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To effectively predict the faults of centrifugal pumps, the idea of machine learning k-nearest neighbor algorithm (KNN) was
introduced into the traditional Mahalanobis distance fault discrimination, and an improved centrifugal pump fault prediction
model of KNN based on the Mahalanobis distance is proposed. In this method, the Mahalanobis distance is used to replace the
distance function in the conventional KNN algorithm. Grid search and cross-validation are used to determine the optimal K value
of the predictionmodel. A centrifugal pump test rig was established to solve three common faults of centrifugal pumps: cavitation,
impeller damage, and machine seal damage, and the method was verified. +e results show that this method can effectively
distinguish the specific fault types of centrifugal pumps based on vibration signals, and the fault prediction accuracy of the off-
balance condition is up to 82%. +is study provides a novel idea and method for centrifugal pump fault prediction and diagnosis
and avoids the interaction between parameters when monitoring multiple parameters.

1. Introduction

Centrifugal pump is an important fluid conveying equip-
ment; it is widely used in various fields and plays a significant
role in the development of the national economy. +erefore,
it is particularly necessary to ensure the normal and stable
operation of the centrifugal pump.

In the process of centrifugal pump operation, the earliest
indication of failure is usually the abnormal vibration signal.
Some minor equipment damage or defects will cause ab-
normal vibration of centrifugal pumps, such as seal damage,
cavitation, and impeller damage. Although the centrifugal
pump can transmit information to the outside world
through acoustic emission [1], temperature, oil pressure,
pressure pulsation, and other signals, all parameter moni-
toring methods have their limitations. While vibration
signals can timely and accurately transmit the operating state
information of the centrifugal pump and can be monitored
in a long-term and stable manner. +erefore, vibration
signal monitoring has become the most commonly used
method in centrifugal pump fault diagnosis. Approaches to
extract features from mechanical systems based on time-
domain data were proposed in [2, 3]. +e vibration signal of
the centrifugal pump can be analyzed and the fault of the

centrifugal pump can be performed. In the centrifugal pump
monitoring, in addition to time-domain parameters, there
are frequency-domain parameters. Xue et al. [4] proposed a
fault prediction system. +e vibration signal of a centrifugal
pump is analyzed in the amplitude domain and time do-
main, and the characteristic structure of the signal in the
frequency domain is analyzed by the fast Fourier transform
(FFT) signal analysis method. +e failure of the centrifugal
pump was analyzed based on the database of typical vi-
bration failure cases.

With the continuous development of computer algo-
rithms and artificial intelligence, clustering algorithms,
neural network, and other technologies have a lot of positive
impact on the traditional fault monitoring methods, making
fault monitoring more accurate and intelligent [5–10]. Jun
Du et al. [11] proposed a clustering diagnosis method based
on statistical average relative power difference (ARPD) for
the faults of the aircraft hydraulic pump, such as swashplate
eccentricity and the increase of the gap between piston and
slider. By effectively enhancing the fault characteristics of
these two kinds of faults, the ARPD calculated from vi-
bration signals is used to complete the hypothesis testing. To
extract the weak signal fault characteristics of aeroengine
intermediate shaft bearing effectively, Jing et al. [12]
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introduced a tolerance idea into the traditional adaptive
genetic algorithm and proposed a variational mode de-
composition (VMD) method based on TAGA-VMD. Ma-
chine learning and neural network methods have also
become a research hotspot recently [13–18]. Tai-Ming Tsai
andWei-HuiWang [19] addressed dealing with these signals
to establish the database of input-output relations by using
several neural network models through learning algorithms.
Meanwhile, to set up an online diagnosis network, the
learning speed, and accuracy of three kinds of networks, the
backpropagation (BNP), radial basis function (RBF), and
adaptive linear (ADALINE) neural networks have been
compared and assessed. For online diagnosis, the BPN
method is recommended. Yang et al. [20] proposed a fault
diagnosis scheme for rotating machinery using hierarchical
symbolic analysis and a convolutional neural network. +e
method performs superior diagnosis capacity with simple
network architecture. Kong and Chen [21] proposed a new
combined method based on wavelet transformation, fuzzy
logic, and neuronetworks for fault diagnosis of a triplex. +e
failure characteristics of the fluid and dynamics can be di-
vided by the wavelet transform in different scales at the same
time. +erefore, the characteristic variables can be con-
structed making use of the coefficients of the Edgeworth
asymptotic spectrum expansion formula and fuzzified to
train the neuronetwork to identify the faults of the fluid and
dynamic of the triplex pump in the fuzzy domain.

In conclusion, there are many parameters to monitor the
operation of the centrifugal pump, which makes it difficult to
have a unified judgment standard for fault diagnosis of the
centrifugal pump.+is paper proposes a centrifugal pump fault
monitoring system based on an improved KNN algorithm [22]
based on the Mahalanobis distance. Firstly, the ReliefF algo-
rithm [23] was utilized to carry out weight analysis on the time-
domain and frequency-domain features [24] and parameters
commonly used in centrifugal pump monitoring. +en, the
parameters with greater influence on centrifugal pump fault
monitoring were selected. +e characteristic space was de-
veloped by using the characteristic parameters under different
fault conditions and normal conditions. +e KNN algorithm
was improved and the centrifugal pump working conditions
were predicted by using Mahaobanobis distance [25, 26] in-
stead of Euclidean distance. Finally, the proper K value is
selected by grid search [27–29] to establish the centrifugal
pump fault prediction system, so that the operation of the
centrifugal pump can be evaluated.

2. Materials and Methods

+e improved KNN prediction model based on the
Mahalanobis distance is given in Figure 1, which is mainly
divided into two parts: feature engineering and prediction
model.

3. Feature Engineering Based on
ReliefF Algorithm

+ere are several parameter indexes to evaluate the oper-
ation condition of the centrifugal pump; if all parameters

are selected at the same time, it will be difficult to judge the
operating condition of the centrifugal pump because of the
mutual influence between the parameters, and the opera-
tion fault cannot be accurately predicted. +e ReliefF al-
gorithm can choose the top four parameters indexes with
the highest contribution. +e commonly used time-domain
and frequency-domain indexes are divided into absolute
indexes and relative indexes. Absolute indicators are di-
mensionless eigenvalues and have units, such as peak value,
mean value, and root mean square. Relative indexes are
dimensionless eigenvalues without units, such as kurtosis
and margin.

3.1. Relief Algorithm. +e Relief algorithm was first pro-
posed by Kira and was initially restricted to the classifi-
cation of two types of data. Later, with the progressing of
the Relief algorithm, it became a feature weight algorithm.
To address its limitations, Kononeill expanded it in 1994
and obtained the ReliefF algorithm, which can give dif-
ferent weights to features according to the correlation of
each feature and category. ReliefF algorithm randomly
selects a sample R from the training setD and then looks for
k-nearest neighbor samples from the samples comparable
to R, which is called Near Hits. Looking for the nearest
neighbor samples that are different from R is called Near
Misses and then update the weight of each feature
according to the following rules, as shown in

W(A) � W(A) − 􏽘
k

j�1

diff A,R,Mj􏼐 􏼑

(mk)

+ 􏽘
c≠class

P(C)/1− P(class(R))􏽐
k
j�1diff A,R,Pj(C)􏼐 􏼑􏽨 􏽩

(mk)
.

(1)

In the above formula, Mj is the Jth sample of the same
kind, Pj is the Jth adjacent sample in the different class C, m
is the sampling number, diff(A, RR2) represents the dif-
ference between samples R1 and R2 in the feature space A,
and its calculation formula are shown as follows:

diff A, R, R2( 􏼁 �

R1[A] − R2[A]
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

max(A) − min(A)
if A is continuous,

0 if A is discrete andR1[A] � R2[A],

1 if A is discrete andR1[A]≠R2[A].

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2)

ReliefF function is called repeatedly for n times. Finally, a
better weight of each feature index can be obtained by
averaging the results of n pairs of calculations.

3.2. Centrifugal Pump Fault Working Characteristic Index.
+e flow rate of the test centrifugal pump under standard
working conditions is Qd � 50m3/h. Axial vibration signals
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under standard working conditions are collected. Weight
analysis of the following 10 characteristic parameters [9, 10]
in the time domain and frequency domain is carried out
according to the ReliefF algorithm, as shown in Table 1.

After the operation, the ReliefF algorithm was used to
filter 10 characteristic parameters.+e weight of each feature
parameter is calculated by Python. +e larger the weight is,
the greater the contribution of the feature parameter to the
correct classification of the data is. +e characteristic pa-
rameters are more reliable for centrifugal pump monitoring.
Weights of the 10 characteristic indicators are obtained as
shown in Table 2, and the histogram of descending order is
drawn as shown in Figure 2.

According to the analysis results of the ReliefF algo-
rithm, the four parameters that contribute the most to the
centrifugal pump fault diagnosis classification are root mean
square, peak factor, skewness coefficient, and kurtosis. To
reduce the dimension and data redundancy of features and
facilitate the training of KNN, in the next step, this paper
takes the four feature indexes with the largest weight as the
eigenvalues of the dataset. +e weight of the other six pa-
rameters is very small; not dealing with them will not affect
the result of fault prediction.

4. ImprovedCentrifugal PumpFault Prediction
Model of KNN Based on the
Mahalanobis Distance

Due to its simplicity and effectiveness, the KNN algorithm is
usually the first choice to solve any classification problem. In
essence, fault monitoring can be regarded as classifying the
collected operation status signals. However, two factors can
degrade KNN performance.+e key of the KNN algorithm is
the selection of K values and the calculation of the distance
between samples. First, KNN determines the similarity
between two samples using a distance function. Second, the
accuracy is sensitive to the neighborhood size K value.

4.1. Mahalanobis Distance. In general, the KNN algorithm
uses the Euclidean distance to calculate the sample distance,
but the Euclidean distance has an obvious disadvantage,
which equates to the differences between different attributes
of the sample. Because of the correlation between discrete
monitoring parameters of centrifugal pumps, Euclidean
distance cannot meet the practical requirements of cen-
trifugal pump fault prediction.
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Figure 1: Flowchart of the prediction model.
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+e Mahalanobis distance was suggested by P.C. Maha-
lanobis, an Indian statistician, which represents the distance
between a point and a distribution. It is an effective method to
calculate the similarity between two unidentified sample sets.
Unlike Euclidean distance, it takes into consideration the re-
lationship between various properties and is dimensionless. For
an average of μ � (μ1, μ2, μ3, . . . , μp)T, the covariancematrix S
for several variables x � (x1, x2, x3, . . . , xp)T, the Mahala-
nobis distance formula is shown in

DM(x) �

���������������

(x − μ)
T
S

−1
(x − μ)

􏽱

. (3)

To sum up, the Mahalanobis distance can easily measure
the distance between the observed samples and the known
sample set, so it is very suitable for the field of fault diagnosis.
+e improved KNN algorithm can be obtained by replacing
the original Euclidean distance function of the KNN algo-
rithm with the Mahalanobis distance.

4.2. Data Analysis. According to the weight analysis results
of the ReliefF algorithm, four parameters, that is, root mean
square, peak factor, skewness coefficient, and kurtosis, were
statistically analyzed. We collect the vibration signal data of
centrifugal pump impeller damage, centrifugal pump
cavitation, centrifugal pump seal damage, and centrifugal
pump under normal operation. +en, we calculate the root
mean square, peak factor, skewness coefficient, and kurtosis
under each operating condition. Due to the dimensionality
and value range of these four characteristic parameters, the
consequences are often not good if the algorithm is directly
applied to these data, so the data should be scaled in the
same proportion to make it fall within a specific interval.
Standard deviation standardization, otherwise known as

Table 1: Time-domain feature.

Evaluation
index Formula Significance of evaluation

RMS Xrms �

����������

1/N 􏽐
N
i�1 xi

2
􏽱

Represents the average amount of signal amplitude based on a unit of time

Kurtosis
coefficient CK � 1/N 􏽐

N
i�1 (xi − x)4/σ4 − 3 It can express the difference between the signal and its average value at this

time
Peak factor C � Xpeak/Xrms Dynamic expression of the damage to the surface of the machine seal

Pulse factor I � Xpeak/x
+e ratio of the peak value to the mean value of the signal, the criterion for

judging the presence of an impact in the signal
Waveform
factor S � Xrms/x

Based on the upper root mean square value and the mean value ratio of the
time-domain

Kurtosis Kv � (1/N) 􏽐
N
i�1 (xi − x)4/((1/N) 􏽐

N
i�1 x2

i )2
+e amplitude of the seal acoustic emission signal is described. If the

kurtosis is too large, it means that there is a dry friction
Margin
coefficient clf � |xmax|/(1/N 􏽐

N
i�1

���
|xi|

􏽰
)2

+e ratio of the signal root means a square value to its mean value, used to
evaluate the degree of component damage

Skew
coefficient Cs � 1/N 􏽐

N
i�1 (xi − x)3/σ3 +e asymmetry degree of acoustic emission signal is described

Center
frequency FC � 􏽐

N
i�1 fipi/􏽐

N
i�1 pi

Denotes the change in the position of the power spectrum barycenter and
describes the change of the energy ratio of each frequency component

MSF MSF � 􏽐
N
i�1 fi

2pi/􏽐
N
i�1 pi

Represents the discrete state of power spectrum energy distribution and
describes the composition of signal frequency components

Table 2: Table of characteristic parameter weights.

Feature Weight Feature Weight
RMS 0.3274 MSF 0.0990
Peak factor 0.2869 Kurtosis coefficient 0.0264
Skew coefficient 0.2331 Center frequency 0.0202
Kurtosis 0.1235 Waveform factor 0.0043
Margin coefficient 0.1008 Pulse factor 0.0021

0.30

0.25

0.20

0.15

0.10

0.05

0.00

W
ei

gh
t

1 2 3 4 5 6 7 8 9 10
Feature

RMS
Peak factor
Skew coefficient
Kurtosis
Margin coefficient

MSF
Kurtosis Coefficient
Center frequency
Waveform factor
Pulse factor

Figure 2: Diagram of characteristic parameter weight.
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zero-mean standardization or score standardization, is the
most extensive data standardization method at present.
After standard deviation normalization, the standard de-
viation of the data is 1, the mean value is 0, and the tangent
is under the normal distribution. +e conversion formula is
presented in

X
∗

�
X − X

σ
, (4)

whereX is the mean of the original data and σ is the standard
deviation of the original data. Standard deviation normal-
ization is used for root mean square, peak factor, skewness
coefficient, and kurtosis before calculating the Mahalanobis
distance.

After data preparation, the Mahalanobis distances be-
tween the samples under normal operation of the centrifugal
pump and the samples in the case of cavitation, the sample
with damaged impeller, and the sample with damaged seal
were calculated, which were demonized as MD1, MD2, and
MD3, respectively. Figure 3 shows the Mahalanobis dis-
tances under different centrifugal pump fault conditions
after the addition of the four characteristic parameters
according to the ReliefF weights and Table 3 shows the
Mahalanobis distances under different centrifugal pump
fault conditions after the addition of the four characteristic
parameters according to ReliefF weights.

By Mahalanobis distance diagnosis, it was found that, in
the whole test, the maximum value of MD2 was found, and
MD2, MD1, and MD3 were decreased in turn. Centrifugal
pumps operate at a low flow rate or operate over the design
point; with the increase of flow, the Mahalanobis distance
between the centrifugal pump failure data and normal data
at runtime is growing. +e Mahalanobis distance reached
2.244143, indicating that the impeller damage is very serious;

in this condition, the centrifugal pump operating condition
is very poor. According to the analysis of the Mahalanobis
distance, it can be seen that using the Mahalanobis distance
can effectively judge the operation fault of the centrifugal
pump, and it is appropriate and effective in improving the
KNN algorithm.

4.3. Improved KNN Algorithm. KNN (K-nearest neighbor)
method, originally proposed by Cover and Hart in 1968, is a
machine learning algorithm. +e idea of this method is very
intuitive: if most of the K-nearest likeness (that is, the nearest
neighbor of the feature space) samples of a sample in the
feature space belong to a certain category, then the sample
also belongs to this category. In the classification decision,
the method only determines the category of the samples to
be distributed according to the category of the nearest one or
several samples.
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Figure 3: Mahalanobis distance diagram under different working conditions.

Table 3: Partial Mahalanobis distance data.

Q(m3/h) MD1 MD2 MD3
5 1.315011 1.333311 1.402389
10 1.514888 1.753904 0.798257
15 1.377642 1.724976 0.909592
20 1.560997 1.150543 0.812094
25 1.544954 2.244143 1.038043
30 1.522004 1.501566 0.830493
35 1.415861 1.818289 0.685511
40 1.170261 1.068531 0.559391
45 1.379778 2.051609 0.706578
50 1.382423 1.526468 0.618459
55 1.422706 1.489968 0.714366
60 1.285552 1.903851 0.895176
65 1.418641 1.708746 0.892477
70 1.702013 2.077338 0.939009
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+e selection of distance function and the determination
of K value are the main factors that affect the performance and
result of the KNN algorithm. +e Mahalanobis distance has
proved through data analysis that it can effectively replace
Euclidean distance, and the effect is good. For KNN algorithm
parameter K, if you choose smaller values of K, it is equivalent
to use smaller training instances in the field of the forecast,
reducing the approximation learning error. Only training in-
stances that are close to the input instances are useful for the
predicted results, but the downside is the fact that the study of
estimation error will increase; the result is sensitive to the
neighbor instance of the point. If the adjacent instance points
happen to be noisy, the prediction will be wrong. +is means
that as K values decrease, the model becomes more complex
and easier to overfit. If a larger value of K is selected, it will be
tantamount to using training examples in a larger field to make
predictions. +e advantage is the case that the estimation error
of learning can be reduced, but the approximate error will
increase. In other words, with the increase of K value, the
prediction accuracy of input instances will be reduced, and the
overall model will become simple. +e approximate error can
be understood as the training error of the existing training set.
A small approximate error can make a better prediction of the
existing training set, but its performance on the unknown test
sample set is poor. +e estimation error can be seen as the test
error of the test set. A small estimation error indicates a sat-
isfactory ability to predict the unknown data, and the model at
this time is closer to the optimal model.

As the observation data, based on the data under normal
working conditions, with marker distance as the radius,
cavitation, and impeller damaged, we draw machine seal
damage case sample points. As there are too many sample
points, only 100 of them are drawn, as shown in Figure 4.
Because the sample points are too concentrated, the normal
working condition points can be seen when the central area
is enlarged, as shown in Figure 5. Taking the yellow asterisk
points in Figure 4 as an example, the schematic diagram of
K� 1, K� 10, and K� 100 is drawn. It can be seen that if
the K value is too small, the sample points near the pre-
diction point are too small, and it is easy to misjudge the
running status of the centrifugal pump. When the K value is
too large, there are too many sample points in the range,
which will also increase the difficulty of centrifugal pump
operating condition prediction.

To determine the appropriate K value, the automatic pa-
rameter tuningmethod is approved in this paper. Grid Research
is the most widely used automated parameter optimization
method at present. A grid search evaluates all possible com-
binations of parameter values to calculate the best combination,
using cross-validation to evaluate themerits of K values. Starting
with a small value of K, increasing the value of K, and then
calculating the variance of the result, we can finally determine a
suitable value of K. In this paper, K values were selected from
400, 800, 1600, 1800, 2000, 2200, 3000, and 5000. To make a
better evaluation of the model performance, we measure the
accuracy of the evaluation and the standard deviation from the
actual results at the same time and avoid the occurrence of
overfitting; the K-fold cross-validation method can be used. In
this paper, 10-fold cross-validation was used. As shown in

Table 4, the dataset is divided randomly into 10 different subsets,
each subset is called a fold, and then, the model is trained and
evaluated 10 times, onefold is selected for evaluation each time,
and the other nine folds are used for training.+e output result
is an array containing 10 evaluation scores, and the average
value of this array is the evaluation of the model performance.
Meanwhile, the robustness of the model can be verified by
observing the evaluation score of each training.

normal
cavitation

damage impeller
damage machine seal

Figure 4: Schematic diagram of sample point distribution and K
values.

normal
cavitation

damage impeller
damage machine seal

Figure 5: Schematic diagram of sample point distribution.
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It can be observed that when the value of K is increased,
the accuracy of fault prediction will increase first, because
there are more samples around for reference, and the
prediction effect will become better. With the increase of K
value, the accuracy will have a maximum value of 0.8884. At
this time, the K value of 2000 is the optimal K value, because
when there is a further increase of K value, the error rate of
prediction will gradually rise, and it will be meaningless to
continue to increase the K value.

5. Experimental Verification

In a check to see the validity of the prediction model in fault
prediction, a centrifugal pump testbed was built. Conditions
of 0.8Qd, 1.0Qd, and 1.2Qd were selected as the test con-
ditions, which included the centrifugal pump external
characteristic test under normal working conditions, cavi-
tation test, machine seal failure test, and impeller damage
test. +e vibration signals of the centrifugal pump under
various fault conditions were collected and processed by the
signal acquisition system, and the weight analysis results of
the ReliefF algorithm were combined with four character-
istic parameters, namely, root mean square, peak factor,
skewness coefficient, and kurtosis. +e fault prediction
model of the KNN centrifugal pump improved with the
Mahalanobis distance was used to predict the centrifugal
pump working conditions, and the results were compared
with the test results.

5.1. Construction and Design of Centrifugal Pump Testbed.
+e centrifugal pump test rig built is shown in the schematic
diagram and the physical drawing as shown in Figure 6. IS-65-
50-160 centrifugal pump, export solenoid valve, driving motor,
import manual ball valve, import and export stainless steel
water pipe, bellows, storage tank, and so on together constitute
the water circulation system. +e collective design parameters
of the IS-65-50-160 centrifugal pump are given in Table 5.

5.2. Design of Signal Acquisition System. +e signal acqui-
sition system is composed of the equipment responsible for
collecting the various parameters of the centrifugal pump.
+e signal acquisition system is mainly composed of the inlet

and outlet pressure sensor, an electronic flow meter, NI
signal acquisition card, transient speed, torque tester, and
resistance. +e precise parameters of the instrument and
sensor are shown in Table 6.

5.3. Centrifugal Pump Characteristic Test Procedure.
Offset conditions and cavitation are the most common
unstable conditions in the operation of the pump. Tests were
carried out to diagnose cavitation and deviation conditions.
+e experimental steps of centrifugal pump external char-
acteristics are as follows:

(1) Open the inlet pipeline, ball valve to maximum; open
the storage tank vent valve; let the internal pressure
of the storage tank be close to the atmosphere.

(2) Open the centrifugal pump unit and check the water
circulation system to avoid the leakage of the system
affecting the subsequent test; check the stability of
the data acquisition card, and check each sensor one
by one.

(3) +e flow of the centrifugal pump under standard
working conditions was set at Qd, and the actual
pump flow was regarded as an independent variable.
+e abscissa of external characteristics was divided
into 14 working conditions, and the working con-
ditions from 0 to 1.3 Qd were measured, respectively.

(4) Set the specific parameters of the centrifugal pump,
by controlling the solenoid valve to adjust the
specified flow rate of the centrifugal pump, so that
the centrifugal pump runs under the specified flow
parameters. When the centrifugal pump runs in this
working condition and is stable, there is synchro-
nous collection and recording of several parameters
such as flow rate, input current, inlet and outlet
pressure, speed, and torque of the centrifugal pump.

(5) Repeat the test until 14 working conditions are
recorded and the test is completed. +en, calculate
the efficiency, head, and shaft power under the
corresponding working conditions, and finally, draw
the external characteristic curve.

+e implementation steps of the cavitation characteristic
test of a centrifugal pump are as follows:

Table 4: Grid search cross-verifies the prediction accuracy in each case.

K value 400 800 1600 1800 2000 2200 3000 5000
Set 1 0.6183 0.6185 0.8183 0.8190 0.9187 0.8182 0.7186 0.6164
Set 2 0.7054 0.7049 0.9073 0.9072 0.9072 0.9071 0.8064 0.7058
Set 3 0.7289 0.7288 0.9289 0.9291 0.9283 0.8290 0.8287 0.7294
Set 4 0.7071 0.7097 0.9086 0.9088 0.9094 0.9095 0.8089 0.7091
Set 5 0.5534 0.5529 0.7540 0.7535 0.8537 0.7531 0.6536 0.5516
Set 6 0.6399 0.6385 0.8397 0.8398 0.8398 0.8401 0.7403 0.6399
Set 7 0.7436 0.7437 0.9442 0.9439 0.9440 0.9440 0.8439 0.7438
Set 8 0.5745 0.5755 0.7748 0.7759 0.8759 0.8754 0.6753 0.5749
Set 9 0.4991 0.5009 0.7017 0.7027 0.8025 0.7020 0.6026 0.5033
Set 10 0.5013 0.5025 0.7041 0.7038 0.9044 0.7040 0.6042 0.5066
Mean 0.6271 0.6276 0.8282 0.8283 0.8884 0.8283 0.7282 0.6278
Instability 0.0878 0.0875 0.0873 0.0872 0.0871 0.0874 0.0871 0.0868
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(1) Open the valve connecting the water storage tank
with the atmosphere, so that the internal pressure of
the water storage tank is on the brink of the at-
mospheric pressure, and then close the water storage
tank vent valve.

(2) Check the running state of the water circulation
system, sensor equipment, and data acquisition card,
start the centrifugal pump unit, and simulate the test
steps of full flow bias condition for operation.

(3) Adjust the analog voltage of the data acquisition card
so that the centrifugal pump can run at the specified
flow rate.

(4) Open the vacuum pump to reduce the inlet pressure.
(5) When the head drops by 0.05m, close the vacuum

pump. When the measured data tend to be stable,
turn on the vacuum pump and wait for the next
round of data collection, waiting for a 10% drop in
head to complete the collection.

(6) Adjust the flow rate so that the centrifugal pump
works in each flow rate, respectively. Repeat the
above steps to obtain the cavitation characteristic
data of the centrifugal pump in each flow rate.

Table 5: Design parameters of centrifugal pump for test.

Parameter Unit Value
Impeller inlet diameter D1(mm) 74
Impeller outlet diameter D2(mm) 174
Blade outlet width b2(mm) 12
Number of blades Z 6
Rated flow Qd(m3/h) 50
Rated head Hd(m) 34
Rated speed n(r/min) 2980
Rated power H(%) 72.8
Specific speed ns 89.51

Current Sensor

Torquemeter

Outlet pressure
sensor

Solenoid valve

Electromagnetic
flowmeter

Vent valve

Motor Pump

Inlet pressure
sensor

Liquid level board Vaccum pump

Reservoir

(a)

(b)

Figure 6: (a) Schematic diagram. (b) Physical drawing of the testbed.
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Table 6: Specific parameters of each instrument and sensor.

Instrument name Parameter Value (unit)

NI USB-signal data acquisition card

Analog input 4-way, (kS/s), 16-bit
resolution

Analog output 4-way, (kS/s), 16-bit
resolution

Voltage range −10(V)∼+10 (V)
Digital I/O interface 4-way

LDW-SIN-DW-Z electromagnetic fluidizer

MWP 1.6 (MPa)
Supply voltage 220 (V)

Measuring flow range 0∼120 (m3/h)
Error 0.16 (%)

Output current signal 4-20 (mA)

SGDN-dynamic torque measuring device
Output frequency 5∼15 (kHz)

Error 0.3%
Measuring flow range 0-120 (N∗m)

WIKAS-transducer

Measuring range
Inlet 0∼1.6 (bar abs
pressure)/outlet 1∼4

(bar)
Current output 4-20 (mA)
Mains input 10∼30 (V)

Error 0.2%
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Figure 7: (a) External characteristics of cavitation and normal working conditions. (b) External characteristics of damage impeller and
normal working conditions. (c) External characteristics of damage machine seal and normal working conditions.
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Use normal impeller, damaged impeller, and damaged
machine seal to carry out the above tests, respectively.
According to the experimental results, the external charac-
teristic curves of the centrifugal pump under cavitation and
normal conditions are drawn, as shown in Figure 7.

In Figure 7(a), by comparing the external characteristics of
the pump under the two conditions, it is found that the
cavitation phenomenon of the centrifugal pump is serious, and
the damage of the inlet blade will produce a large number of
cavities, and the flow disorder will occur when the fluid flows
through, resulting in the decrease of head and efficiency. In
Figure 7(b), it can be found that the head and efficiency of the
centrifugal pump have significantly decreased after the impeller
is damaged, which is caused by the unstable flow in the pump.
In Figure 7(c), machine seal damage leads to serious system
leakage, which will also make the flow in the pump more
unstable. Centrifugal pump head and efficiency decline.

5.4. Predictive Model Validation Steps

Step 1. +e data of the above tests were collated to compute
the root mean square, peak factor, skewness coefficient, and
kurtosis required for the prediction.

Step 2. Carry out data cleaning and standard deviation
standardization for the collated data, and combine the four
characteristic parameters according to the weight analysis
results of the ReliefF algorithm. +en, input them into the
fault prediction model for faulty judgment.

Step 3. Compare the output of the predictionmodel with the
actual test centrifugal pump state. Under the flow of 0.8 Qd,
1.0 Qd, and 1.2 Qd, 100,000 data were collected, respectively,

and divided into 10 groups for fault prediction accuracy as
shown in Figure 8.

+e test results demonstrate that the improved KNN
centrifugal pump fault prediction model can realize the
monitoring of four kinds of centrifugal pump operation faults.
+e prediction model has superior prediction speed and ac-
curacy for unknown samples. Under the condition of 0.8 Qd,
the average prediction accuracy is 0.859, and the highest
prediction accuracy is 0.871. Under the condition of 1.0Qd, the
average prediction accuracy is 0.821, and the highest prediction
accuracy is 0.844. Under the condition of 1.2 Qd, the average
prediction accuracy is 0.855, and the highest prediction ac-
curacy is 0.881.+e results show that the centrifugal pump runs
stably under the design condition. +e vibration amplitude is
smaller than that of off-working conditions, and the prediction
accuracy is relatively low. However, the vibration of the
centrifugal pump is exacerbated under the off-working con-
dition, and the prediction accuracy of the prediction model is
higher. +e fault diagnosis method has good accuracy and
practicability because the water pump mostly operates in off-
working conditions in actual use. Some verification results are
presented in Table 7.

6. Results and Discussion

(1) Using the ReliefF weight analysis algorithm not only
can be the intuitive observation of vibration moni-
toring parameters of centrifugal pump failure pre-
diction weight proportion but also can remove the
redundant sieve parameters. At the same time, there
are too many parameters that can be solved and
influence each other because the failure prediction
model is too complex and leads to the fact that the
failure prediction results are not accurate.
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Figure 8: Model accuracy of group verification under various working conditions.
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(2) +e distance function in the KNN algorithm is
replaced by the Mahalanobis distance, which avoids
the disadvantage that the Euclidean distance cannot
describe the correlation between variables and
eliminates the dimensionless influence among var-
ious vibration parameters. At the same time, it is
proved that the Mahalanobis distance is an excellent
performance and application in fault diagnosis.

(3) +e improved KNN centrifugal pump fault predic-
tion model can effectively identify the centrifugal
pump fault, comply with the requirements of cen-
trifugal pump fault diagnosis, and predict the cen-
trifugal pump fault situation in time and quickly. It
also avoids the difficulty of centrifugal pump fault
analysis caused by the simultaneous monitoring of
multiple parameters, so that the centrifugal pump
fault monitoring has a unified judgment method.

(4) In the practical application, the sample size and
sample types used by the training model can be
increased according to the needs of users, to further
enhance the accuracy of model prediction and the
types of predicted faults.
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