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Rolling bearings are key components of rotating machinery, and predicting the remaining useful life (RUL) is of great significance
in practical industrial scenarios and is being increasingly studied. A precise and reliable remaining useful life prediction result
provides valuable information for decision-makers, which is essential to ensure the safety and reliability of mechanical systems.
Generally, the RUL label is considered to be an ideal life curve, which is the benchmark for RUL prediction. However, the existing
label construction methods make more use of expert experience and seldom mine knowledge from data and combine experience
to assist in constructing a health index (HI). In this paper, a novel and simple approach of label construction is proposed for
predicting the RUL accurately. More specifically, the degradation index of the multiscale frequency domain is first extracted.
Furthermore, the fuzzy C-means (FCM) algorithm is innovatively used to divide the degradation data into several stages to obtain
the turning point of degradation. +en, a nonlinear degradation index, the RUL label with the turning point, was constructed
based on principal component analysis (PCA). Finally, the recurrent neural network (RNN) is used for prediction and verification.
In order to verify the effectiveness of the proposed approach, two different bearing lifecycle datasets are gathered and analyzed.
+e analysis result confirms that the proposed method is able to achieve a better performance, which outperforms some
existing methods.

1. Introduction

Rolling bearings are widely used in various mechanical
systems as one of the most critical components. Among
them, the failure of rolling bearings is one of the most
important causes of mechanical system failure [1].+erefore,
the diagnosis and prognosis of bearings play an important
role in the performance of mechanical equipment [2–4].
Predicting the RUL of bearings is of great importance to
prevent sudden failures in mechanical systems and has also
received much attention as a key issue in prognostics and
health management (PHM) [5–8].

In general, RUL prediction methods could be mainly
classified into model-based, data-driven, and hybrid

methods [9]. In recent years, more and more data-driven
methods have been proposed for RUL prediction. Lei et al.
divided the data-driven RUL prediction into fourmain steps,
including data acquisition, HI construction, health stage
division, and RUL prediction [10].

+e RUL label is considered to be the ideal life curve of
the equipment, which means the remaining useful life and
corresponds to each operating cycle [11]. As for RUL pre-
diction of rolling bearings, the RUL label is commonly
regarded as the benchmark of accuracy evaluation for
prediction results [12]. As research on data-driven predic-
tion approaches continues to advance, the RUL label leaves
more significant impacts on the model training process.
Since the prediction model is also a kind of neural network,
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its parameters are also obtained by satisfying the following
conditions: First, the parameters are initialized, and then the
predicted label is obtained by forward propagation. Next, the
loss between the predicted label and the RUL label is cal-
culated, and finally, the parameters are updated by back-
propagation gradient descent. +erefore, reasonable label
plays a critical role in RUL prediction of rolling bearings and
greatly affects the accuracy and generalization ability of
prediction models [13, 14].

According to previous studies, for the construction of the
RUL label, the following three methods are mainly classified:
(1) Failure determination based on the fault threshold. As the
most common method in early RUL prediction studies, the
maximum allowable vibration value or experienced value is
usually considered the failure threshold for real situations
[15–19], and it is clear to determine the failure time with fixed
thresholds. However, it lacks tolerance to sudden noise in
operating conditions and is difficult to obtain an ideal fault
threshold in advance for a new component. (2) +e RUL label
based on the ideal degradation curve. In [11, 12, 20, 21], linear
function and improved piecewise function were used to fit the
degradation curve as much as possible. Among them, when a
linear function is used, the RUL value decreases linearly with
the time period. When the piecewise function is used, the RUL
value remains unchanged during the previous period and then
linearly decreases. In different degradation stages, the degra-
dation rate will be different, which is then reflected in the slope
of the degradation curve. +e above two labels are the most
widely used in themethods of RUL prediction.+e key point is
to find the transition time of different failure degrees, that is,
the turning point of degradation, and set a more ideal RUL
value. (3)+e RUL label based on the degradation index. Some
recent research studies [22–25] use one specific index to
construct the life curve and evaluate the bearing degradation
state, such as kurtosis, skewness, and other common statistical
features. However, the single indicator is difficult to contain
enough information and can easily be affected by fluctuations,
and this is apparently contrary to the stable and monotonous
performance of RUL label.

+ere is no doubt that the construction of RUL labels is
crucial for RUL prediction because model training and result
evaluation of RUL prediction require ideal life curves as a
benchmark, yet most of the actual industrial field rolling
bearing-monitoring data are unlabeled data. As an impor-
tant part of RUL prediction, it relies more on expert ex-
perience, which represents the current linear function or
piecewise linear function, rather than constructing the RUL
label based on the knowledge mined by the data itself [26].
And this is obviously insufficient for PHM in the era of big
data for themining of knowledge in the data, especially when
predictive maintenance is driven by the rapid development
of big data [27, 28]. In addition, it can impose limitations on
the prediction accuracy in practical applications. Despite
these strong motivations for research, there are few studies
and certain gaps on how to construct a more reasonable RUL
label, which is completely incompatible with its important
status of predictive maintenance.

Considering the problems mentioned above, a novel and
simple RUL label construction approach is proposed in this
paper and the accurate RUL prediction of rolling bearings is
achieved based on the RNN. First, ensemble empirical mode
decomposition (EEMD) is used to decompose signals into
several intrinsic mode functions (IMFs). +e frequency-
domain features and energy of the IMFs are extracted and
fused to obtain the degradation index using PCA. +en, the
FCM algorithm is applied to detect the turning points be-
tween normal condition, slight fault, and heavy fault. It is
rather remarkable that the new RUL label is constructed
based on the degradation index and the known turning
points. To guarantee the robustness of the RUL label, the
anomalous jump points of the degradation index are further
eliminated using the linear regression method. Finally, to
verify the effectiveness and superiority of the proposed
method, the simplest recurrent neural network is con-
structed for RUL prediction. And the major contributions of
this work can be summarized as follows:

(1) An improved life label is proposed based on the
health index and turning points of failure stages,
which provides a new idea to improve the existing
methods of constructing the RUL label based on
human experience or single health index.

(2) +e proposed approach is capable of adaptively
constructing the novel label that reflects changes in
the rate of degradation at different stages while being
more suitable for practical applications. Moreover,
the construction of new label relies on the knowledge
mined from the data rather than just the experience
of experts.

(3) It provides the solution for researchers to construct
the RUL label for new equipment in time once the
fault occurs. +erefore, it is also promising to be
applied in online RUL prediction. Some experi-
mental results also confirm the effectiveness and
superiority of the proposed method.

+e rest of this paper is organized as follows: Basic
methods including the RNN model and FCM algorithm are
introduced in Section 2. In Section 3, the principle and
schematic diagram of the proposed method are presented.
Section 4 shows the results of experiments on two datasets,
XJTU-SY bearing data and IMS bearing data. Finally, the
summary and conclusions are given in Section 5.

2. Theoretical Background

2.1. RNN. Because of the outstanding ability to handle time-
series data, the RNN model is suitable to be used in RUL
prediction. +ere are many developed versions of RNN, but
the basic principles of these networks remain unchanged.
+us, the classical structure of the RNNmodel is applied for
the prediction of RUL in this work.

+e classical RNN model is shown in Figure 1. It is
assumed that there is a certain part of the equipment, which
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provides a set of time-series data of sensors like vibration.
+e data collected from the equipment can be presented as
X � [X1, X2, . . . , Xt, . . . , XT], X ∈ R1×T, where Xt is the
sampling signal at time t(t � 1, 2, . . . , T). And X is often
replaced by features extracted from raw data in application.
+e RNN takes time-series data X as model input, and then
the RUL is obtained as model output. Parameters of the
RNN model are optimized via implicit function mapping
and error backpropagation through time (BPTT) algorithm.
Taking time order into consideration in error propagation,
the RNN shows great superiority in time-series data
processing.

+e RNN model is described in Figure 1 at time t with
its fold form on the left and unfold form on the right,
where Xt denotes the input at time t, ht denotes the hidden
state at time t, Ot denotes the output at time t, L denotes
the loss function, et denotes the error, and Yt denotes the
real RUL at time t, which is often replaced by the provided
RUL label. Besides, matrixes U, V, W are passing pa-
rameters of the RNN model from input nodes to hidden
nodes, from hidden nodes to output nodes, and from
hidden nodes at time t − 1 to hidden nodes at time t,
respectively.

In Step 1, signals propagate forward along the arrows. ht

and Ot are given as follows:

h
t

� ψ UX
t

+ Wh
t

+ b ,

O
t

� σ Vh
t

+ c ,
(1)

where ψ and σ are activation functions and b and c are the
deviation of the input layer and output layer,
respectively.

In Step 2, calculation errors propagate back forward
through time at every iteration. While tanh is used in the
hidden layer and softmax is used in the output layer, the
error et, total loss L, and partial derivatives of
U, V, W, b, an d c are calculated as follows:
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(2)

+rough the circles of Step 1 and Step 2, parameters of
the RNN model are optimized and the objective function of
total loss is minimized; thus, the predicted RUL is as close as
possible to its real value.+e training process will be stopped
when there is no significant improvement on prediction
accuracy or when iteration times reach the default number.

2.2. FCM. Clustering is a suitable technique for handling the
prognosis tasks without labels, since it aims to organize a set
of samples into the corresponding groups based on simi-
larity. +erefore, clustering is actually described as the
method for grouping unlabeled data. As the extended ver-
sion of K-means algorithm, the FCM algorithm was pro-
posed by Bezdek and possesses the ability of assigning each
sample to each cluster in a certain degree.

Due to its superiority in dealing with the uncertainty
and independence of labels, the FCM algorithm has been
widely applied to fault diagnosis of rotating machinery. +e
FCM algorithm defines and assembles samples into certain
classes via minimizing the objective function and calcu-
lating the membership degree to clustering centers. +e set
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Figure 1: Standard and unfolded RNN.
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of samples can be presented as X � [x1, x1, . . . , x1], in-
cluding c(c> 1) hidden subsets totally. +e clustering
center Vi, membership degree Vij, and objective function J

are calculated as follows:
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where Vij, m, and dij, respectively, represent the mem-
bership degree, the weighted index, and the Euclidean
distance from the j − th sample to the i − th clustering
center. +e FCM algorithm can be summarized into three
steps as follows.

Step 1. Initialize parameters including the number of sub-
sets c(c> 1), fuzzy degree qij, membership degree matrix V,
number of iterations, and threshold.

Step 2. Update clustering centers according to the mem-
bership degree matrix V and then recalculate the mem-
bership degree Vij.

Step 3. Estimate the deviation of function J.
All these steps will be stopped if the deviation or the

absolute value of function J is less than the threshold;
otherwise, Step 2 and Step 3 will be repeated.

3. Proposed Method

In this section, an RNN-based approach is proposed for
RUL prediction. Frequency-domain and time-frequency
domain features are used as the input of PCA to obtain the
degradation index, and the turning points obtained from
the FCM algorithm are used to reconstruct the degra-
dation index into normal condition, slight fault, and heavy
fault. +e ideal RUL label is then generated to train the
RNN model accurately and synchronously. +e proposed
method mainly consists of three steps, as shown in
Figure 2.

3.1. Data Preprocessing. Vibration energy of frequency
domain contains information of spectral distribution and
position change for the main frequency band. And related
frequency-domain features are sensitive to bearing degra-
dation since an imperceptible change produces a spectrum
line in the corresponding frequency spectrum. +erefore, it
is vital for fault prognosis to extract some indicators in the
frequency domain. Besides, as a self-adaptive signal pro-
cessing technique, EEMD decomposes a signal into several
IMFs and one residual. +e number and selection of these

IMFs depend on the signal itself. +us, the internal oscil-
latory modes imbedded in the signal are denoted by IMFs.

+e first twelve-dimensional frequency-domain features
and the energy of the first N IMFs are extracted for each
sample. +e default energy of single IMF is zero when the
decomposition result is less than default N. And N is set as
ten in this study as the number of obtained components
from EEMD is about ten for all bearing vibration signals. In
order to ensure the stable performance of the trainingmodel,
the min-max normalization is applied for data preprocessing
as in

xi
′ �

xi − minxi

max xi − minxi

. (6)

3.2. RUL Label Construction. +e FCM algorithm provides
the membership degree value of each sample for each
clustering center. As the total membership degree value of
one sample for all groups is 1, the maximum corresponds to
the most likely group that the sample belongs to. Besides, the
FCM algorithm has no requirements on the amount of data.
Once the obtained data are provided, the algorithm clusters
samples into default groups based on similarity. Considering
that the bearing’s life circle is often divided into three stages
of normal condition, slight fault, and heavy fault, the default
value of hidden clusters is set as three. With the objective
function being optimized in the FCM algorithm, the
membership degree values of each sample for each cluster
are shown in Figure 3.

As seen in Figure 3, the membership degree from sample
1 to sample n1 is 0.85 and that of the other samples is below
0.5 in the first cluster. +us, the samples from the first to n1
belong to the first group. Similarly, samples from n1 + 1 to n2
belong to the second group, and samples from n2 + 1 to the
last belong to the third group. So, n1 + 1 is the turning point
between normal condition and slight fault, and n2 + 1 is the
turning point between slight fault and heavy fault.

One degradation index is generated by dimensionality
reduction of PCA, which is recently regarded as the RUL
label in other research studies. Since the linear decreasing
relationship is the fatal trend of real life, the new RUL label of
three degradation phases is constructed by linear regression
based on the degradation index, as shown in Figure 4.

As shown in Figure 4, there are several abnormal
points such as the drastic rise point B and straight de-
crease point A. Obvious deteriorations of bearing con-
dition appear at these moments since the vibration or
noise is rapidly increasing. +us, the value of the deg-
radation index is usually near the extremum, which causes
conflicts with the reality of rapid reduction in remaining
useful life. +erefore, these abnormal points are elimi-
nated here. One point will be regarded as abnormal once
its deviation is three times larger than the average devi-
ation of several adjacent points as in (7) and (8). 2a ad-
jacent points are used for calculation, and linear
regression is applied to fit the degradation index when all
abnormal points are eliminated. And a � 5 in this work:
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f(t) � fT(t) + fR(t), (7)

M(t) � N ×


t+a
t−afR(t) − fR(t) 

2a
⎡⎣ ⎤⎦, (8)

where f(t) is the degradation index at time t.,fT(t) is the
mean trend of the degradation index at time t, fR(t) is the
random part of the degradation index at time t, and M(t) is
N times the average deviation of 2a adjacent points at time t.
One point named “f(t)” will be replaced by fT(t) when
fR(t) is larger than M(t).

3.3. RUL Prediction. In order to simulate the online RUL
prediction procedure for rolling bearings, the batch size of
model training is set as one. +us, the RNN model will be

updated for each new sample. Once the first turning point
is detected by the FCM algorithm, the model is going to
learn degradation modes and obtain the ability of pre-
diction. And the operation data of previous moments are
used to predict the RUL in the future. +e demarcation
point of training and prediction is determined by an ex-
perienced ratio of two to one, when the first turning point
between normal condition and slight fault appeared in the
first two-thirds of samples. Otherwise, the training set
should be expanded until a set of failure samples are also
learned by the RNN model.

As shown in Figure 5, the RNN model is constructed
based on the frequency-domain features and energy features
of the first ten IMFs. With loop iteration for parameter
optimization, two hidden layers are established in the RNN
model. +e key work in the model is the update of weight
matrixes for all nodes, which are trained by the BPTT al-
gorithm.+e square root error is used as the loss function for
partial derivative calculation in the RNN model. Besides,
tanh is used as the activation function in the input layer, and
relu is applied in the output layer.

Suppose Xt is a feature vector extracted from a single
sample at time t in the input layer. Outputs of the input layer,
the two hidden layers, and the output layer at time t are,
respectively, shown as follows:
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where U, V, W, b, an d c are as the same as mentioned
above, and original values of these parameters are initialized
randomly from −1 to 1.
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1

0.5

0

1

0.5

0

1

0.5

0

M
em

be
rs

hi
p 

de
gr

ee
 v

al
ue

Time t

Time t

Time t

X: n1
Y: 0.85

X: n2
Y: 0.9

X: n1+1
Y: 0.9

X: n2+1
Y: 0.95

Figure 3: Clustering results of the FCM algorithm.

Shock and Vibration 5



+e ideal RUL at time t is obtained as Yt according to the
new RUL label. +e loss of output is calculated with the ideal
RUL, and the partial derivative of model parameters is then
updated. +rough the repeated forward calculation and
BPTT algorithm, the training process of the RNN model is
completed. Compared with traditional training algorithms
based on gradient descent, the decoupled extended Kalman
filter algorithm shows significant advantages on computa-
tion and performance. And it is applied in prediction model
training. Evaluation is finally conducted based on the pre-
diction results and the ideal RUL of test data.

4. Experimental Study

In experiments, XJTU-SY bearing data and IMS bearing data
are used. Compared with other approaches including the
backpropagation (BP) network, support vector machine
(SVM), and multilayer perceptron (MLP) and traditional
functions including linear RUL function and piecewise RUL

function, the prediction results of the proposed method
show a significant superiority.

4.1. Case Study 1: XJTU-SY Datasets

4.1.1. Data Description. XJTU-SY Bearing Datasets are
provided by the Institute of Design Science and Basic
Component, Xi’an Jiaotong University (XJTU), and the
Changxing Sumyoung Technology (SY). +ey contain
complete run-to-failure data of fifteen rolling bearings by
conducting several accelerated degradation experiments
[12]. Bearings of type LDK UER204 were operated in totally
three conditions, and five bearings were tested under each
operating condition.+e sampling rate was kept at 25.6 kHz,
and the sampling interval was equal to one minute. +e
bearing test bed is shown in Figure 6.

4.1.2. Evaluation Metrics. In this section, the prediction
performance of the proposed method is evaluated quanti-
tatively by employing scoring function and rootmean square
error (RMSE), which are described, respectively, as follows.

(1) Scoring Function. +is is different when the mea-
surement runs ahead of the real value or when the predicted
RUL value lags behind the real value. +e definition of
scoring function is shown as follows:
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where hi is the difference between xi and hi as mentioned
above.

Furthermore, a smaller score means a better prediction
result. Besides, scoring function gives a different penalty
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when the model underestimates the RUL and when the
model overestimates the RUL because there remains little
time for maintenance if the predicted RUL is larger than the
real one. Faults or disasters are going to happen soon, and
prediction gets no significance at all.

(2) RMSE.+is is widely used for RUL prediction, which
is the root of error square divided by the number of samples.
+e definition of RMSE is shown as follows:

RMSE �

����������

 xi − di( 
2

n



, (14)

where xi represents the measurement, di is the real value,
and n refers to the number of samples.

+is statistical index reflects the extent from measure-
ments to real values and gives the same value no matter the
error is positive or negative. +us, a smaller RMSE value
means a better prediction result.

4.1.3. Experimental Results and Analysis. Operation data in
the vertical axis of bearing 2-2 are extracted for this ex-
periment. +e operating conditions include a rotation speed
of 2250 RPM and hydraulic loading of 11KN. After a
constant operation of two hours and forty-oneminutes, fault
occurred in the outer race, and 161 sampling files are ob-
tained. +e former 100 sampling files are used for model
training to predict the RUL for the next 61 test samples. +e
degradation index obtained by PCA is shown in Figure 7. In
previous studies, based on expert experience, the degrada-
tion stages of bearings are generally divided into three stages:
normal condition, slight fault, and severe fault [4]. +ere-
fore, the degradation process can be divided into stages
according to the FCM algorithm mentioned in Section 2.2,

and then the membership degree of each sample to each
cluster center can be obtained.

As mentioned above, three clustering centers are set in
the FCM algorithm with the maximum iteration as 100 and
the error as 1e− 6. +e result of membership degree
function is shown in Figure 8. +e membership degree
from sample 1 to sample n1 is 0.85, and that of the other
samples is below 0.5 in the first cluster. +us, the samples
from the first to n1 belong to the first group. Similarly,
samples from n1 + 1 to n2 belong to the second group, and
samples from n2 + 1 to the last belong to the third group.
So, n1 + 1 is the turning point between normal condition
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Figure 6: Test bed of XJTU-SY bearing datasets.
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and slight fault, and n2 + 1 is the turning point between
slight fault and heavy fault. It can be found that bearing 2-2
is operating normally from the beginning to the 56th
sample. +e slight fault occurred at the 57th sample, and
the heavy fault started at the 86th sample. Based on the
turning points, linear regression analysis is applied to
construct the new RUL label, as shown in Figure 9.

With the novel RUL label constructed, the RNNmodel is
applied for RUL prediction. +rough 10 test runs, the model
structure and parameters corresponding to the best pre-
diction result are obtained.+e RNNmodel with two hidden
layers is able to discover the hidden patterns from the inputs,
and the suitable maximum iteration number is 2000. In
Figure 10, the results of RUL prediction at any time step of
the test set are given. +e prediction results of the test set are
given by the red line, while the results of model training are
given by the blue line. +e results of RUL prediction are
fluctuating around the ideal RUL, which proves the pre-
diction ability of the RNN model.

Different models including the classic RNN, back-
propagation (BP) network, multilayer perceptron (MLP),
and support vector regression (SVR) are compared in this
paper in Figure 11. Considering the unpredictable perfor-
mance of BP networks and MLP, the best network structure
is obtained by 10 loop iterations. Finally, the three-layered
node 22-27-1 is used in the BP network, which means 22
nodes in the input layer, 27 nodes in the hidden layer, and 1
output node. Two hidden layers with the structure of 22-25-
7-1 are used in the MLP. In the SVR model, RBF kernel
function is used with gamma value 4, cost value 1.5, and p

value 1e− 5 in the loss function.
Linear and piecewise RUL functions are both dis-

cussed. Bearing life decreases linearly from one to zero
between the first and the last sample in linear function. As
shown in Figure 12, the turning point of piecewise
function is set at the 70th sample and the original RUL is
determined at 130 finally after repeated experiments in the

experienced range. +e structures of models remain the
same as before.

+e RMSE and scoring function are adopted to evaluate
the performances of models. +e comparison of prediction
results with different labels and models is shown in Table 1.

As shown in Table 1, the novel RUL label shows a better
performance than linear and piecewise RUL functions
among all four models, which strongly proves the superiority
of the proposed method for RUL label construction. Besides,
the RNN obtained the best result of RUL prediction with
both the novel RUL label and the piecewise RUL label,
followed by the MLP and BP network. And SVR shows little
potential for prediction in this experiment.

Turning points are the key information of the proposed
method. As the degradation of rolling bearings is usually
continuous, the adjacent samples in the time series are
usually clustered into the same group until the turning point
appears.+e influence on clustering results of fluctuations in
input data is discussed in this part. Since the first turning
point has been known, 10, 20, and 30 samples are added,
respectively. Clustering results with three training sequence
lengths are shown in Figure 13.

As seen in Figure 13, misjudgment takes place when
there exist only 67 samples. And the first turning point
comes earlier than the 57th sample. It is because that the
clustering centers are farther away from the correct positions
when there are fewer samples for training. And the small
fluctuations in clustering centers will cause large changes in
calculated membership degree values according to the
principles of the FCM algorithm. Samples that actually
belong to the first group but are far away from the calculated
center are misjudged. +us, the situation will be improved
with more samples provided. +rough experiments, it is
noted that about twenty samples are required for generating
accurate turning points, which is not a serious problem with
the reality of high-frequency sampling rate and relatively
slow degradation rate at the two turning points.
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4.2. Case Study 2: IMS Bearing Data

4.2.1. Data Description. IMS (Intelligent Maintenance Sys-
tems of NSF I/UCR Center) bearing data include three sets of
degradation experiments among four rolling bearings. +ese
experiments were carried out using bearings of type Rexnord
ZA-2115.+e test bench structure is shown in Figure 14. As the
most commonly used dataset in bearing life prediction research
studies, Set 2 is applied for verification of the proposedmethod.

Set 2 describes a situation that the outer race failure
occurred in bearing 1 at the end of experiment, containing
984 sampling files in total. +e rotation speed was kept
constantly at 2000RPM, and a radial load of 6000 lbs was
applied onto the shaft and bearing by a spring mechanism.
Besides, eight accelerometers were mounted, respectively, in
vertical and horizontal directions of four bearings with a
sampling rate of 20 kHz and a sampling interval of
10minutes.
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4.2.2. Experimental Results. 700 samples are used for model
training to predict the next 284 outputs. PCA is applied for
the feature’s dimensionality reduction. +e FCM algorithm

is then applied for clustering, as shown in Figure 15. As
seen in Figure 15, the bearing operates normally from the
beginning to the 533rd sample and gets into slow
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Table 1: Evaluation results of three labels and four models (XJTU-SY).

Models
New RUL label Linear RUL label Piecewise RUL label

Score RMSE Score RMSE Score RMSE
RNN 0.4173 0.2250 0.4492 0.5724 1.2704 1.6062
BP network 0.6192 0.4582 1.6552 1.9789 1.4326 1.7585
MLP 0.5369 0.2647 1.5889 1.9935 1.4882 1.8286
SVR 2.9445 3.6695 3.1515 3.9295 3.3848 4.2084
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degradation at the 534th sample and rapid degradation at
the 703rd sample. With the turning points known, the
linear regression algorithm is applied, and a novel RUL
label appears in Figure 16.

It is noted that the RUL label at a training sequence
length shorter than 703 is different from that in Figure 16,
since the FCM algorithm has merely detected the first
turning point. And then the RUL label is constructed
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through operation data before the next turning point. When
there are 700 samples for model training, the RUL label is
shown in Figure 17.

Four models of RNN, BP network, MLP, and SVR are
compared. Here, the BP network with nodes 22-27-1 is
constructed.+eMLP with two hidden layers of 22-25-7-1 is
obtained. A standard RNN structure is used with two hidden
layers and the maximum iterations of 2000. In the SVR
model, a polynomial is used as the kernel function with a
cost value 1.5 and p value 1e− 4 in loss function. +ese
models run for 10 times, respectively, and compared in the
best results.

Besides, linear and piecewise RUL functions are used for
prediction, where the turning point of piecewise function is

set at the 450th sample and the original RUL is 750. For
evaluation, the RMSE and scoring function of different
models and labels are calculated and shown in Table 2.
Similar conclusions are easily achieved to the first experi-
ment in XJTU-SY bearing data. +e proposed label better
agrees with the real RUL, and the RNN performs the best
among four models.

5. Conclusions

An adaptive method of RUL training label construction
based on the FCM algorithm is proposed in this paper, and
the whole proposition is demonstrated by comparing the
new constructed RUL label and the current linear RUL
function and piecewise RUL function. Experiments carried
out on one recent bearing degradation dataset, XJTU-SY
bearing data, and a widely used dataset, IMS bearing data,
strongly proved the superiority of the proposed method.+e
conclusions of this work are as follows:

(1) +e RUL label constructed by the proposed method
better fits the hidden degradation mode than linear
and piecewise RUL functions through a comparison
of four common models for remaining useful life
estimation. And the recurrent neural network per-
forms the best in these models with its excellent
capability of time-series data processing.

(2) With the FCM algorithm for turning point detection,
the fault of bearings is found synchronously, which
provides a solution for online RUL prediction with
no experience of failure threshold and ending time of
life to use. Besides, it takes several samples for the
algorithm to identify the turning points accurately.

(3) +e influence of the training sequence length is
discussed in both experiments. As there exists more
degradation information in the larger training set,
the FCM algorithm shows higher accuracy on cluster
and the RNN provides better performance on
prediction.

+e proposed method based on the FCM algorithm is
proved to be powerful and accurate for RUL label con-
struction, but the computing performance of the RNN
model still needs to be improved. For example, the RUL can
be predicted by the long short-term memory (LSTM) net-
work, gated recurrent unit (GRU), bidirectional LSTM
network, bidirectional GRU, transformer, and so on. And
more improvements on algorithms should be developed.
Besides, the linear degradation mode based on current
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Table 2: Evaluation results of three labels and four models (IMS).

Models
New RUL label Linear RUL

label
Piecewise RUL

label
Score RMSE Score RMSE Score RMSE

RNN 3.2199 0.6838 5.7834 2.9054 4.1641 1.8924
BP network 3.5863 3.0051 8.3087 5.1212 4.9563 3.2139
MLP 3.9781 3.5016 6.1778 5.3195 5.1935 4.7358
SVR 4.6046 1.2288 5.8675 5.9114 6.1047 3.1722
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research studies is applied in this work. And nonlinear
degradation curves could be used in the future research
studies, as many degradation progresses are nonlinear in
application.

As for further work, it is not idealistic to divide the
bearing degradation process into several stages since it is
commonly considered continuous and gradual. Another
thing is that imbalance of degradation process division and
rare failure data may lead to the poor performance of the
assessment model. +us, further work will pay attention to
the continuous label of degradation process, and the im-
balance of faulty data will also be considered.
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