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Detection of cavitation in centrifugal pumps is critical in their condition monitoring. In order to detect cavitation more accurately
and confidently, more advanced signal processing techniques are needed. For the classification of a pump conditions based on the
outputs of these techniques, advanced machine learning techniques are needed. In this research, an automatic system for
cavitation detection is proposed based on machine learning. Bispectral analysis is used for analyzing the vibration signals. &e
resulting bispectrum images are given to convolutional neural networks (CNNs) as inputs. &e CNNs are a pretrained AlexNet
and a pretrained GoogleNet, which are used in this application through transfer learning. On the contrary, a laboratory test setup
is used for generating controlled cavitation in a centrifugal pump. &e suggested algorithm is implemented on the vibration
dataset acquired from the laboratory pump test setup. &e results show that the cavitation state of the pump can be detected
accurately using this system without any need to image processing or feature extraction.

1. Introduction

Vibration analysis combined with machine learning has
been one of the effective techniques for analyzing cavitation
in centrifugal pumps as well as other rotating machinery.
Even recently, detecting cavitation in centrifugal pumps
using simple vibration techniques has been an intriguing
research topic [1–6]. Vibration analysis has been also applied
to extract cavitation-related features, which can be used in
classifiers for fault diagnosis. For that purpose, different
types of classifiers and optimizers have been used in order to
improve the calculation speed and diagnosis accuracy
[7–11]. As the signal-based methods [12–15] for machinery
diagnosis, as well as the model-based methods [16–19], have
been applied, the research on both newer vibration analysis
techniques and more advanced machine learning tools for
accurate cavitation analysis is still continued.

One of the vibration analysis techniques especially for
cavitation detection is bispectrum analysis. It has been used
for fault diagnosis of rotating and reciprocating systems
[20–23]. However, it has been applied in fault diagnosis of
pumps only in limited number of studies despite its

promising results. Hamomd et al. [24] used the modulation
signal bispectrum in order to diagnose a number of faults
including bearing and vane blockage in centrifugal pumps.
&rough experiments, they showed the effectiveness of the
features extracted from the bispectrum of the signals. &ey
used the low-frequency part of the vibration signal and
proved its effectiveness in experiments. Li et al. [25]
extracted bispectral entropy features from the vibration
signal of a pump for fault prognosis. &e results showed
acceptable accuracy in the predictions of the pump’s
remaining useful life. Sandhya et al. [26] introduced and
used a phase coupling index through bispectrum to detect
the onset of cavitation of a ship propeller. &ey experi-
mentally measured the noise data from a ship propeller and
showed the effectiveness of their proposed method.

Several years ago, the initial machine learning tools
opened a door to automatic fault detection of machinery
without relying on experts’ knowledge. At first, they seemed
to be limited and not able to handle a large amount of data or
complicated problems; however, the deep neural networks
compensated for the shortcomings of those initial systems.
Among all the deep neural networks, convolutional
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networks are one of the most applied ones. Conventional
machine learning has been used for condition monitoring of
rotating or reciprocating machines and components, such as
pumps and compressors [27, 28], gears [29,30], ball bearings
and engines [31–33], and even combinations of systems or
combined faults [34]. &ese initial machine learning tech-
niques had limited learning capability and the input size was
limited in practice. &erefore, effective features had to be
extracted from the vibration signal, and in the case of large
feature vectors, a feature selection algorithmwas also needed
[29, 35, 36]. &is limitation has made it difficult to use the
output data of vibration analysis methods if they would
produce large data such as images.

After the introduction of deep neural networks, which
can handle large input data samples, most of the research in
the field of machine learning-based vibration diagnosis is
focused on them. &ey can also extract the necessary feature
for classifications. Guo et al. [37] used a convolutional neural
network and continuous wavelet transform of vibration
signals as its input data in order to diagnose rotating ma-
chinery faults. Wang et al. [28] combined the vibration
signals obtained simultaneously from multiple sensors and
represented the combinations as images. &en, they used a
CNN to recognize the faults. Pham et al. [38] applied vi-
bration spectrums of bearings and a CNN to diagnose the
faults of bearings under variable-shaft-speed conditions.
Chen and Li [39] used a combination of a sparse autoen-
coder and a deep belief network in order to apply the vi-
bration data of different vibration sensors for fault diagnosis.
Despite the advantages the deep neural networks have over
conventional machine learning methods, they still need a
large amount of training data.

Transfer learning, which is a technique in which a model
trained for a machine learning task is transferred completely or
partially to another machine learning task, has been used in
machinery diagnosis too. By using this technique, less training
data in the final machine learning task would be needed even
for complicated deep neural networks, and the trained network
can be used for other working conditions of a machine. Qian
et al. [40] proposed a novel transfer learningmethod in order to
diagnose machinery faults. &ey applied the method to an
experimental vibration dataset of bearings and a gearbox and
compared the results with other techniques. Sandeep et al. [41]
introduced a classifier based on a CNN and transfer learning in
order to diagnose different faults of bearings under variable
working conditions using kurtograms as inputs to the CNN. In
a recent study, Grover and Turk [21] generated the bispectrum
images from vibration signals of a bearing in cases of different
fault types. &en, they used four initially trained deep neural
networks including AlexNet, GoogLeNet, ResNet, and
VGGNet for transfer learning. A comparative study was
conducted on a benchmark vibration dataset. Dong et al. [42]
processed the vibrations of machinery using wavelet transform.
&en, they selected the best features and pretrained a deep
autoencoder to be used for the final fault diagnosis task through
transfer learning.

Based on the reviewed literature, it can be observed that
bispectrum has the potential to be used in cavitation de-
tection. Moreover, the bispectrum diagrams can be saved as

images, which can be analyzed in deep neural networks for a
high-accuracy classification. Because of limited studies on
applying transfer learning and bispectrum analysis for
detecting cavitation in pumps, this research is focused on
that topic. &erefore, the vibration data of a centrifugal
pump under the normal operating condition and also after
the onset of cavitation are analyzed using bispectral analysis.
&e generated bispectrum diagrams are then used as the
input to two pretrained deep neural networks for image
processing. &e onset of cavitation and also the severity level
were detected using deep transfer learning. &e test results
show that the final neural network can accurately detect the
occurrence of cavitation in the pump despite the limited
number of data used for training. &e results of cavitation
intensity detection were also promising despite the difficulty
of the task.

2. Theory

In this section, a brief review of the theoretical concepts of
bispectrum and transfer learning is provided.

2.1. Bispectrum. Bispectrum is the Fourier transform of the
third cumulant of a signal. It can present the coupling be-
tween two frequency components. It is defined for a signal,
x(t), as [43]

Bx f1, f2(  � E X f1( X f2( X
∗

f1 + f2(  , (1)

where X(f) and X∗(f) denote the Fourier transform of the
signal and its complex conjugate, respectively. In other
words, it is a two-dimensional Fourier transform with an
autocorrelation of third order [44]. Bispectrum is affected by
the nonlinearities of the analyzed signal. It can detect the
non-Gaussianity and also the correlation between frequency
components of a signal. Especially, the phase coupling can be
investigated between two frequency components.

Because of the nature of the cavitation signal, bispectrum
can extract effective features from the raw vibration signal.
In this research, the vibration signal of the pump is analyzed
using bispectral analysis, and the resulting bispectrum,
which contains information about the health conditions, is
saved as RGB images in order to be fed into the deep neural
network, later.

2.2. Transfer Learning. In transfer learning, the knowledge
learned in a task, called the source task, is transferred to
another task, called the target task. &rough this transfer,
the generalization of the target task improves by using the
available knowledge of the source task. In the case of using
a CNN, transfer learning means training a CNN based on
the source task and transferring the convolutional layers
of the trained CNN to the target task, where the weights of
the fully connected layers are determined through another
training process using the dataset of the target task. It is
known that the convolutional layers are used for ex-
traction of the features and are usually applicable iden-
tically for different problems, while the fully connected
layers perform the desired final task and are supposed to
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be uniquely trained for each specific task. &erefore, a
powerful feature extraction part can be used for a different
problem if the weights of the fully connected layers are
tuned for that. Because of the complicated structures of
CNNs, this approach saves significant amounts of time
and effort in the training process.

In this study, AlexNet, which is a well-known pretrained
CNN for image classification is used. As discussed earlier,
except for the fully connected layers, all the layers are
transferred to be used in this target task, which is the
classification of the bispectrum images. &e complete
structure of the CNN used in this research based on AlexNet
is shown in Table 1.&e fully connected layers of AlexNet are
substituted by two new fully connected layers. &e first one
has 5 neurons and the second one has 2 neurons. &ese
layers are trained by the obtained bispectrum from vibration
datasets recorded in the experiments. &e rest of the layers
are identically transferred from AlexNet.

&erefore, the whole process of cavitation detection
proposed in this study can be presented by the flowchart
shown in Figure 1. &e vibration signals, recorded from the
test setup of a centrifugal pump in cavitation and no-cav-
itation states, are analyzed using bispectral analysis. &e
obtained bispectrum images are resized and normalized to
fit the input size of the input layer of the CNN. &e trained
CNN classifies the bispectrum images to “cavitation” or “no-
cavitation” condition.

3. Experiments

&e performance of the proposed system is examined
through experiments. &e tests are conducted on a Gunt
test setup at the machinery condition monitoring labo-
ratory of Shahid Chamran University of Ahvaz. &e test
stand is shown in Figure 2. &e studied pump is part of a
closed water circuit including input and output valves and
hoses, water tank, and connectors. An A/127/V DJB ac-
celerometer is installed on the pump cover using special
glue. &e accelerometer is connected to B&K pulse data
acquisition system, which records the data at a constant
sampling rate of 16 kHz.

&e water circuit is checked for any air or bubble
trapped in the valves or pipes before starting the motor.
&e input and output valves are kept fully open. &en, at
slow rotating speeds, the remaining air is ejected from a
nipple valve on the pump cover. After making sure that
the water circuit is free of air, the motor speed is increased
to 2900 rpm recommended by the vendor. &e data of the
“no-cavitation” condition are recorded first. &en, we
gradually close the input valve until the cavitation bubbles
are observed through the transparent casing of the pump.
&e data related to the “low cavitation” state is acquired
when it is half closed, and the data of the “developed
cavitation” are recorded when it was almost closed. In
Figure 3(a)–3(c), three images of the inside liquid of the
pump are provided to show the working conditions of the
pump in each state. Under the low- and developed-cav-
itation conditions, the bubbles around the inlet of the
pump are visible as a white cloud.

4. Numerical Results

In this section, the classification results using AlexNet and
GoogleNet for cavitation detection and then cavitation se-
verity detection are provided.

&e recorded signals under each working condition are
divided into three parts for training, validating, and testing
of the CNN. Each part is divided into small windows
comprised of 7000 sample points. In order to augment the
training data, the windows have overlaps of 300 sample
points for the no-cavitation condition and 1500 sample
points for the cavitation condition. No overlap was used for
the validation and testing datasets.

In the next step, the bispectrum images were extracted
from the generated short segments of signals. One sample
bispectrum for each no-cavitation and developed-cavitation
states is shown in Figure 4.&ese are just samples of a variety
of patterns obtained from bispectral analysis. In a number of
cases, relating the bispectrum to one of the states is not as
easy as what is seen in Figure 4, and the patterns from
different conditions look similar to each other. &erefore,
machine learning should be used for higher accuracies.

In Matlab, the obtained spectrograms are saved and then
given to AlexNet, which was prepared in Section 2.2 earlier.
1880 images were used for training. 143 and 385 images were
considered for validation and testing, respectively. &e size
of the input image has to be 227 by 227 by 3, and the images
are resized and normalized before using in the AlexNet. &e
initial size of the bispectrum as RGB images is 875 by 656 by
3. A minibatch of 30 images was used with 2 epochs. Out of
the three available optimizers, SGDM (stochastic gradient
descent with momentum) is used because of its better
performance. &e loss function of cross-entropy loss is also
applied.

&e accuracy and loss functions are plotted during the
training process and are shown in Figure 5. Both the training
and validation accuracies reach 100%, and the test accuracy
is 100%, as well. &ere are a number of fluctuations; how-
ever, the accuracies reach 100% eventually.

In the next step, the possibility of detecting the cavitation
level is investigated. Again, the recorded signals in each
working condition are divided into three parts for training,
validating, and testing of CNNs. Each part is divided into
small windows comprised of 21000 sample points. In order
to augment the training data, the windows have overlaps of
300 sample points for the “no-cavitation condition and 1500
sample points for the low-cavitation and developed-cavi-
tation condition, respectively. No overlap was used for the
validation and testing datasets.

Again, Matlab is used for processing the obtained spec-
trograms. Two pretrained deep neural networks, GoogleNet
and AlexNet, are used in order to examine the possibility of
obtaining better performance. &e AlexNet has all the pre-
trained layers except for the last three fully connected layers,
which are replaced by an 80-neuron fully connected one and a
three-class classification output. GoogleNet layers are the same
as the pretrained network trained by ImageNet dataset, except
for the classification layer, which is replaced by a three-class
one.&e size of the input image for GoogleNet has to be 224 by
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224 by 3, and the images are resized and normalized before
using in both GoogleNet and AlexNet. A minibatch of 30
images was used with 4 and 5 epochs for AlexNet and Goo-
gleNet, respectively. Adam (adaptive momentum optimizer)
with variable learning rates is used because of its better

performance for the new networks. &e loss function of cross-
entropy loss is applied again.

&e accuracy and loss functions are plotted during the
training processes for these two networks and are shown in
Figure 6 and 7. A validation accuracy of 95.2% and the test

Image 
resizing 

and
normalization

Cavitation

No Cavitation

Pump vibration 
signal

Bispectrum images

CNN

Figure 1: &e flowchart of the proposed system.
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Figure 2:&e test setup for pump cavitation studies: (1) output valve, (2) input valve, (3) the box of themotor speed controller, (4) accelerometer,
(5) centrifugal pump, (6) electromotor, and (7) water tank.

Table 1: &e structure of the CNN applied in this research.

Stage Layer no. Layer type Size
1 1 Input bispectrum images 227× 227× 3

2 (transferred)

2 Convolutional 55× 55× 96
3 ReLU 55× 55× 96
4 Cross-channel normalization 55× 55× 96
5 Max pooling 27× 27× 96

3 (transferred)

6 Convolutional 27× 27× 256
7 ReLU 27× 27× 256
8 Cross-channel normalization 27× 27× 256
9 Max pooling 13×13× 256

4 (transferred) 10 Convolutional 13×13× 384
11 ReLU 13×13× 384

5 (transferred) 12 Convolutional 13×13× 384
13 ReLU 13×13× 384

6 (transferred)
14 Convolutional 13×13× 256
15 ReLU 13×13× 256
16 Max pooling 6× 6× 256

7 (trained) 17 Fully connected 10
18 ReLU 10

8 (trained)
19 Fully connected 5
20 Softmax 5
21 Classification output 2
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accuracy of 98.9% are reached for the AlexNet. Based on
Figure 7 for GoogleNet, a validation accuracy of 93.3%, and
from the test data, a test accuracy of 95.1% are obtained. &e
training accuracy reaches 100% in both cases.

By investigating the results of AlexNet, we can show
more information in a confusion matrix. &e confusion
matrix of the intensity detection task of the AlexNet is shown
in Figure 8. Only 4.3% of the “no-cavitation” test data is

(a) (b)

Figure 4: &e bispectrum images obtained from (a) “developed-cavitation” state and (b) “no-cavitation” state.

(a) (b) (c)

Figure 3:&e interior image of the pump under (a) normal (no cavitation), (b) low-cavitation, and (c) developed-cavitation conditions.&e
cavitation bubbles are seen as white foggy area on the transparent casing of the pump.
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Figure 5: &e training progress of the AlexNet prepared for cavitation detection: (a) accuracy diagram and (b) loss diagram.
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predicted as “low cavitation.” Other working conditions are
correctly predicted.

&e confusionmatrix shows that even without extracting
any explicit features in a separate analysis from the vibration
signals, the CNNs have been able to find and calculate
distinctive features in their architectures so that they can
classify the studied cases of cavitation severity. In conven-
tional diagnosis systems, a feature selection algorithm was
also necessary. &erefore, a cavitation analysis system has

been developed with less difficulties and by using more
complicated inputs.

5. Conclusions

In this research work, the vibrations of a centrifugal pump
under different cavitation conditions were recorded and
processed using bispectral analysis.&e obtained bispectrum
was generated from the vibration signals and saved as RGB
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Figure 6: &e training progress of the AlexNet prepared for cavitation severity detection. (a) Accuracy diagram. (b) Loss diagram.
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Figure 7: &e training progress of the GoogleNet prepared for cavitation severity detection. (a) Accuracy diagram. (b) Loss diagram.
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images. Pretrained AlexNets were used for the classification
of the bispectrum images. Transfer learning made it possible
to use the CNNs pretrained on a set of images for other
similar tasks with a faster training process. In the next step,
the architecture of the AlexNet was modified to suit this
problem.&en, it was trained and used to detect cavitation in
the pump. After that, with aminor change, it was trained and
used for detecting the level of cavitation. A GoogleNet was
also trained and used in this problem. Unlike the conven-
tional machine learning methods, no feature was extracted
directly, and no feature selection method was applied. &e
results showed that cavitation was successfully detected
without any error in the first step, where the AlexNet was
used for cavitation detection. In detecting the cavitation
level, both AlexNet and GoogleNet showed promising re-
sults. However, the modified AlexNet showed more accurate
classification results than the adjusted GoogleNet. &e re-
sults show that applying bispectrum images as inputs to
these two types of pretrained CNNs can accurately diagnose
cavitation conditions of centrifugal pumps without any need
for image processing, feature extraction, and feature selec-
tion.&is is especially helpful in cases where limited data are
available.
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