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&e acoustic signal generated by mechanical motion contains the information of its motion state, but when the signal-to-noise
ratio (SNR) is low, the accuracy of real-timemonitoring mechanical motion state by the acoustic signal is low.&is study proposes
an adaptive noise reduction method based on the dislocation superposition method (DSM), which can realize the adaptive noise
reduction and the extraction of fault a component from the automobile engine abnormal noise signal of low SNR. Firstly, the
wavelet coefficients of engine abnormal noise signal are obtained by continuous wavelet transform (CWT), and the fault feature
points of the abnormal noise signal in each period are extracted by setting hard threshold function, window function, and feature
points extraction algorithm. &en, the signal segments containing fault components are obtained by using the position of feature
points to extend the length of the fault component forward and backward, respectively, and Pearson’s correlation is calculated by
traversal to determine the starting superposition point of each signal segment containing fault components. Finally, the signal
segments of the odd group and even group are selected for superposition calculation. When the superposition stop condition is
not satisfied, the number of superpositions increased until the stop condition is satisfied, and the superposition signal can be used
as a fault component.&e experimental results show that, compared with the improved DSM, this method has a good effect on the
noise reduction and extraction of fault components of automobile engine cylinder knocking fault, and the effectiveness of this
method is verified. &is method is used to reduce the noise and extract the fault components of automobile engine cylinder
missing fault and knock fault, and good results are obtained.

1. Introduction

At present, cars play an important role in human life and are
a necessary condition for human travel. &e engine is an
important part of the automobile, and its structure is
complex [1]. In the working process of the engine, due to
wear, fatigue, aging, and other factors, the engine failure may
cause serious economic losses and even casualties [2, 3].
When the engine failure produces an abnormal noise signal,
the higher SNR of the abnormal noise signal will make
engine fault diagnosis easier and more accurate, so it is
necessary to improve the SNR of the engine abnormal noise
signal [4].

&e traditional noise reduction methods mainly include
Wiener filtering, spectral subtraction, and minimum mean
square deviation, but the effectiveness of noise reduction for
the nonstationary signal and short-term transient signal is
significantly reduced [5, 6]. &e commonly used noise re-
duction methods mainly include wavelet transform (WT)
[7], empirical mode decomposition (EMD) [8], local mean
decomposition (LMD) [9], DSM [10], etc.

As a widely used signal processing tool, WT has strong
multiresolution analysis ability in the time domain and
frequency domain. &e wavelet denoising generally uses
setting the wavelet coefficient threshold to eliminate the
noise information and then uses the inverse WT to
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reconstruct the signal from the threshold wavelet coefficient
[11]. Li [12] used the wavelet decomposition and recon-
struction algorithm to decompose and reduce noise and
reconstruct and analyze the spectrum of bearing vibration
signal. Experiment shows that the wavelet noise reduction
method is very suitable for fault frequency detection of weak
vibration signal of the rolling bearing in low SNR cases.
Moshrefi et al. [13] usedWTand adaptive filtering to denoise
the knock signal of the internal combustion engine. &is
method is applied to real knock signal, which showed su-
periority compare to previous works and led to a 13.2%
improvement in detection accuracy. Kai et al. [14] proposed
a wavelet denoising method based on improved threshold
function by studying soft threshold function and hard
threshold function. By this method, the feature of fault signal
is highlighted and the fault diagnosis effect was improved.
Wen and You [15] used the wavelet decomposition and
reconstruction algorithm to denoise the fault signal of high-
speed rolling bearing, and the experimental data showed that
most of the noise has been filtered out compared with the
original data. Although wavelet denoising has good pro-
cessing ability for nonstationary signals, the selection of
wavelet basis function is very difficult. Different wavelet
basis functions have different denoising effects. To solve this
problem, Huang et al. [16] proposed the EMD, which can
efficiently decompose nonlinear and nonstationary signals
without any set of basis functions. Sun et al. [17] used the
wavelet threshold noise reduction algorithm based on EMD
to solve the problem of complex centrifugal pump vibration
signals. &e experimental results show that the wavelet soft
threshold denoising algorithm based on EMD decomposi-
tion has a better noise reduction effect when the centrifugal
pump vibration signal is used as the noise reduction object.
Ren and Liu [18] proposed an adaptive reduction noise and
feature extraction algorithm based on improved EMD and
verified the effectiveness and feasibility of the method by
simulation signals and examples. Although EMD has been
successfully applied in the field of signal noise reduction, it
also has its limitations, such as the frequent occurrence of
modal mixing. In view of the shortcomings of EMD,Wu and
Huang [19] proposed ensemble empirical mode decompo-
sition (EEMD) in 2009. EEMD adds finite amplitude Gauss
white noise to the signal, and then the signal with the white
noise is decomposed as a whole, to effectively suppress the
mode mixing of EMD. However, this method can only
reduce modal mixing to some extent.

In recent years, scholars have also proposed some other
signal noise reduction methods. Gao et al. [20] proposed a
new method based on LMD and wavelet denoising to an-
alyze the signals of bearing outer ring, inner ring, and ball.
However, LMD has the phenomenon of modal mixing,
which reduces the accuracy of signal decomposition and
affects the accuracy of the noise reduction signal. Dayong
et al. [21] proposed DSM based on random decrement
technique in 2015. Compared with other methods, DSM
only calculates in time domain. In the superposition process,
the method does not destroy the correlation components in
the mixed signal and effectively avoids the modal mixing. In
2019, Dayong et al. [10] used improved DSM to

automatically extract engine fault components. Although the
improved DSM can automatically extract the fault com-
ponents of the automotive engine quasiperiodic signal, this
method needs to use the pulse number of the encoder to
determine the starting superposition point of each quasi-
periodic fault signal. In practical applications, automobile
engines are not suitable for installing encoders, and encoders
are prone to failure when subjected to severe impact, so the
improved DSM is limited in some practical applications.

To overcome the above problems, this paper proposes an
adaptive noise reduction and extraction method of engine
abnormal noise signal fault components based on improved
DSM. &e essence of this method is the superposition cal-
culation in the time domain, which avoids the modal mixing
and can better deal with the acoustic signal with low SNR.
&e method can adaptively select the starting superposition
points, superposition length, and superposition number. By
changing the superposition number, the noise reduction
degree of fault components can be changed. Compared with
the improved DSM, it not only reduces the use of encoders
and improves the practicability of DSM but also makes it
more convenient to extract fault components.

2. DSM Review

&e mathematical expression of the traditional DSM is as
follows:

􏽢S(n) �
1

K + 1
􏽘

K

K�0
S(n + KL), (1)

where S (n) is the original signal, Ŝ (n) is the signal processed
by DSM (named superposition signal), K is the number of
superpositions (K� 0, 1, 2, . . .), and L is the superposition
step length (the period of the signal to be processed).
Figure 1 shows the graphical description of DSM processing
results.

In Figure 1, S is the target signal; N is the interference
signal; SN is a mixed signal of S and N; SN1, SN2, and SN3 are
superposition signals obtained by superposition of 5, 15, and
20 times, respectively, using equation (1); &e superposition
step length L is the period of signal S. Compared with signal
SN, the component proportion of target signal in signals
SN1, SN2, and SN3 increases with the increase of superpo-
sition times. On the contrary, the proportion of interference
signal decreases with the increase of superposition times
[22]. Generally, Pearson’s correlation coefficient is used to
compare the similarity between the target and the super-
imposed signals to test the DSM processing effect [10].

3. Adaptive Noise Reduction and Extraction
Method of Engine Abnormal Noise
Fault Component

3.1. Influence Factors of DSM. Due to the system error of the
engine, the actual speed of the engine is slightly changed,
which causes the acoustic signal of the engine to be a
quasiperiodic signal. Figure 2 shows the schematic of the
quasi-periodic signal.
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When the engine has an abnormal noise impact
failure, the fault signal is quasi-periodic, resulting in
different superposition step lengths. In the dislocation
superposition, it may cause the phase deviation of the
impact fault component and even lead to the destruction
of the fault component. According to the characteristics of
impact failure, it is artificially divided into the “intense
change region” and the “stable region,” as shown in
Figure 3. When the engine impact fault acoustic signal is
noise reduction by DSM, due to the less fault energy and
information contained in the stable region, to improve the
computational efficiency, the intense change region
containing more energy and information is separated as
the impact fault component [10, 23]. &e noise reduction
degree of the fault component also depends on the
number of superpositions. &eoretically, the more the
number of superpositions is, the better the noise reduc-
tion effect is. However, the more the number of super-
positions is, the longer the consumed time is. When the
number of superpositions reaches a certain amount, the
noise reduction effect shows a stable trend. &erefore, the
adaptive noise reduction process of engine impact fault
acoustic signal is a process of automatically finding the
starting superposition points of impact fault acoustic

components, the length of the intense change region, and
the number of superpositions.

3.2. Adaptive Noise Reduction and Extraction Method Based
on Improved DSM and CWT. Based on CWTand improved
DSM, an adaptive noise reduction method for automobile
engine fault acoustic signal is proposed. Figure 4 shows the
flowchart of the method. &e details are as follows.

3.2.1. Extraction of Feature Point Location of Each Period
Impact Fault Component. &e “intense change region” has
the characteristics of transient, periodic, and large energy
which is not easily submerged by background noise [23].&e
mother wavelet which is similar to the waveform of the
impact fault component is selected for CWT to obtain
wavelet coefficients, and the wavelet coefficients are hard
thresholding processes. Finally, the window function and
feature points extraction algorithm are used to extract the
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Figure 1: DiagramofDSM. S is the target signal; N is the interference signal; SN is amixed signal of S andN; SN1, SN2, and SN3 are the superposition
signals obtained by superposition of 5, 15, and 20 times, respectively, using equation (1). &e superposition step length L is the period of signal S.
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Figure 2: Schematic diagramof the quasiperiodic signal. t is the average
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Figure 3: &e “intense change region” and the “stable region” of
impact fault signal.
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feature points location of the impact fault component by
using the threshold wavelet coefficient. &e specific steps are
as follows:

(1) Load the original fault signal S (n), and select the
mother wavelet similar to the intense change region
of the fault signal to perform CWTon the signal S (n)
to obtain the wavelet coefficients WTS.

(2) Eliminate the smaller wavelet coefficients containing
interference components in the fault signal through
the hard threshold function and retain the larger
wavelet coefficients containing the impact fault
components. &e mathematical model of the hard
threshold function is

ηH WTS, λ( 􏼁 �
WTS, WTS( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≥ λ,

0, WTS( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌< λ,

⎧⎨

⎩ (2)

where ηH (WTS, λ) is the processed wavelet coeffi-
cient by hard threshold function, denoted as ηH; WTS
are wavelet coefficients; and λ is the size of the set
hard threshold.

(3) Extract the feature point location of each period fault
component.

Two diagonally paired time-frequency points (t1, f 1), (t2,
f 2) are selected to form a rectangular window R, and a time-
frequency block is selected from the frame of the thresh-
olding wavelet time-frequency diagram by using the rect-
angular window R, which is denoted as ηH (a0, b0), where
t1< t2, f 1< f 2, a0 = t1, t1 + 1/f s, . . ., t2, b0 = f 1, f 1 + f s/2a, . . .,
f 2, f s is the sampling frequency, and a is the scale factor of
CWT. &e maximum point of |ηH| in time-frequency block
ηH (a0, b0) is taken, which is denoted as C0 (t

spe
0 , f

spe
0 ). Keep

the frequency [f 1, f 1 + f s/2a, . . ., f 2] unchanged, make the

Load abnormal noise signal S (n)

Initial parameters λ, R, σ, s, K, τj

PerformCWT on S (n) to get WTS, and
set a hard threshold λ for WTs to get ηH

Use rectangular window R to process ηH to obtain point Ci,
and processpoint Ci through condition 1 and condition 2

to obtain feature point Qj of the fault component

Use the fault component length σ and feature points Qj to get Wj
range (nj)

Select Ws
range (ns) as the reference signal

Extend Wj
range (nj) to get Wj

erange (nj)

Intercept Wj
fra (nj) from Wj

erange (nj), traverse and calculate the correlation
between Ws

range (ns) and Wj
fra (nj + τj) to get the optimal offset τj

opt

Select number 2K of Wj
fra (nj + τj

opt), and divide Wj
fra (nj + τj

opt) into odd group
and even group to perform superposition operations to obtain DW1K and DW2K

opt opt

Calculate ρ (DW1K, DW2K)opt opt

ρ (DW1K, DW2K) ≥ M?opt opt

DW1K and DW2K are the fault components after noise reductionopt opt

No

Yes

K = K + 1

Figure 4: &e flowchart of the adaptive noise reduction method of automobile engine acoustic signal based on improved DSM and CWT.
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rectangular window Rmove one time every t2 along the time
axis direction, and constantly frame time-frequency block
ηH (ai, bi) one after another, and the maximum point of |ηH|
in the time-frequency block ηH (ai, bi) is denoted as Ci (t

spe
i ,

f
spe
i ). Ifthe selected signal length is not an integer multiple of

the rectangular windowlength, the maximum value of i is

i �
ntot

fs · t2 − t1( 􏼁
􏼢 􏼣, (3)

where [·] is rounding function and ntot is the total number of
sampling points of the signal S (n).

Let the wavelet coefficient corresponding to the point Ci

(tspei , f
spe
i ) be ηHCi

, and two condition algorithms are set for
ηHCi

to extract feature points. Condition 1: if ηHCi
� 0,

|ηHCi+1
|> 0, ηHCi+2

� 0, then Ci+1 (tspei+1, f
spe
i+1) is called the

feature point of the impact fault component. Condition 2: if
ηHCi

� 0, |ηHCi+1
|> 0, |ηHCi+2

|> 0, . . ., |ηHCi+n
|> 0, |ηHCi+n+1

|� 0.
Take the point C corresponding to max {|ηHCi+1

|, |ηHCi+2
|, . . .,

|ηHCi+n
|} as the feature point of the impact fault component.

Finally, all the feature points of the impact fault components
are assigned to Qj (tjj, f jj), so the point set of each of the
periodic feature points of the impact fault component is [Q1,
Q2, . . ., Qj]. Using each periodic feature point of the fault
signal to estimate the period of the fault acoustic signal, the
period of the fault signal is approximately T1 � t22 − t11,
T2 � t33 − t22, . . ., Tj−1 � tjj − t(jj−1) (jj−1).

3.2.2. Extraction of Impact Fault Component by Super-
imposing Noise Reduction. Since the feature point of the
impact fault component is determined by the intense change
region of the impact fault signal, the feature point of the
impact fault component is located in a certain location of the
intense change region of the impact fault signal. According
to the feature pointQj (tjj, f jj) of the impact fault component,
the sampling point corresponding to the feature point is

njj � tjj · fs, (4)

where njj is the number of sampling points corresponding to
the fault feature point, tjj is the time of the feature point of
the impact fault component, and f s is the sampling
frequency.

&e range of the impact fault component of each period
is as follows: (σ −1) sampling points are extended forward
and backward from the njjth sampling point, and the signal
segment is denoted as W

range
i (nj), so W

range
i (nj) includes

fault components. nj ∈ [njj − σ + 1, njj+ σ − 1]; σ is the length
of the intense change region. Due to the interference of
background noise, the feature point location of per period is
different in the intense change region. &erefore, the intense
change regions in W

range
i (nj) may have location offset of

different degrees in different periods. As shown in Figure 5,
there is offset τ of different degrees in the intense change

regions of different periodic W
range
i (nj), which will affect the

dislocation superposition effect and lead to inaccurate su-
perposition results.

To solve the problem of the offset of the intense change
region, the specific method is as follows.

A segment of W
range
i (nj) containing the fault component

is taken as the reference signal, denoted as W
range
s (ns).

W
range
i (nj) is extended forward and backward by b sampling

points, respectively, to obtain the extended signal segment
W

erange
i (nj), nj ∈ [njj − σ + 1− b, njj+ σ − 1 + b]. &e contin-

uous intercept length of (2σ −1) sampling points from the
first sampling point in W

erange
i (nj) is denoted as Wfra

i (nj).
Set τj to the offset of Wfra

i (nj) on W
erange
i (nj), and record the

offset signal of Wfra
i (nj) as Wfra

i (nj+ τj), as shown in
Figure 6. &e subset of τj is denoted as L, and L is set to
{0: σ −1 + b}. Find the optimal offset τoptj of the offset τj in
Wfra

j (nj+ τj); that is, also find the optimal starting super-
position point, where the superposition length is (2σ −1)
sampling points.

Traverse all the τj values in L, and calculate Pearson’s
correlation coefficient ρsj (W

range
s (ns), Wfra

i (nj+ τj)) of the
reference signal segments W

range
s (ns) and Wfra

i (nj+ τj), re-
spectively; the offset corresponding to themaximum value of
ρsj (W

range
s (ns), Wfra

i (nj+ τj)) is the optimal offset τopti . &e
equation of the proposed method is as follows:

τopt1 , τopt2 , ..., τoptj􏼐 􏼑 � argmax
τj∈L,j�1,2,3,...

ρsj W
range
s ns( 􏼁, W

erange
j nj + τj􏼐 􏼑􏼐 􏼑􏽨 􏽩,

(5)

where τoptj is the best offset; argmax [·] is arguments of the
maxima; W

range
s (ns) is the reference signal segment;

Wfra
i (nj+ τj) is the offset signal segment; and ρsj (W

range
s (ns),

Wfra
i (nj+ τj)) is to calculate the correlation between

W
range
s (ns) and Wfra

i (nj+ τj).
2K consecutive signals Wfra

i (nj+ τ
opt
i ) are selected, which

are divided into two groups according to the parity of the
sequence number j, and each group is superimposed with
different times according to the sequence number from low
to high. &e equation of the proposed method is as follows:
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τj τj+1

Figure 5: &e offset τ of the intense change region in different
periods W

range
i (nj).
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D
opt
W1K �

1
K + 1

W
fra
1 n1 + τopt1􏼐 􏼑 + W

fra
3 n3 + τoptj+3􏼐 􏼑 + · · · + W

fra
2k−1 n2k−1 + τopt2k−1􏼐 􏼑􏽨 􏽩,

D
opt
W2K �

1
K + 1

W
fra
2 n2 + τopt2􏼐 􏼑 + W

fra
4 n4 + τopt4􏼐 􏼑 + · · · + W

fra
2k n2k + τopt2k􏼐 􏼑􏽨 􏽩,

ρopt(K) � ρ D
opt
W1K, D

opt
W2K􏼐 􏼑,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(6)

where D
opt
W1K is the signal after the superposition of the odd

group; D
opt
W2K is the signal after the superposition of the even

group; K is the number of superpositions; Wfra
2K−1

(n2K−1 + τ
opt
2K−1) is the signal segment of the odd group with

fault components; Wfra
2K (n2K+ τopt2K ) is the signal segment of

the even group containing the fault component; ρopt (K) is
the correlation between the signal after the superposition of
the odd group and the signal after the superposition of the
even group.

Set the thresholdM, when ρopt (K)≥M, stop the iteration
and output the superposition results.

3.2.3. Parameters Setting

(1) Hard :reshold λ Setting. &e hard threshold λ is mainly
to remove the smaller wavelet coefficients that only contain
background noise and retains the larger wavelet coefficients
that contain fault components. When the value of λ is too
small, the smaller wavelet coefficients generated by back-
ground noise may be incompletely removed, resulting in
unobvious fault periodicity. When the value of λ is ap-
propriate, the smaller wavelet coefficients are completely
removed, only the larger wavelet coefficients containing fault
components are retained, and the fault periodicity is ob-
vious. When the value of λ is too large, not only the smaller
wavelet coefficients are completely removed, but also part of
the larger wavelet coefficients containing fault components
will be removed, resulting in a jump in the period of the fault
signal. However, the location of the fault component can be
found without affecting the superimposing effect. &erefore,
the hard threshold λ should be as large as possible.

(2) Rectangular Window R Setting. &e rectangular window
R is composed of two diagonally paired time-frequency
points (t1, f 1), (t2, f 2); then, the length of the rectangular

window R is l, l� t2 − t1 and the width w � f 2 − f 1. Consid-
ering the frequency distribution of the impact fault signal
and the length σ of the impact fault component, the time of
the intense change region is

tσ �
σ
fs

. (7)

&e rectangular window starts from t� 0 s, so t1 � 0 s.
According to the characteristic frequency of the impact fault
signal, which is generally distributed in the middle and low
frequency, f 1 can be set between 0Hz and 500Hz, and
f 2≤ 5000Hz. If t2 is too large, it will cause the rectangular
window to select multiple fault signal periods, which is not
conducive to extracting the fault signal period. If t2 is too
small, it will increase the amount of calculation. &erefore,
the general value range of l is 2tσ ≤ l≤ 4tσ, which corresponds
to 2σ to 4σ sampling points.

(3):e Length of the Intense Change Region σ. &e length σ of
the intense change region is generally the length of the high-
amplitude zone of artificially selected fault component. Liter-
ature [10] puts forward the general empirical formula of σ as

σ �
fs

44100
× 300, (8)

where f s is the sampling frequency of the acoustic signal.

(4) Parameter b Setting. According to the offset of the feature
point in the fault component, b� σ − 1 sampling points are
selected to minimize the calculation amount finding the
optimal offset τoptj more accurately and finding the optimal
starting point.

(5) :reshold M Setting. With the increase of superposition
number K, the correlation coefficient ρ will not always

A
m

pl
itu

de τj

Wj
erange (nj)

Sampling point

Figure 6: Wfra
i (nj+ τj) signal segment schematic diagram. &e part selected by the blue frame is Wfra

i (nj), and the part selected by the red
frame is Wfra

i (nj+ τj).
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increase. When ρ generally increases to 0.9, it will tend to be
stable, and there is an unobvious increase trend [10]. To
achieve a better noise reduction effect for the fault com-
ponent, M should be set to a value between 0.75 and 0.85,
where M= 0.80.

4. Experiment Condition

Figure 7 is the physical diagram of the automobile engine
fault detection test bench, which consists of an automobile
engine, sound sensor, data acquisition card, encoder, and
computer. &e engine model is EA211 with the detailed
parameters shown in Table 1. &e sound sensor with the
frequency range of 20Hz to 20 kHz is placed above the
cylinder to receive the abnormal sound signal generated by
the engine. &e data acquisition card uses the USB-6341
produced by National Instruments Company. When col-
lecting the sound signal, the sampling frequency is set to
44100Hz. &e encoder model is ZSP3806GC, and the res-
olution is 100P/R. &e encoder can synchronously revolve
with the crankshaft by fixing it on the front end of the
crankshaft through a coupling.

5. Collection and Processing of
Experimental Data

5.1. Fault Component Extraction of Engine Knocking
Cylinder. Figure 8(a) shows the knocking cylinder abnor-
mal noise signal and encoder pulse signal collected under the
condition of engine running at 1800 r/min, Figure 8(b) uses
db5 wavelet as the mother wavelet to perform CWT on the
knocking cylinder abnormal noise signal to obtain the
wavelet time-frequency diagram. &e two diagonally paired
time-frequency points of the rectangular window R are (0,
0), (0.0227, 4000), respectively. &e hard threshold of the
wavelet coefficient is λ� 0.94, and the length of the intense
change region is calculated by equation (8) to obtain σ � 300,
b� 299. &e subset L of offset τj is set to {0 : 598}.

Table 2 is the sampling point corresponding to the
fault feature point njj of each periodic obtained by data
processing using the above method. Table 3 shows the
number of sampling points for each period of impact
fault signal calculated by using the feature points of each
periodic failure component. It can be seen from Table 3
that the number of sampling points in the 6th–8th periods
is 8708, which is quite different from the number of
sampling points in other periods. &is is due to the
excessive setting of the hard threshold λ, which leads to
the zeroing of the wavelet coefficients corresponding to
the feature points of the fault signal components in the
7th and 8th periods after the hard threshold processing, so
the number of sampling points in the 6th, 7th, and 8th
periods cannot be obtained, but it does not affect the
superposition effect.

Selecting s� 1, 299 sampling points are extended forward
and backward from the first feature point 3530 of the fault
component to obtain the reference signal segment W

range
1

(n1), as shown in Figure 9. Table 4 shows the optimal offset

τoptj of each Wfra
j (nj+ τj) by equation (5), and Wfra

j (nj+ τ
opt
j )

is obtained according to τoptj . &e continuous 2K signal
segments Wfra

j (nj+ τ
opt
j ) including fault components are

selected and divided into two groups according to the parity
of the sequence number j for superposition operation, and
the correlation coefficient ρopt (K) of the parity group is
calculated. Figure 10 shows the variation curve of ρopt (K)
and the number of superpositions.

WhenK� 14, ρopt (14)� 0.8030, which is greater than the
threshold M, stopping superimposing. Figure 11 shows the
fault component signals D

opt
W114 and D

opt
W214 after noise

reduction.
Figure 12 shows the time-domain diagram of the odd

group and even group superimposed signals obtained by
superimposing 10 times using the improved DSM. &e
optimal starting point of superposition is the sampling point
of the acoustic signal corresponding to the 28th pulse of each
cycle encoder signal. &e superposition length is set to 600
sampling points, the odd group and even group are
superimposed 10 times to obtain D

opt
W110 and D

opt
W210, and the

correlation reaches 0.8020.
According to Figures 11 and 12, the length σ � 150 of

fault component is accurately extracted. Figure 13 shows the
fault components W1, W2, W3, andW4 extracted from
D

opt
W114, D

opt
W214, D

opt
W110, and D

opt
W210, respectively. &e corre-

lation between W1 and W3 is 0.9029, and the correlation
between W2 and W4 is 0.9290, which further verifies that the
fault component noise reduction method achieves the same
effect compared with the improved DSM.

5.2. Fault Component Extraction of Engine Lacking Cylinder.
Figure 14 shows the physical picture of the first cylinder
lacking of the automobile engine by pulling out the cylinder
line of the first cylinder. Figure 15 shows that the engine
produces abnormal noise signal for the first cylinder lacking.
&e db5 wavelet is selected as the mother wavelet to perform
CWT on the abnormal noise signal of the lack of cylinder.
&e time-frequency points of the two diagonally paired of
the rectangular window R are set as (0, 500), (0.0227, 4000),
respectively. &e hard threshold of the wavelet coefficient
λ= 1, σ = 300, b= 299, and the subset L of the offset τj is set as
{0 : 598}.

14 15.
Table 5 shows the sampling points corresponding to

the feature points of each period of fault component
obtained by the above method. Selecting s � 1, the ref-
erence signal W

range
1 (n1) is obtained by extending 299

sampling points forward and backward from the 1794th

sampling point, as shown in Figure 16. Table 6 shows the
optimal offset τoptj of each Wfra

j (nj + τj) signal by equation
(5), and Wfra

j (nj + τoptj ) is obtained according to τoptj .
Figure 17 shows the variation curve of the correlation
coefficient ρopt (K) of the superposition signals of the odd
group and even group with the number of superpositions
K. When K � 6, ρopt (6) � 0.8048, which is greater than the
threshold M and stopping superimposition, D

opt
W16 and

D
opt
W26 of the fault component after noise reduction are got,

as shown in Figure 18.
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Figure 7: Automobile engine fault detection test bench. (1) Engine; (2) coupling; (3) sound sensor; (4) encoder; (5) data acquisition card;
(6) computer.

Table 1: Engine parameters.
Engine type EA211
Cylinder 4
Displacement 1.6 L
Maximum power 66 kW
Maximum power revolution 5500 rpm
Maximum torque 132Nm
Maximum torque speed 3800 rpm
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Figure 8: (a) Knocking cylinder and encoder signal collected at 1800 r/min. (b) Wavelet time-frequency diagram.

Table 2: &e sampling point corresponding to the fault feature points of each period.
j 1 2 3 4 5 6 7 8 9 10 11 12
Sampling point (njj) 3530 6734 9623 12681 15538 18699 27407 30568 33465 36673 39590 42700
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Figure 10: &e variation curve of ρopt (K) with the increase of the superimposition number (K).
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Figure 9: Reference signal segment W
range
1 (n1).

Table 3: Error of cylinder knock fault signal period.
j 1 2 3 4 5 6–8 9 10 11 12
Number of sampling points of each period (nc) 3204 2889 3058 2857 3161 8708 3161 2897 3208 2917
Actual number of sampling points of each period (na) 3153 2953 3025 2846 3174 8680 3166 2917 3190 2944
Error (Δ) 50 −64 33 11 −13 28 −5 −20 18 −27

Table 4: &e optimal offset τoptj of Wfra
j (nj+ τj).

j 1 2 3 4 5 6 7 8 9 10 11 12
&e optimal offset (τoptj ) 299 312 348 336 310 347 348 301 337 301 313 300
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Even group superimposed signal Dopt
W114

W214

0.5

0

-0.5

A
m

pl
itu

de

Figure 11: Odd and even groups superposition signals after 14-time superposition.
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Figure 12: &e superimposed signals of the odd group and even group after superimposing 10 times with the improved DSM.
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Figure 14: &e physical map of the first cylinder lacking of the car engine. (1) Automotive engine; (2) the first cylinder line.
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Figure 13: Fault components extracted accurately. W1, W2, W3, andW4 are fault components accurately extracted from D
opt
W114, D

opt
W214,

D
opt
W110, and D

opt
W210, respectively.
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Figure 15: Engine abnormal noise signal of the first cylinder lacking.

Table 5: &e sampling point corresponding to the fault feature points of each period.
j 1 2 3 4 5 6 7 8 9 10 11 12
Sampling point (njj) 1794 4204 6567 8885 11161 13606 16002 18301 20798 23331 25749 28247
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Figure 16: Reference signal W
range
1 (n1).

Table 6: &e optimal offset τoptj of Wfra
j (nj+ τj).

j 1 2 3 4 5 6 7 8 9 10 11 12
&e optimal offset (τoptj ) 299 268 298 300 298 196 191 266 266 265 301 356
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5.3. Fault Component Extraction of Engine Knocking.
Figure 19 shows the engine knock signal due to the low
gasoline label. &e db5 wavelet is selected as the mother
wavelet to perform CWT on the knocking signal. &e time-
frequency points of the two diagonally paired of the rect-
angular window R are set as (0, 0), (0.0227, 4000), respectively.
&e hard threshold of the wavelet coefficient λ� 2.8, σ � 300,
b� 299, and the subset L of the offset τj is set as {0 : 598}.

Table 7 shows the sampling points corresponding to the
fault feature points. Due to the large value of hard threshold
λ of wavelet coefficient, the feature points of fault compo-
nents do not show periodic feature, but the interval of
sampling points between each two feature points is ap-
proximately 4000 times. Table 8 shows the optimal offset τoptj

of each Wfra
j (nj+ τj), and Wfra

j (nj+ τ
opt
j ) is obtained

according to τoptj . Figure 20 shows the variation curve of the
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Figure 17: &e variation curve of ρopt (K) with the increase of the superimposition number K.
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Figure 18: Odd group and even group superposition signals after 6-time superposition.
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Figure 19: Engine knocking signal.

Table 7: &e sampling point corresponding to the fault feature points of each period.
j 1 2 3 4 5 6 7 8 9 10 11 12
Sampling point (njj) 8617 21164 25307 29327 34003 45681 49581 53832 57872 61933 70294 78110

Table 8: &e optimal offset τoptj of Wfra
j (nj+ τj).

j 1 2 3 4 5 6 7 8 9 10 11 12
&e optimal offset (τoptj ) 299 228 17 389 167 244 442 236 234 234 447 232
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correlation coefficient ρopt (K) of the superposition signals of
the odd group and even group with the number of super-
positions K. When K� 6, ρopt (8)� 0.8091, which is greater
than the threshold M, and stopping superimposition, D

opt
W18

and D
opt
W28 of the fault components after noise reduction is

got, as shown in Figure 21.

6. Experimental Results Analysis

In order to further verify the effectiveness of this method, the
experimental results of this method and the improved DSM
are compared by using the knocking cylinder experiment of
automobile engine, and then the effectiveness of this method
is verified. In this method, odd group signals and even group
of engine knocking cylinder signals are superimposed 14
times, and the correlation between the noise reduction
signals D

opt
W114 and D

opt
W214 is 0.8030.&en, the noise reduction

processing and extraction of engine knocking cylinder
failure component are carried out by using the improved
DSM. When odd group signals and even group signals are
superposed 10 times, the correlation between the noise
reduction signals D

opt
W110 and D

opt
W210 is 0.8020. Finally, the

fault components W1, W2, W3, andW4 are accurately
extracted from noise reduction signals of D

opt
W114, D

opt
W214,

D
opt
W110, and D

opt
W210, where the correlation between W1 and

W3 is 0.9029, and the correlation between W2 and W4 is
0.9290.&e results show that this method can further replace
the use of encoders and achieve the same noise reduction
effect as the improved DSM.

In the engine cylinder lacking experiment, this method is
used to reduce the noise of fault components. &e

correlation between the noise reduction signal D
opt
W16 and

D
opt
W26 obtained by superposition of odd group signals and

even group signals for 6 times is 0.8048. In the engine knock
experiment, due to the relatively small setting of hard
threshold λ, some fault feature points are not selected ac-
curately, resulting in the correlation of superposition signals
of odd and even groups after superposition for 2 and 3 times
gradually decreasing, as shown in Figure 20. However, with
the gradual increase in the number of superpositions, the
correlation between D

opt
W18 and D

opt
W28 obtained by superpo-

sition of odd group and even group for 8 times is 0.8091.
From the analysis results, the method can replace the

improved DSM, effectively reduce the noise, and extract the
fault component of the engine abnormal noise signal. By
increasing the threshold M and superimposition number K,
the accuracy of the extracted fault components can be
improved. &e method can also use the extracted fault
components to establish a database of automobile engine
faults, which lays a foundation for the later diagnosis and
classification of automobile engine faults.

7. Conclusion

Althoughthe improved DSM can automatically find the
starting superposition point andsuperposition length of the
periodic signal, it needs to use the encoder toassist in finding
the starting superposition point. In practical applications,
many occasions are not suitable for the use of encoders,
which limits the applicability of DSM. &erefore, based on
the improved DSM, this paper proposes an adaptive noise
reduction method of automobile engine abnormal noise
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Figure 20: &e variation curve of ρopt (K) with the increase of the superimposition number K.
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Figure 21: Odd group and even group superposition signals after 6-time superposition.

12 Shock and Vibration



signal, which cancels the use of the encoder. Using this
method, the fault components of knocking cylinder, cylinder
lacking, and knocking are extracted from the abnormal
sound signal of automobile engine, and the effectiveness of
the method is verified.&emethod can adaptively obtain the
starting superposition point and superposition length from
the engine abnormal sound signal and determine the
number of superpositions, which replaces the encoder in the
improved DSM to determine the starting position of the
automobile engine impact fault and greatly improves the
applicability of DSM. However, when the hard threshold λ is
set to a small value, the selection of fault feature points will
be inaccurate, and then the selected fault components will be
biased, resulting in inaccurate noise reduction signals. &e
specific problem of hard threshold setting will be further
studied. When the starting superposition point is selected,
the accuracy is reduced compared with the improved DSM,
resulting in more superposition times than the improved
DSM. However, according to the superposition results, the
increase of superposition times is within an acceptable
range.

In the future, the hard threshold λ setting problem will
be further improved, and the corresponding fault compo-
nent database will be established. &e fault type will be
determined by comparing the extracted fault component
with the fault component in the database.
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