of a
four-story steel frame structure with or without pounding
(spacing is 2mm) (obtained by subtracting the measured
displacement response histories data of the floor from the
corresponding displacement response histories data of the
shaking table).

As shown in Figure 11, the actual displacement of the top
and third stories are larger for the pounding case than that of
the nonpounding case, which means that the pounding
loading will amplify the displacement response of the
structure.

Figure 12 shows the acceleration response histories of the
top and third stories of the four-story steel frame structure
without and with pounding (spacing at 2mm). +e accel-
eration response of the top and third stories exhibits obvious
pulses during pounding, and the acceleration of the top and
third stories is much greater than that of the nonpounding
case, indicating that the pounding loading also enlarges the
acceleration response of the structure.

4.4. Comparison of the Numerical Simulation Results with the
Experimental Model Results. +e four-story steel frame
model and the three-story steel frame model are simplified
into the lumped mass model, where the mass of each story is
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Figure 13: Displacement and acceleration histories of the top and third floors of the four-story steel frame structures without pounding.
(a) Dimensionless displacement histories of the top floor. (b) Dimensionless acceleration histories of the top floor. (c) Dimensionless
displacement histories of the third floor. (d) Dimensionless acceleration histories of the third floor.
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1.7 t and it is assumed that the lateral stiffness of each story is
equal. +rough analysis and calculation, the story stiffness is
obtained, and the results of the white noise frequency sweep
confirm that the structure is in an elastic state during the
whole test process.

Dimensionless parameters for the numerical calculation
are obtained from the dimensionless test parameters,
Πm � 1, Πk � 17.5, Πμ � 1, Πξ � 0.05, Πωcon � 65, Πe � 0.4,
Πd � 0.41. Figures 13 and 14 show that by numerically
solving the problem using MATLAB, comparative analysis
of the obtained results with the dimensionless measured
results.

Figure 13 shows the displacement and acceleration
histories of the top and third floors of the four-story steel
frame structure without pounding, and the comparison
curves between the experimental and numerical results
under the action of a sinusoidal wave with a peak acceler-
ation of 0.2 g. +e numerical results of the displacement

response of the top and third floors are slightly larger than
the experimental results, while the numerical results of the
acceleration response are slightly smaller than the experi-
mental results. +is may be due to the fact that the actual
structure is reduced to a centralized mass model, and the
errors generated during the simplification process are
caused. However, the frequency and waveform of the nu-
merical results are consistent with the experimental results
which can prove the validity and rationality of the mathe-
matical model derived above.

Figure 14 shows the comparison curves of the test results
and numerical results of the displacement and acceleration
histories of the top and third floors of the four-story steel
frame structure with pounding. +e numerical results of the
displacement response of the top and third floors are broadly
consistent with the results of the experiment, verifying that
the method is correct. Due to the collision effect, the ac-
celeration response of the structure has obvious pulses, but
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Figure 14: Displacement and acceleration histories of the top and third floors of the four-story steel frame structures with pounding.
(a) Dimensionless displacement histories of the top floor. (b) Dimensionless acceleration histories of the top floor. (c) Dimensionless
displacement histories of the third floor. (d) Dimensionless acceleration histories of the third floor.
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the number of collisions obtained by the numerical solution
is more than the number recorded by the experiment as
shown in Figure 4(d). +e numerical solution of the ac-
celeration response of the top floor is smaller than the test
result and the numerical solution of the acceleration re-
sponse of the third floor is greater than the test result. +e
reason for this difference may be that the numerical model
simplifies the experimental model into a lumped mass
model, resulting in errors in the process of simplification.

5. Conclusion

In this paper, the dimensional analysis and the contact el-
ementmethod are combined to study the pounding response
of adjacent nonlinear MDOF structures under simplified
earthquake loadings. +e improved Kelvin model is used to
simulate the force and deformation of the two structures in
the process of collision and contact, and the bilinear
interstory resistance model is used to simulate the inelastic
characteristics of the structure. Two inelastic dimensionless
pounding force expressions and dimensionless motion
equations of the MDOF structures are deduced. When di-
mensionless parameters Π are adopted, the number of
variables affecting the pounding response of the two inelastic
MDOF structures is reduced from 13 to 10. Moreover, the
pounding law is clearly exhibited, and the contact defor-
mation process is also presented. Under the selected pa-
rameters, the displacement, velocity, pounding force, and
hysteretic curve of each story of the adjacent MDOF
structures are predicted by the improved Kelvin model. +e
correctness of the proposed pounding response analysis
method and the advantage of the improved Kelvin model are
verified by comparing the pounding response obtained by
the improved Kelvin model and that from the Kelvin model.
Besides, the shaking table tests are carried out on adjacent
four-story and three-story steel frame structures, and
comparing the results from the experiment with the cor-
responding results from numerical simulations obtained by
the MATLAB program further confirms the validity and
effectiveness of the proposed pounding response analysis
method.
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