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Ground loss due to earth pressure balance shield tunneling eventually leads to a surface settlement which can be an issue of great
concern. However, the existing machine learning methods ignore the continuous and dynamic nature of EPB shield tunneling. In
this work, a multivariate time-series (MTS) model for ground loss is proposed based on an analysis of factors and processes related
to ground loss combined with the characteristics of original time-series data involvingmultiple parameters recorded by EPB shield
machines in real time. A method of visualizing MTS features based on a residual network and multichannel fully convolutional
neural network is also presented. (e validity of the proposed ground-loss model is verified via calculation and comparison with
13 EPB shield construction projects carried out in typical urban areas featuring soft soil. (ermal maps are thus obtained to
visualize the classification contributions, which provide a visual basis for feature analysis.

1. Introduction

Earth pressure balance (EPB) shield tunneling has become
one of the main methods used to construct urban metro
lines. (is is because of its high construction efficiency, wide
range of applications, and limited impact on the ground
surface and associated human activity. However, EPB shield
construction will inevitably disturb the surrounding soil
causing, to some extent, ground loss and settlement of the
ground surface [1–11]. In particular, using the method to
construct shallowly buried tunnels in typical urban areas
with soft soil poses a serious threat to structures both on the
ground surface and underground [12, 13]. Many scholars
have attempted to estimate ground loss due to EPB shield
tunneling using empirical methods [1–3], theoretical
methods [4–6], and numerical simulation [7–10]. However,
the complex engineering situation limits the practical ap-
plication effect of these methods. It is worth noting that the
construction process data with rich feedback of tunneling
state are automatically recorded during the tunneling pro-
cess of the earth pressure balance shield machine, including
the important information of controlling the tunneling

process of the earth pressure balance shield machine, which
provides the data basis for the research of related engi-
neering problems based on the machine learning method
[14, 15]. And the success of artificial intelligence technology
in computer vision and natural language processing also
provides a reference for data-based prediction methods.

Kim et al. [16], for example, used 113 datasets from the
construction of the Seoul Metro and applied an artificial
neural network (ANN) to predict surface settlement and
analyze the relative importance of various influencing fac-
tors. By considering three factors affecting surface settlement
(geological conditions, tunnel geometry, and shield opera-
tion), Suwansawat and Einstein [17] used 49 datasets from a
tunnel project in Bangkok to predict the surface settlement
caused by EPB shield tunneling. (ese authors also used an
ANN and found that there is an internal relationship be-
tween the influencing factors. Darabi et al. [18] used em-
pirical, numerical, and neural network methods to analyze
the subsidence and convergence of the tunnel in Tehran No.
3 subway line, and through comparison, they suggested
utilizing the ANN to estimate the tunnel subsidence. Ninić
and Meschke [19] proposed a method for the simulation
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supported steering of the mechanized tunneling process in
real time during construction and used Particle Swarm
Optimization (PSO) to optimize ANN for the inverse
analysis; i.e., identification of model parameters according to
monitoring results obtained during tunnel advance allows
the update of themodel to the actual geological conditions in
real time. Zhang et al. [20–22] took the response of the
surface to shield tunneling to be a complex problem affected
by the tunnel geometry, operating parameters of the shield
machine, geological conditions, and any abnormal condi-
tions. (ey analyzed 236 datasets taken from the con-
struction of Metro Line 4 in Changsha City in their work.
(ey proposed two novel computational models based on
the random forest (RF) algorithm to support the automatic
steering of the EPB shield tunneling machine. PSO-RF was
used to optimize the operating parameters of the shield
machine when the settlement exceeded the maximum
allowed value. In addition, Deep-Q network PSOwas used to
optimize the weight and deviation of the extreme learning
machine and the relationships between the influencing
factors and ground response were identified through en-
gineering practice.

In addition to the above methods, approaches based on
relevance vector machines [23], adaptive neurofuzzy in-
ference systems [24], genetic expression programming [25],
least-squares support vector machines [26], and general
regression neural networks [27] have also been used to
predict settlement. Many scholars have tried to use ML to
predict the ground settlement based on the abundant
amount of EPB shield tunneling data that is available, as
shown in Figure 1. In each case, the surface settlement due to
ground loss is assumed to be related to many factors, e.g.,
how the shield is operated and geological conditions.
However, ground loss due to EPB tunneling is a continuous
and dynamic process.(erefore, the original data in the EPB
construction log actually consists of a collection of time
series. (e temporal and spatial characteristics of the EPB
shield tunneling process are ignored in the existing research
and the selection of datasets lacks knowledge of the exact
conditions and processes involved. Moreover, the amount of
data available for a particular project is generally small and
so there is a risk that the calculations suffer from overfitting.
(erefore, the use of a supervised multivariate time series
(MTS) model is proposed in this work that is based on an in-
depth analysis of the continuous and dynamic ground loss
due to EPB shield tunneling combined with the time series
characteristics of the original data.

As the model lacks knowledge of the domain, it is im-
possible to select features manually. However, the end-to-
end deep-learning method used eliminates the deviation
caused by manual design features and also learns the most
discriminating and useful features for classifying tasks
[28, 29]. Wang et al. compared nine deep-learning algo-
rithms using 12 MTS datasets [30–32]. (ey found that
residual networks (ResNets) and fully convolutional neural
networks (FCNs) produce the best results. Furthermore,
ResNets have better stability. In terms of MTS classification,
one-dimensional (1D) convolution combined with gradient-
weighted class activation mapping (Grad-CAM) can be used

to facilitate feature visualization along the time axis [33, 34].
However, there is no basis for the ranking of multivariate
parameters and convolution along the directions of pa-
rameters is meaningless. As a result, the relative importance
of the relationships between multivariate parameters cannot
be analyzed. (erefore, in this paper, we construct a method
that combines a ResNet with a multichannel fully con-
volutional neural network (MCFCN) based on techniques
developed for multichannel deep convolutional neural
networks (MCDCNNs) [35, 36]. (e new method allows
feature visualization to be realized along the time axis and
along parameter directions using Grad-CAM. It also learns
which features are related to ground loss by highlighting
subsequences that contribute most to the classification.

AnMTSmodel for ground loss is also constructed in this
work based on 13 EPB shield tunneling projects carried out
in soft soil typically encountered in urban parts of
Changzhou in China. Classification contribution thermal
maps are subsequently calculated based on the effective
classification provided by the ResNet and MCFCN. In ad-
dition, the relevant characteristics are analyzed. (e rest of
this paper is organized as follows. (e MTS model for
ground loss due to EPB shield tunneling is established in
Section 2 and the ResNet-MCFCN visualization method is
presented in Section 3. (e experiments and analysis of the
corresponding experimental results are presented in Section
4. Finally, the conclusions of the paper are given in Section 5.

2. MTS Ground Loss Model

Ground loss due to EPB shield tunneling is a continuous and
dynamic process. (erefore, the construction data recorded
in real time from an EPB shieldmachine has clear time-space
correspondence. Considering the continuous and dynamic
process and establishing a reasonable model is the key to
studying ground loss using ML.

2.1. Volume Loss. As shown in Figure 2, the construction of
each supporting segment is taken as the basic unit in the EPB
shield tunneling process. (ere are two main stages: shield
advance and segment installation. (e process of tunnel
engineering is realized by the construction of repeated
supporting segments. (e ground loss during EPB shield
tunneling eventually leads to surface settlement.

Peck [1] first proposed the concept of land subsidence
troughs with quasinormal distributions based on an analysis
of a large amount of land subsidence data and associated
engineering data [1]. Under the assumption that the soil is
undrained and incompressible, the surface settlement due to
ground loss is considered to be given by the following:

Vloss �

���
2π

√

2
H

D
 

n

DSmax, (1)

where Vloss is the volume loss (i.e., the volume between the
original and settled ground surfaces per meter of tunnel
advance), and as shown in Figure 1, Smax is the maximum
surface settlement above the tunnel axis, D is the diameter of
the shield-driven tunnel, and H is the depth of the tunnel
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axis with respect to the original ground surface.(e index in
equation (1), n, lies in the range 0.8–1.0, larger values
corresponding to softer soil. For soft soil, suppose n ≈ 1:

Vloss �

���
2π

√

2
HSmax. (2)

(us, equation (2) implies that Vloss∝HSmax. Sagaseta
analyzed the strain field arising in incompressible soil due to
ground loss at a certain depth below the ground and used
absolute displacement as a variable to derive the displace-
ment and stress fields in the soil below the ground [4]. (e
results of this analysis also suggested that Vloss∝HSmax.

As mentioned in the introduction, many studies target
Smax as a means of predicting surface settlement. However,
for a given set of geological conditions, the surface settle-
ment due to ground loss is directly related to the shield
diameter (D) and burial depth of the tunnel (C). (ese two
scale factors are related to the depth (H) of the tunnel axis
below the ground surface. In addition, as indicated by
equation (2), a large amount of engineering experience
shows that the product of Smax and H is representative of

the unit ground loss area in the tunneling direction which
can be used to characterize the ground loss due to the EPB
shield tunneling process. (erefore, for given geological
conditions, it is more reasonable to use the ground loss to
measure the response of the ground to EPB shield tunneling
than surface settlement. However, because the surface set-
tlement is more intuitive as the variable monitored, the
equivalent average final settlement, Smax, can be obtained by
dividing the ground loss Vloss of all sample points by the
average depth of the tunnel axis beneath the ground, H.

2.2. Influence Factors. An EPB shield machine uses the
continuous flow of modified excavation material as a sup-
port medium. (e flow of excavation material through the
cutter head, soil chamber, and screw conveyor is carefully
controlled (by adjusting parameters such as thrust, speed of
advance, cutter head speed, and speed of the screw con-
veyor) t+o establish a dynamic pressure balance. In this way,
the stability of the tunnel face is assured and the shield
machine tunnels smoothly through the ground. As shown in
Figure 2, the region in which ground loss occurs can be
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Figure 1: Prediction based on shield construction data.
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Figure 2: Ground loss due to EPB shield tunneling.
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divided into four main parts: tunneling face, alone the shield,
tail, and consolidation according to the relative position of
the shield and surface monitoring points [11]. (e dynamic
interaction between shield machine and surrounding soil and
the continuous response of stratum are the main causes of
ground loss. Combined with the process of dynamic inter-
action between shield machine and soil, through analysis, the
five main influencing factors of ground loss caused by shield
tunneling are further summarized, as shown in Figure 3.

(1) Interaction between cutter head and soil: some
ground is lost in front of the cutter head of the EPB
shield machine as it cuts and squeezes the soil
[37–40]. (e EPB shield machine cuts the soil
according to the speed and torque of the cutter head.
(is action is combined with the pressure and speed
of advance of the machine to squeeze the soil in front
of the cutter head, as shown in Figure 3.

(2) Balance between the amount of advance and dis-
charge: the advancing capacity of the EPB shield
machine is the product of the cutter head area and
advancing speed and the discharge volume is the
conveying capacity of the screw conveyor. (ese two
quantities are roughly balanced on the whole
[41–43]. However, when the advance rate is greater
than the discharge volume, the pressure in the soil
chamber increases and the shield has a squeezing
effect on the soil. When the converse is true, the
pressure in the soil chamber decreases, and there is
an increased risk of ground loss.

(3) Direction of advance and attitude: some ground loss
occurs radially as the soil around the shield enters the
gap between the shield and the surrounding soil. (e
loss also occurs when the soil is squeezed and ir-
reversibly deformed by the shield due to a change in
the direction of advance or attitude of the shield,
such as snake-like motion and large angle turning
[44, 45].

(4) Grouting of the tail: as the shield advances, an an-
nular cavity is formed between the segment pushed
out of the shield and the surrounding soil. (erefore,
grouting is synchronously applied at the tail of the
shield to protect the segment and prevent the sur-
rounding soil from entering the gaps. Besides filling
the annular cavity, controlling the amount of grout
used and the pressure used to apply it allows some of
the ground loss at the tunneling face and shield-only
region to be compensated for [46].

(5) Consolidation settlement: after the support segments
are installed, slurry shrinkage and stress changes in the
strata may lead to long-term consolidation settlement
of the soil above the tunnel [47]. However, this only
makes a very small contribution to ground loss and so
this factor is ignored in the rest of this paper.

According to the above five influence factors, the rele-
vant parameters of shield construction data are summarized
as shown in Table 1. (e shield tunneling data mainly

includes the cutter head torque, the cutter head speed and
pushing speed of the feedback cutter head state, the pushing
displacement and pushing pressure parameters of the
feedback pushing state, the screw conveyor torque and speed
parameters of the feedback screw conveyor in the discharged
state, the grouting pressure and grouting amount parameters
of the feedback shield tail grouting state, and the earth
chamber pressure parameters of the feedback earth pressure,
as well as the feedback of the shield tunneling attitude of
horizontal/vertical difference between the front and rear
points.

Shield construction data is a typical time series data,
according to the construction stage can be divided into
shield tunneling stage and segment assembly stage. Take the
cutter head torque, pushing displacement, and screw con-
veyor torque of a shield tunnel construction process as an
example, as shown in Figure 4. From the data of shield
construction, we can also observe the process of repeated
driving stage and assembling segment of the ring. (e in-
teraction between shield machine and soil affects the
gr+ound loss mainly in the shield tunneling stage.

As the dynamic interaction between shield machine and
soil mainly occurs in the shield tunneling stage, the shield
machine stops tunneling in the assembly stage. (erefore,
the shield construction data considered in this paper is the
corresponding part of the shield tunneling stage. Taking the
cutter head torque, pushing displacement, and screw con-
veyor torque in the shield tunneling process as an example,
the multiring construction process is considered, as shown
in Figure 5.

Ground loss due to EPB shield tunneling is not only a
dynamic process that depends on many factors but also a
process that varies continuously in time and space. As
shown in Figure 6, the length of the EPB shield machine,
Lm, is usually much greater than the width of the sup-
porting segments, l. (e burial depth of the tunnel, C, is
also usually much greater than the diameter of the shield
machine, D. (erefore, the continuity of the ground de-
termines that the settlement at the surface is related to the
construction of several rings of supporting segments. In
addition, when Lm is larger than the distance between the
monitoring points on the surface, there is a correlation
between the observations made at the front and rear
monitoring points.

As shown in Figure 6, the settlement of the current
settlement observation point starts at ring S-7 of the tunnel
when the cutter head of the machine advances from ring S–3
to S–2. At this time, the support segment corresponding to
ring S–9 is being pushed out of the EPB shield machine and
simultaneously grouted. During the construction process,
data (e.g., cutter head torque, speed of advance, grouting
pressure, etc.) is synchronously recorded in real time at the
monitoring point corresponding to ring S-7. Each parameter
X is recorded in the form of a univariate time series
X � [x1, x2, . . . , xt], where xt is the data point and t is the
length of the time series. (erefore, the ground loss caused
by EPB shield tunneling is treated as a dynamic and con-
tinuous process and has a clear time-space correspondence.
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As a result, it is necessary to consider not only the processes
involved but also the characteristics of the original data in
the MTS model.

2.3.MTSModel. Due to the dynamic and continuous nature
of the ground loss process, the characteristics of the original
data from the shield construction process are complex

multivariate time series. In the absence of experience to
guide feature selection, we consider all the time series data of
relevant parameters in a unified way. We thus propose a
supervised MTS model consisting of multiparameter time
series connected via the data sequence to the multiring
construction process as data XN. (e corresponding ground
loss is expressed as YN, as shown in Figure 7. Assuming the
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Balance between the
amount of advance

and discharge

Direction of
advance and attitude

Grouting of the tail

Consolidation
settlement

Ground surface

ConsolidationTailAlone the shieldTunneling
face

Figure 3: Five main factors affecting the ground loss resulting from EPB shield tunneling.

Table 1: Shield construction parameters related to ground loss.

Parameter Unit Function Related influencing factors
1 (rust pressure: up Bar

Control the direction of advance and
feedback the squeezing effect on the soil

Interaction between the cutter head and soil;
direction and attitude

2 (rust pressure: down Bar
3 (rust pressure: left Bar
4 (rust pressure: right Bar
5 Earth chamber pressure: up Bar

Feedback the earth pressure distribution
and squeezing effect on the soil

Interaction between the cutter head and soil;
balance between advance and discharge6 Earth chamber pressure:

medium Bar

7 Earth chamber pressure: down Bar
8 Torque of the cutter head kNm Control the cutting speed of soil and

feedback its degree of hardness Interaction between the cutter head and soil9 Speed of the cutter head rpm

10 Advance pushing speed mm/
min Control the speed of advance and quantity

of shield constructed Balance between advance and discharge11 Average pushing displacement mm

12 Average articulation
displacement mm

13 Horizontal difference between
the front and rear points Feedback on the direction and attitude of

the tunneling process Direction and attitude
14 Vertical difference between the

front and rear points
15 Torque of the screw conveyor kNm Control the rate of discharge from the

shield machine Balance between advance and discharge16 Speed of the screw conveyor rpm
17 Total amount of grouting L Control the quantity of grout used and

feedback grouting pressure Tail grouting18 Average grouting pressure bar
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geological conditions are similar throughout, the MTS
model for the ground loss due to EPB shield tunneling can be
divided into the following four steps:

(1) (e data in XN starts at ring S − b. It can be seen
from Figure 6 that the effect of the shield machine on
the ground loss at the monitoring point essentially
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starts when the squeezing effect of the shield ma-
chine forms a failure zone. (e failure zone is usually
similar to a chimney and depends on the diameter of
the EPB shield machine (D), the burial depth of the
tunnel (C), and the geological conditions. It is as-
sumed that the failure zone is the main area affecting
the ground monitoring points. It has been reported
by Zhang et al. [39] that the boundary of the failure
zone is about 0.33 D in front of the tunnel face.
Considering the nature of the project case,C/D> 1 in
this paper, so the range of influence is increased to
0.5 D in front of the tunnel. (erefore, as shown in
Figure 7, the influence of the shield machine on the
surface settlement measuring point corresponding to
ring S starts from the construction of ring S − b,
where

b �
0.5D + Ls( 

l
 . (3)

in which Ls is the distance between the panel and
support section under construction and ⌊⌋ represents
the integer operation.

(2) (e data in XN ends at S + a. As shown in Figure 6,
the grouting position at the tail of the shield is usually
Lm–Ls after the segment supported by the current
construction ring. (e grouting quantity and
grouting pressure are regarded as the key factors
controlling surface settlement. However, research on
the scope of the influence of the shield tail grouting
process has not yet been reported. (erefore, we
assume that the scope of this influence on the ground
surface is the same as that of the shield compaction
effect. Hence, the influence of the shield machine on
the surface settlement measuring point corre-
sponding to ring S ends at the construction of ring
S + a, as shown in Figure 7, where

a �
0.5D + Lm − Ls( 

l
 , (4)

and Lm is the total length of the shield machine.
(3) Related parameters: according to the four main

factors mentioned in Section 2.2, the relevant pa-
rameters are (1) the interaction between the cutter
head and soil (thrust pressure, soil chamber pressure,
cutter head speed, cutter head torque, etc.), (2) the
balance between advance and discharge (advance
speed, advance displacement, soil chamber pressure,
screw conveyor speed, screw conveyor torque, etc.),
(3) the direction and attitude (horizontal and vertical
deviation between the specific front and rear points),
and (4) tail grouting (total amount and average
grouting pressure used in the shield tail). (e data
are obtained in the form of anMTS by combining the
time series data for the relevant parameters, where
XK is the univariate time series for parameter K.

(4) According to the discussion in Section 2.1, under
similar geological conditions, the HSmax value at a

monitoring point can be used to represent the degree
of ground loss, i.e., as YN.

Finally, under the assumption that the ground condi-
tions are similar throughout, a supervised MTS model
DT � (X1, Y1), (X2, Y2), . . . , (XN, YN)  is formed,
which includes the interaction between the cutter head and
soil, the balance between shield advance and discharge, the
direction and attitude of the shield, and tail grouting. (e
product of the maximum surface settlement (Smax) at the
corresponding position and the depth (H) from the tunnel
axis to the ground is YN. According to previous engineering
experience, the surface settlement can be divided into three
cases: (i) surface uplift, (ii) normal settlement, and (iii)
excessive settlement. If the quantity of data is large enough, it
can be further divided. At the same time, it can be seen from
Section 2.1 that the ground loss is the surface settlement, and
so the ground loss can also be divided according to the
surface settlement.

3. Visualization Method

(ere are five kinds of typical discriminatory characteristics
found in univariate time series, referred to as whole series,
intervals, shapelets, dictionary based, and spectral [48]. (e
MTS contains characteristic variables and the relationship
between them is more complex. Due to the lack of
knowledge of the domain in the MTS model, we use a
method that combines ResNets with MCFCNs. Further-
more, Grad-CAM is used to visualize the data along the time
axis and parameter directions. By highlighting the subse-
quences that contribute the most to a certain classification,
we can learn the characteristics associated with the ground
loss.

3.1. Time Axis Direction. (e MTS sequence along the time
direction is known, so 1D convolution can be performed
along the time axis to extract features. However, the order of
the parameters is uncertain. As shown in Figure 8, the basic
1D convolution module is a 1D convolution layer connected
to a batch normalization layer [49] and a ReLU activation
layer. (e 1D convolution is filled without striding. Overall,
the basic 1D convolution module ConvB

f

k can be expressed
via the equations:

yk � ωk ⊗ x + bk,

yf

k � Conv1Df yk( ,

hf

k � ReLU BN yf

k  ,

hf
� ConvBf

k�8,5,3{ }
(x),

(5)

where ⊗ represents the convolution operator, Conv1Df

denotes 1D convolution using f filters, and batch normali-
zation (BN) is applied to speed up the rate of convergence
and help improve generalization. Each convolution opera-
tion consists of three basic modules with kernels sizes
k � 8, 5, 3{ }. (is structure has proved to be the best one to
use inmanyMTS classification tasks [30, 31]. Using a ResNet
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is equivalent to adding a linear shortcut to the basis of the
convolution. It connects the output of the residual block to
its input so that the gradient flow can directly pass through
the connections made. (is makes it easier to train the deep
neural network (DNN) by reducing the vanishing gradient
effect [50]. As shown in Figure 8, the residual module can be
expressed via the following equations:

h1 � Bf1(x) � ReLU BN hf1
  + x ,

h2 � Bf2 h1(  � ReLU BN hf2
  + h1 ,

h3 � Bf3 h2(  � ReLU BN hf3
  + h2 ,

(6)

where Bfi denotes a convolutional block using fi filters
(f1� 64; f2� f3�128). (e final ResNet stacks three residual
blocks, followed by a global average pooling (GAP) layer and
a softmax layer. In order to increase the interpretability of
the DNN, reveal the reliability of the classifier and accu-
mulate the experience and knowledge related to classifica-
tion, CAM is introduced [33].

Suppose that the classification score of class c is Sc, the
weight of the GAP operator is ωc

i , the size of the eigenvectors
is t � 1∗ t, the ith eigenvector is Fi, the eigenvalue of j

position of i eigenvector is F
j

i , and the number of filters in
the last layer is I, then,

Sc � 
I

i�1
ωc

iGAP Fi( 

� 

I

i�1
ωc

i

1
t



t

j�1
F

j
i

�
1
t



I

i�1


t

j�1
ωc

i F
j
i ,

(7)

Equation (7) shows that the greater the value of ωc
i , the

greater the contribution made by Fi to the classification, and
the more important it is to the classification. (is allows a
credible visual interpretation to be made for the model to
help decision-making, which is very important for accu-
mulating experience related to classification. Grad-CAM is
an equivalent method to CAM [34] that is capable of vi-
sualizing classification contributions without using a GAP
layer. (e Grad-CAM Wc

T along the time axis satisfies the
following conditions:

αc
i �

1
t



t

j�1

zSc
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,

W
c
T � ReLU 

i
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⎛⎝ ⎞⎠.

(8)
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3.2. Parameter Direction. A ResNet combined with Grad-
CAM allows the classification contributions of the data
points to be visualized along the time axis but cannot vi-
sualize the classification contributions between multiple
parameters. (erefore, an MCFCN is constructed, as shown
in Figure 8.

Each characteristic variable is taken as a channel and
convolution modules similar to those shown in equation (5)
are set up. Each convolution operation includes three basic
modules with kernels sizes k � 8, 5, 3{ }. (e basic module of
the MCFCN, MCn, can be expressed in the form:

MCn(x) � hf
n (x), (9)

where n is the channel number (corresponding to the
number of parameters). Assuming that Fni is the i -th ei-
genvector of the n -th channel, Fj

ni is the j -th position of the i

-th eigenvector of the n -th channel, and I is the number of
filters in the last layer, the classification contribution along
the axis direction of the characteristic variable, Wc

V, satisfies
the following conditions:

βc
ni �

1
t



t

j�1

zSc

zF
j
ni

,

W
c
V �

1
t


j

ReLU 
i

βc
niF

j
ni

⎛⎝ ⎞⎠.

(10)

3.3. 4ermal Diagrams. Grad-CAM, in the form of equa-
tions (8) and (10), can be used to highlight the subsequences
that contribute most to the classification process. It thus
provides a visual interpretation of the data that can be used
to accumulate experience and knowledge related to the
classification process and make decisions using the model.
However, this is only useful if the correct classification has
been made. (at is, only when the classification model is
effective can the features related to the classification have
practical significance. (ree indices are therefore used to
evaluate the accuracy of the classification process: the ac-
curacy rate, P, the recall rate, R, and F1, which is a com-
prehensive measure of the accuracy and recall rate:

P �
TP

TP + FP
,

R �
TP

TP + FN
,

F1 �
2PR

P + R
,

(11)

where TP is the number of true positive results, FP the
number of false positive results, and FN the number of false
negative results.

Provided the classification accuracy meets certain re-
quirements, the classification contribution degrees along the
time axis direction (Wc

T) and characteristic variable direc-
tion (Wc

V) are calculated. (en, these two results are unified,
using F1 indices to weigh their relative contributions, to

form the final classification contribution, Wc
VT, that is used

to form the thermal diagram:

W
c
VT � Norm W

c
V(  + Norm W

c
T( ∗

F1T

F1V

, (12)

where “Norm” represents normalization and F1T and F1V

are the scores calculated using the ResNet and MCFCN,
respectively. (e classification contribution degrees repre-
sent the relative importance of the features to the classifi-
cation process. Equation (12) implies that the classification
contributions Wc

T (along the time axis direction) and Wc
V

(along the parameter direction) are first normalized and
then superimposed according to their F1 values. Finally, a
thermal diagram is obtained for the MTS based on the
classification contributions Wc

VT. (e calculation code of the
visualization method shown in Figure 8 can be found in the
appendix of this paper.

(e thermal map of classification contributions provides
an intuitive interpretation of the data that is especially useful
when there is an absence of domain knowledge. It also
provides a method for analyzing classification characteristics
and accumulating classification experience. (e training of
the two network structures shown in Figure 8 is performed
by minimizing the categorical cross-entropy. In this work, a
balanced sampling strategy was used and an Adam opti-
mization algorithm was employed to carrying out the
minimization process. In addition, the strategies for learning
rate adjustment are as follows:

lrnew � lrinitial × c, (13)

where lrnew is the updated learning rate, lrinitial is the initial
learning rate, and c is the multiplication factor of the
updated learning rate. c � 0.5 is set in this paper, and the
minimum learning rate is 0.0001.

4. Case Study

4.1. Background Information. Ground loss during EPB
shield tunneling is closely related to the prevailing geological
conditions. Ground loss will eventually lead to surface
settlement and is related to the depth of the tunnel. However,
the effects arising due to geological conditions are complex.
For example, tunnels excavated in sandy cobble areas may
form arch structures above them which prevent the ground
loss from being adequately reflected on the surface.
(erefore, it is necessary to simplify matters by assuming
that the geological conditions are ideal soft soil. (us, we
only study the loss occurring in soft soil and this must be
reflected in our choice of test cases.

(e cases considered in this paper all relate to EPB shield
tunneling carried out in the Changzhou Metro area in
Jiangsu, China. (e landform in this area is best described as
belonging to an alluvial lacustrine plain. (e terrain is
generally flat with some parts that are slightly undulating.
(e shallow parts just below the ground are mostly covered
by late Pleistocene clay and silt. Here, we consider 13 EPB
shield tunneling projects that mainly pass through silty sand
and silty clay; the overlying soil layer is mainly miscellaneous
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fill and silty clay. (e average burial depth of all the tunnel
axes is 15.89m, which is typical for tunnel projects in urban
soft soil areas. Based on the measured data of the geological
survey, the five key parameters of compression modulus Es,
cohesion c and internal friction angle φ, standard pene-
tration modified blow count NSPT and density ρ are cal-
culated, respectively, as shown in Table 2.

(e statistical results of each parameter are the average
values of all survey points of the corresponding soil layer
along each tunnel section, and the samples of each survey
point are more than 3. By calculating the dispersion coef-
ficient (the ratio of standard deviation to average) of each
parameter, it can be seen that the dispersion coefficient of
each parameter is less than 19.95%. (erefore, the stratum
conditions of 13 tunnel sections are similar and comparable,
meeting the requirements of controlling geological condi-
tions. A CTE6440 EPB shield machine was used in the
construction of the 13 tunnels selected for analysis.(emain
parameters of this EPB shield machine and the tunnels
constructed are shown in Table 3.

Our model for the EPB shield machine takes the con-
struction of each supporting ring as the basic unit of measure
and samples all parameters synchronously. (e data sam-
pling associated with each ring starts from the advance of the
shield until the advance displacement meets that required
for segment installation. (e construction process used for
each supporting segment is different, so the data length is not
the same. However, the structure of the deep-learning model
and parallel GPU computations performed on the time
series require that all the time series have the same length. As
shown in Figure 7, the MTS data for the ground loss due to
the shield tunneling is obtained by splicing the continuous
data recorded during the construction process. If the
amount of data collected for each ring is excessive, the
number of calculations will be large and this can affect the
calculation accuracy. Conversely, if the amount of data is too
little, information will be lost and this will also affect the
accuracy of the results.

A statistical analysis shows that the minimum effective
data length associated with 10,376 rings is 24 and the
maximum value is 79. Furthermore, the average value is 38
and the mode is 34. Only 5.39% of the total number is more
than 55. (erefore, in this paper, the data length for each
ring is 55, and less than 55 rings are filled with 0. In ad-
dition, monitoring points to monitor the surface settlement
were arranged every 5 rings along the direction of travel of
the tunneling machine in the 13 tunnel projects. (ere are
many factors that may affect the monitoring of surface
settlement (e.g., presence of rivers, buildings, and other
structures on the surface above the actual project) and the
launching and receiving of the shield during the con-
struction process can also be disturbed by many factors.
(erefore, any surface settlement-monitoring point that
was likely to have been adversely affected was removed
from the analysis carried out in this paper, leaving a total of
1,822 effective monitoring points. (e final surface set-
tlements (Smax) at each point were obtained after waiting
for at least 180 days after the corresponding support
segments were installed.

4.2. Data Processing. Ground loss due to EPB shield tun-
neling is a dynamic and continuous process and the ground
loss at a given surface settlement-monitoring point is usually
related to the construction of several rings. Considering the
engineering background outlined in Section 4.1, substitution
of the shield construction parameters given in Table 3 into
equations (3) and (4) yields the results b � 7 and a � 5.
(at is, the ground loss needs to be determined starting from
ring number S–7 and ending at ring number S + 5.
(erefore, the ground loss due to the tunneling activity is
related to the process of constructing 13 rings in the shield
in total at each point. As indicated in Table 3, a total of 59
construction parameters are recorded by this model of EPB
shield machine. (is includes a great deal of important
information that is fed back to the shield machine to
control the tunneling process. (e most relevant param-
eters, however, are determined according to the four main
influencing factors mentioned in Section 2.2, as shown in
Table 1.

It can be seen from Table 1 that XN has dimensions
corresponding to 18 × 715. In theory, the ground loss at
each effective settlement-monitoring point, together with
the 13-ring data before and after it, constitutes the data
sample (XN, YN). However, there is often some data that is
found to be abnormal or missing during the actual con-
struction process. Considering the influence that missing
data has on the MTS model, only the monitoring points
whose number of rings missing data is less than or equal to 1
are selected for use in this paper. (us, a total of 1,182
settlement-monitoring points are finally deemed to be ac-
ceptable. As described in Section 2.1, the surface settlement
Smax of each settlement-monitoring point is multiplied by
the depth H (from the corresponding tunnel axis to the
ground) to obtain the ground loss Vloss. (e calculated Vloss
values are distributed in the manner shown in Figure 9.

(e 1,182 ground loss Vloss values shown in Figure 9
approximately conform to a Cauchy distribution; the av-
erage loss is –0.106 × 10–3m2. (e corresponding average
final settlement, Smax � –6.67mm, lies in the range of for-
mation loss values that is considered “normal.” Engineering
practice suggests that the data points in the dataset corre-
sponding to YN can be divided into three categories
according to their average final settlement values Smax
(shown in Figure 9). (e first type (class I) corresponds to
ground losses Vloss > –0.050 × 10–3m2, corresponding to
Smax > –3.146mm, which indicates that the subsidence is
small with a small amount of loss or surface uplift. (e
second type (class II) is such that –0.050 × 10–3m2 ≥
Vloss > –0.160 × 10–3m2 corresponding to –3.146mm≥
Smax > –10.069mm, which indicates that there is a normal
amount of formation loss and normal settlement. (e third
type (class III) corresponds to the condition Vloss ≤ –0.160 ×

10–3m2 corresponding to Smax ≤ –10.069mm, which indi-
cates that excessive ground loss and settlement is occurring.

(e 1,182 labeled samples were divided into three cat-
egories according to the above classification method. Each
parameter was normalized to make the largest value equal to
one (all the data was normalized apart from those entries
filled with zeros). (e data points were then randomly
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divided into a training set and a verification set (in a ratio
of 4: 1, so that the verification set consisted of 236 data
points). (is produced the final MTS model,
DT � (X1, Y1), (X2, Y2), . . . , (XN, YN) , used to model
the ground loss caused by the EPB shield tunneling carried
out in this region.

4.3. Results and Discussion. (e number of rings used to
correlate with ground loss is one of the key parameters of the
MTS model. In addition, the MTS model is based on a new
dataset and so the effectiveness of the algorithms used needs
to be verified by comparison with existing methods.

4.3.1. Model Validation. Using equations (3) and (4), it was
calculated that the starting ring to use should be S–7 and the
ending ring should be S + 5 when calculating the ground loss
(that is, the number of rings that are relevant to the ground
loss due to EPB shield tunneling is 13). In order to verify this,
the results obtained using a variety of values for a and b are
compared keeping all other parameters the same. (e
ResNet method shown in Figure 8 is used to perform the
calculations, producing the results shown in Table 4.

Table 4 shows that the classification accuracy tends to
increase as the total number of correlation rings is increased.
Clearly, using just one ring produces the worst results. It also
shows that the ground loss caused by shield tunneling is
related to the construction of multiple rings. (e classifi-
cation accuracy, however, does not increase linearly with the

number of correlation rings considered. (is suggests that
correlation between the ground loss correlation rings also
affects the results. (e most important aspect of Table 4,
however, is that of all the working conditions used, the best
classification effect was achieved by using rings S–7 to
S + 5. (is supports the method used here to calculate
which rings are the most appropriate ones to use to cal-
culate the ground loss, i.e., those calculated according to
equations (3) and (4).

4.3.2. Algorithm Comparison. (e new MTS model has its
own characteristics and needs to be checked for accuracy.
Methods based on ResNets and FCNs tend to have the best
classification accuracy and stability according to their per-
formance with existing MTS datasets. In order to construct
classification contribution thermal diagrams, in this paper,
we proposed using an MCFCN method (referring to a
combination of an MCDCNN and an FCN). In addition,
other people have used anMLSTM-FCNmethod [51], which
combines an LSTM with an FCN and classifies the MTS into
unitary time series (providing an interface for the latter
[52]).(ese differentMTS classificationmethods are applied
to the current MTS model, DT � (X1, Y1), (X2, Y2),

. . . , (XN, YN)}, for the ground loss due to EPB shield
tunneling. (e results are shown and compared in Figure 10
(where 10 repetitions are performed using each method).

Figure 10 shows that the ResNet method has the best
classification accuracy and stability among the differentMTS
classification methods, producing the best F1 score of 0.854.

Table 2: Statistical table of main geological parameters of 13 shield tunnel projects.

Shield tunneling projects ρ (g/cm3) Es (MPa) c (kPa) φ (°) NSPT

1 1.89 9.94 7.00 30.67 30.37
2 1.91 11.11 5.00 30.44 24.52
3 1.97 10.79 8.68 30.83 24.22
4 1.93 12.5 5.08 32.25 30.31
5 1.93 12.5 5.08 32.26 30.33
6 1.92 11.26 5.92 31.6 29.23
7 1.91 11.26 5.94 31.61 29.24
8 1.93 9.98 32.47 23.22
9 1.93 9.98 32.47 23.22
10 1.96 11.03 8.40 31.16 23.5
11 1.94 10.35 6.57 22.27 23.57
12 1.94 10.35 6.58 22.31 23.53
13 1.95 12.11 5.00 31.76 27.98
Dispersion coefficient 1.07 7.95 19.95 11.33 11.42

Table 3: Key characteristics of the tunnels/tunneling machine considered in this work.

Parameter Value
Length of the EPB shield machine, Lm (m) 9.10∼9.40
Distance between the panel and supporting segment under construction, Ls (m) 5.90∼6.10
Width of supporting segment, l (m) 1.20
Outer diameter of shield machine, D (m) 6.34∼6.38
Frequency with which the machine parameters are sampled (Hz) 0.02
Total length of tunnels (m) 12,451
Total number of rings used to support the tunnels 10,376
Number of parameters recorded by the shield machine 59
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(e FCN method also produced good results, although its
average accuracy (F1� 0.842) and stability are lower than the
ResNet method. In addition, although the MLSTM-FCN
method combines an FCN with an LSTM, the classification
effect is not outstanding. In the multichannel multivariate
time classificationmethod, theMCFCNmethod proposed in
this paper is clearly better than using an MCDCNNmethod.
(erefore, as shown in Figure 8, the ResNet and MCFCN
methods can effectively classify the MTS ground loss data
and ensure the reliability of the relative weights of the
classification contributions.

4.3.3. Visualization of MTS Features. (e ResNet and
MCFCNmethods are used to classify the MTS model for the
ground loss and calculate the various F1 scores, giving the
results shown in Table 5. (e calculation data and code of
this case can be referred to the appendix of this paper.

(ermal diagrams can now be drawn to give a visual
representation of the contributions made by the various

rings and parameters to the ground loss data for each of the
classes (Figure 11).(e abscissae in Figure 11 indicate which
ring is being considered (where S is the ring number of the
ground settlement-monitoring point). (e ordinates indi-
cate which parameter is involved, the serial numbers cor-
responding to those in Table 1. (e color represents the
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Figure 9: Statistical distribution of the ground loss values, Vloss.

Table 4: Comparison of the effect of changing the number of rings
used in the correlation.

Working conditions a b Total Precision Recall F1
1 0 0 1 0.624 0.614 0.619
2 1 1 3 0.696 0.720 0.708
3 2 2 5 0.689 0.695 0.692
4 3 3 7 0.719 0.684 0.701
5 4 4 9 0.790 0.788 0.789
6 5 5 11 0.792 0.806 0.799
7 6 6 13 0.788 0.815 0.801
8 5 7 13 0.857 0.852 0.854
9 7 7 15 0.758 0.748 0.753
10 8 8 17 0.766 0.754 0.760
11 9 9 19 0.810 0.802 0.806
Bold values represent the best working condition.
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Figure 10: Comparison of results obtained using different MTS
classification algorithms.

Table 5: F1 scores.

Class F1T F1V F1 − mean

I 0.809 0.832 0.821
II 0.857 0.829 0.843
III 0.896 0.772 0.834
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relative weight of the classification as calculated using
equation (12).

Figure 11 shows that there are significant differences
between the thermal diagrams calculated for the three
classes. (e key parameters to judge the data points in class I
are the average articulation displacement, the total amount
of grouting, and the thrust pressure-down. In addition, it is
the ring S – 4 along the time direction that is the most
important one to judge class I. Similar observations can be
made about the other classes. (e key parameters to judge
class II are the horizontal difference between the front and
rear points, the vertical difference between the front and
back points, the thrust pressure-down and thrust pressure-
right (related to the control of the shield’s posture), and the
rings S – 5 and S+ 4 along the time direction. Finally, the
key parameters to judge class III are the total amount of
grouting, the earth chamber pressure-medium, the average
advance displacement, and the average articulation dis-
placement. In this case, rings S – 6 and S are the most
important rings for judging class III along the time direction.

As already mentioned, the higher the F1 score (Table 5), the
more reliable the contribution to the thermal classification
map.(erefore, such maps not only provide a visual method
of interpreting the classified MTS data but also provide a
means of further analyzing the classification of the related
features.

In practice, it is the third kind of ground settlement (class
III) that is of most concern as the excessive amount of
ground loss involved can cause damage. Considering the
form of the thermal map shown in Figure 11(c), we take the
parameter corresponding to earth chamber pressure-me-
dium (index number 6) as an example and analyze the
distribution of the relative weights along the time direction
in more detail, producing the results shown in Figure 12. In
this figure, the color represents the relative weight of the
classification, as calculated using equation (8) and represents
a basis with which class III can be judged.

As shown in Figure 12, the relative weights are mainly
focused on the data related to the effective construction
process, and the parts filled with zeros after each ring data
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are almost ignored. From the perspective of the distribution
of relative weight of classification, rings S – 6 and S are the
most important for judging class III, followed by rings S – 5
and S + 1, which provides a visual method of analyzing
features. Clearly, when identifying the risk of excessive
ground loss corresponding to class III, attention should be
paid to these four rings. (e enlarged parts shown in Fig-
ure 12 indicate that the change in the relative weights is
continuous, and the parts with high weights are similar to
the key local features of the time series, which can therefore
accumulate experience for further analysis and extraction of
relevant features.

5. Conclusions

Ground loss as a result of EPB shield tunneling is a dynamic
and continuous process. (is paper puts forward an MTS
model for ground loss based on an analysis of the most
relevant factors and processes associated with ground loss
combined with the characteristics of the time series data for
various parameters recorded by the shield machine in real
time. An MTS feature visualization method based on a
ResNet and MCFCN is also presented. (e following con-
clusions can be drawn:

(1) (e MTS model proposed in this paper is effective
and produced an F1 score of 0.854 based on a ResNet
classification method.

(2) (e ResNet method produced the best and most
stable classification performance when applied to the
MTS model for ground loss. (e MCFCN con-
structed in this paper also performed significantly
better than the existing MCDCNN methods.

(3) (e method used in this paper to visualize the
features of the MTS classification results allows the

contributions to the classifications to be presented
using thermal maps. It thus becomes easy to identify
the key parameters and important parts that make
the largest contributions to the classification process.
(e method not only provides good interpretability
for the classification of the MTS but also provides a
visual basis for further analyzing the most relevant
features.

In addition, the MTS feature visualization method of
ground loss caused by EPB shield tunneling is based on the
classification effect. (e better the classification effect is, the
higher the credibility of the features obtained by the method
is. (erefore, the future work is to improve the classification
effect and apply the method to more engineering cases.
(rough analyzing the characteristics of a large number of
data and summarizing the experience and knowledge of
classification, the effective judgment of ground loss is re-
alized, which lays the foundation for the effective control of
ground loss.
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[19] J. Ninić and G. Meschke, “Model update and real-time
steering of tunnel boring machines using simulation-based
meta models,” Tunnelling and Underground Space Technology,
vol. 45, pp. 138–152, 2015.

[20] P. Zhang, H.-N. Wu, R.-P. Chen, and T. H. T. Chan, “Hybrid
meta-heuristic and machine learning algorithms for tunnel-
ing-induced settlement prediction: a comparative study,”
Tunnelling and Underground Space Technology, vol. 99, Article
ID 103383, 2020.

[21] P. Zhang, R. Chen, and H. N. Wu, “Real-time analysis and
regulation of EPM shield steering using random forest,”
Automation in Construction, vol. 106, 2019.

[22] P. Zhang, H. Li, Q. P. Ha, Z.-Y. Yin, and R. P. Chen, “Re-
inforcement learning based optimizer for improvement of
predicting tunneling-induced ground responses,” Advanced
Engineering Informatics, vol. 45, Article ID 101097, 2020.

[23] F. Wang, B. Gou, and Y. Qin, “Modeling tunneling-induced
ground surface settlement development using a wavelet
smooth relevance vector machine,” Computers and Geo-
technics, vol. 54, pp. 125–132, 2013.

[24] D. Bouayad and F. Emeriault, “Modeling the relationship
between ground surface settlements induced by shield tun-
neling and the operational and geological parameters based
on the hybrid PCA/ANFIS method,” Tunnelling and Un-
derground Space Technology, vol. 68, pp. 142–152, 2017.

[25] K. Ahangari, S. R. Moeinossadat, and D. Behnia, “Estimation
of tunnelling-induced settlement by modern intelligent
methods,” Soils and Foundations, vol. 55, no. 4, pp. 737–748,
2015.

[26] L. Zhang, X. Wu, W. Ji, and S. M. AbouRizk, “Intelligent
approach to estimation of tunnel-induced ground settlement
using wavelet packet and support vector machines,” Journal of
Computing in Civil Engineering, vol. 31, no. 2, Article ID
4016053, 2017.

[27] R. P. Chen, P. Zhang, X. Kang, Z. Q. Zhong, Y. Liu, and
H. N. Wu, “Prediction of maximum surface settlement caused
by earth pressure balance (EPB) shield tunneling with ANN
methods,” Soils and Foundations, vol. 59, no. 2, pp. 284–295,
2019.
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pp. 605–615, 2006.

[44] D. Festa, W. Broere, and J. W. Bosch, “Tunnelling in soft soil:
tunnel boring machine operation and soil response,” in
Proceedings of the TU-Seoul 2013 Tunnelling and Underground
Space Construction for Sustainable Development, Seoul, Korea,
March 2013, https://www.researchgate.net/publication/

262012237_Tunnelling_in_Soft_Soil_Tunnel_Boring_
Machine_Operation_and_Soil_Response.

[45] D. Festa,W. Broere, and J. W. Bosch, “Kinematic behaviour of
a tunnel boring machine in soft soil: theory and observations,”
Tunnelling and Underground Space Technology, vol. 49,
pp. 208–217, 2015.

[46] M. Sharghi, H. Chakeri, and Y. Ozcelik, “Investigation into
the effects of two component grout properties on surface
settlements,” Tunnelling and Underground Space Technology,
vol. 63, pp. 205–216, 2017.

[47] A. Jallow, C. Y. Ou, and A. Lim, “(ree-dimensional nu-
merical study of long-term settlement induced in shield
tunneling,” Tunnelling and Underground Space Technology,
vol. 88, pp. 221–236, 2019.

[48] J. Lines, S. Taylor, and A. Bagnall, “Time series classification
with HIVE-COTE,” ACM Transactions on Knowledge Dis-
covery from Data, vol. 12, no. 5, pp. 1–35, 2018.

[49] S. Ioffe and C. Szegedy, “Batch normalization: accelerating
deep network training by reducing internal covariate shift,” in
Proceedings of the 32nd International Conference on Machine
Learning, pp. 448–456, Lille, France, July 2015.

[50] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning
for image recognition,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp. 770–778,
Seattle, WA, USA, July 2016.

[51] F. Karim, S. Majumdar, H. Darabi, and S. Harford, “Multi-
variate LSTM-FCNs for time series classification,” Neural
Networks, vol. 116, pp. 237–245, 2019.

[52] L. Markus and A. Bagnall, S. Ganesh, K. Viktor, J. Lines, and
J. K. Franz, Sktime: a unified interface for machine learning
with time series,” 2019, https://arxiv.org/abs/1909.07872.

Shock and Vibration 17

https://www.researchgate.net/publication/262012237_Tunnelling_in_Soft_Soil_Tunnel_Boring_Machine_Operation_and_Soil_Response
https://www.researchgate.net/publication/262012237_Tunnelling_in_Soft_Soil_Tunnel_Boring_Machine_Operation_and_Soil_Response
https://www.researchgate.net/publication/262012237_Tunnelling_in_Soft_Soil_Tunnel_Boring_Machine_Operation_and_Soil_Response
https://arxiv.org/abs/1909.07872

