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In the actual industrial scenarios, most existing fault diagnosis approaches are faced with two challenges, insufficient labeled
training data and distribution divergences between training and testing datasets. For the above issues, a new transferable fault
diagnosis approach of rotating machinery based on deep autoencoder and dominant features selection is proposed in this article.
First, maximal overlap discrete wavelet packet transform is applied for signals processing and mix-domains statistical feature
extraction. Second, dominant features selection by importance score and differences between domains is proposed to select
dominant features with high fault-discriminative ability and domain invariance. ,en, selected dominant features are used for
pretraining deep autoencoder (source model), which helps in enhancing the fault representative ability of deep features. ,e
parameters of the source model are transferred to the target model, and normal state features from target domain are adopted for
fine-tuning the target model. Finally, the target model is applied for fault patterns classification. Motor and bearing fault datasets
are used for a series of experiments, and the results verify that the proposed methods have better cross-domain diagnosis
performance than comparative models.

1. Introduction

With the prompt progress of modern industry, rotating
machinery (RM) is developing towards integration and
complexity [1]. RM usually operates under complex and
harsh scenes, such as variable heavy loads, high temperature
and speed, and strong impact [1]. Once a component fault
occurs, it may further lead to the damage of other com-
ponents and huge economic loss. ,erefore, it is meaningful
and practical to study intelligent fault diagnosis models
towards real industrial scenes [1, 2].

In the last several years, intelligent fault diagnosis field has
received many studies of traditional-machine-learning-
(TML-) based framework, deep- learning (DL-) based

framework, and transfer-learning- (TL-) based framework,
which can achieve automatically fault recognition and clas-
sification by analysing massive signals collected from me-
chanical equipment [1–4]. TML-based framework is often
constructed by using traditional machine learning algorithms
that mainly include k-nearest neighbour (KNN) [5], support
vector machine (SVM) [6], artificial neural network (ANN)
[7], extreme learning machine (ELM) [8], decision tree (DT)
[9], and some variations of them. Generally, TML-based
framework consists of three steps: signal process and features
extraction, features selection or reduction, and fault classi-
fication [2, 4, 8]. Vibration signals are the most commonly
used for fault diagnosis, due to the strong nonlinearity and
nonstationarity. Time-frequency analysis method is widely
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applied for signal process and feature extraction, such as
empirical mode decomposition (EMD) [10–12], short-time
Fourier transform (STFT) [13–15], wavelet packet transform
(WPT) [16–19], and some variations of them. References
[20–25] and [26–28] applied the variations or improvement
of EMD, STFT, and WPT for fault signals processing and
feature extraction. ,e above-mentioned time-frequency
analysis method can effectively help to extract fault features,
but it often leads to a high dimensional feature set which
contains interference and redundancy features. ,us, feature
reduction and selection are a crucial step before the fault
patterns classification [3, 6, 10, 18]. In [3], the extreme
gradient promotion is used for the dimensional reduction and
sensitive features selection, which applies the importance of
features to refine a high quality feature subset. In [6], an ant
colony algorithm is applied to select features, and the selected
feature subset is combined with parameter optimized SVM
for enhancing the generalization of the fault diagnosis model.
In [10], indexes of the cohesion and class discriminative of
features are used for evaluating features, and through the
combination of these two indexes, a new index, ASR (the ratio
of the adjusted rand index and standard deviation), was
proposed to refine the original feature set. In [18], a sensitive
feature selection method and modified features dimension-
ality reduction method are combined to obtain a low-di-
mensional features subspace, which improves the diagnosis
accuracy. In TML-based framework, the traditional KNN,
SVM, and ANN are widely used for constructing fault
classification models by researchers. For example, references
[29–31], [6, 10, 18], and [7, 32, 33] applied the KNN, SVM,
and ANN for fault classification, respectively. Moreover,
many variations of KNN, SVM, and ANN have been studied
and applied for rotating machinery fault diagnosis. In [34], an
enhanced KNN (EKNN) was designed to get embedded in a
dimension-reduction stage; then, by using sparse filtering,
some fault-discriminative features can be extracted. In [35], in
order to determine the parameter K of KNN, an improved
binary particle swarm optimization was proposed to select
this parameter, which construct the IBPSO-KNN for bearing
fault diagnosis. In [36], due to the fact that it is difficult for the
traditional squares SVM to deal with complex imbalanced
data, an improved SVM, a moth-flame optimization-based
LS-SVM, was proposed for bearing fault diagnosis with
complex imbalanced data. In [37], SVM was optimized by
intercluster distance in the feature space, which was combined
with improved symplectic geometry mode decomposition to
design a novel fault diagnosis scheme for rotating machinery.
In [38], a perceptronmultilayer ANN (MLP-ANN) is used for
detecting the bearing faults. However, the main limitation of
TML-based framework relies heavily on expert knowledge
when the diagnosis models need to be customized for dif-
ferent operating states and machines [4, 39].

Deep learning algorithms have received more and more
attentions because they possess a powerful hidden features
automatic mining ability [4, 40]. ,erefore, DL-based
framework has been widely studied in the intelligent fault
diagnosis field. In references [13, 19, 39, 41], convolutional
neural network (CNN) [13], deep belief network (DBN) [19],
deep neural networks (DNN) [39], and deep autoencoders

(DAE) [41] are used for constructing fault diagnosis models,
respectively. However, some main limitations exist in most
DL-based frameworks [3, 4, 40, 42, 43]. (1) Most conven-
tional DL-based frameworks have insufficient generalization
ability towards the engineering practical scenes; the reason is
that an assumption of having the same distribution between
the training and testing sets was widely used. In practical
scenes, the real fault signals collected from machineries are
inconsistent under variable operating states, which brings
the distribution divergence of datasets. (2) ,ey rely heavily
on a mass of labeled data. When the labeled training data are
not enough, the overfitting phenomenon may easily appear,
which can lead to the reduction of diagnosis accuracy and
stability. Facing at the engineering practical scenes, the
sufficient labeled data are difficult to obtain due to the
changeable and complex working conditions of machineries.
,us, how to enhance the fault representative ability of deep
features and the stability of fault diagnosis models across
different working conditions is still a challenging task.

Aiming at the limitations of DL-based frameworks
mentioned above, a recent developed technique, domain
adaptation under TL-based framework, intends to promote
classifier learning by using labeled source domain data. At
present, TL-based framework has became a study hot topic
and employed for fault diagnosis of machinery
[2–4, 20, 39, 42]. In the fault diagnosis, one working condition
(a specific speed or load) can compose a domain. Source
domain is a labeled dataset under one working condition, and
the target domain is unlabeled data under another working
condition. ,e object of domain adaptation under TL-based
framework is that labeled source domain and unlabeled target
domain are used to learn a cross-domain diagnosis model
which can achieve desirable fault classification results of the
target domain [4, 42]. Considering that deep learningmethods
have powerful ability to mine hidden features from original
data, recently, deep TLmodels have been researched for cross-
domain fault diagnosis of rotating machinery by many re-
searchers. In [44], an enhanced DAE was designed by mod-
ifying the loss function, which improves the reconstruction
performance of a decoder. Sufficient labeled data from source
domain were employed for training the enhanced DAEmodel,
and the corresponding parameters were transferred to target
DAE model. In [45], a deep CNN with an attention mecha-
nism was adopted for feature extraction, and a domain
transformation algorithm was designed to match the distri-
butions between source and target domains. In [46], a novel
DAE model, deep transfer multiwavelet AEs, was designed for
gearbox fault diagnosis by using little training samples. In this
model, important features were learned by very few samples,
and parameters of source model are directly migrated to target
model. Although deep TL models have achieved many suc-
cessful applications on cross-domain fault diagnosis of ro-
tating machinery, how to enhance the fault representative
ability of deep features and the stability of fault diagnosis
models across different working conditions is still a chal-
lenging task [43]. For this issue, in this article, we propose a
new transferable fault diagnosis approach of rotating ma-
chinery based on DAE and dominant features selection under
different operating conditions (TFDD). In TFDD, the first step
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is vibration signals processing and statistical features extrac-
tion, maximal overlap discrete wavelet packet transform
(MODWPT) is used to decompose raw signals, and
MODWPT is a time-frequency analysis method based on
wavelet. Its advantages include two aspects: (1) it can overcome
the limitation of discrete wavelet transform (DWT); that is,
DWTrequires the sample size to be exactly a power of 2 for the
full transform because of the downsampling step; (2)
MODWPTcan overcome another problem that the DWT has
very poor frequency resolution at low frequencies. Consid-
ering the above advantages of MODWPT, in our previous
study [18, 19], MODWPT has been used for bearing fault
diagnosis and compared with WPT; the performance of
MODWPT is better than WPT. ,e second step is dominant
features selection; a new feature selection method, dominant
feature selection by importance score and domain differences
(DSID), is proposed to evaluate the fault-discriminative ability
and domain invariance of feature, which can help in en-
hancing the fault representative ability of deep hidden features
obtained by DAE. ,e third step is to construct deep transfer
autoencoder (DTAE) model. A DAE model (source model) is
trained by feature data from source domain and the learned
parameters transferred to the target model that has the same
architecture as source model. ,en, the normal state feature
data from target domain are applied for fine-tuning the target
model.,e last step is that the learned DTAEmodel is applied
to diagnose the unlabeled fault features from target domain
and output fault identification accuracies. ,e main contri-
butions of this article are organized as follows.

(1) A new dominant feature selectionmethodDSID: firstly,
based on the raw feature dataset, the sufficient labeled
feature data from source domain under all fault states is
used to evaluate the fault-discriminative ability of fea-
tures by random forest, and the importance score of
features can be obtained to quantify the fault-dis-
criminative ability. Secondly, the normal state feature
data from the source and target domains are used to
evaluate the domain invariance of features by com-
puting the maximum mean discrepancy. Finally, the
proposed new dominant features selection index, RIM,
is constructed.

(2) A DTAE model is learned by dominant features. For
enhancing the fault representative ability of deep fea-
tures and the stability of fault diagnosis models, we
apply the DSID to select dominant features with high
fault-discriminative ability and domain invariance to
train a DTAE model, which is expected to enhance the
fault representative ability of deep features.

(3) A series of experiments are performed by using amotor
and bearing faults datasets sampled from SQI-MFS test
platform. ,e experimental results prove the avail-
ability, flexibility, and advantages of the TFDD.

,e remaining contents of this article are organized as
follows. Section 2 discusses the introduction of preliminary
knowledge. Section 3 presents the proposed DSID and fault
diagnosis framework TFDD. Experimental verification is
given in Section 4. Section 5 concludes this paper.

2. Preliminaries

2.1. Deep Autoencoder (DAE). DAE is an unsupervised deep
neural network [44], which is constructed by stacking several
basic autoencoders (AE). Each AE has two steps: encoder
and decoder; the structure of AE is presented in Figure 1.
,ere are three layers: input layer x � x1, x2, . . . , xm ,
hidden layer h � h1, h2, . . . , hn , and output layer
z � z1, z2, . . . , zm .

In the step of encoder, the input data x is mapped into
the data of hidden layer h by the activation function φact(•);
the mapping process is shown as the following expression:

h � φact(W · x + b), (1)

where W and b are weight matrix and bias vector of encoder,
respectively.

In the step of decoder, the data of hidden layer h are
mapped into the output data z by the activation function
φact(•); the mapping process is presented as the following
expression:

z � φact W′ · h + b′ , (2)

where W′ and b′ are weight matrix and bias vector of de-
coder, respectively. ,e hidden layer is the new feature
representation and the output data are the reconstruction of
the input data. ,e parameters of an AEmodel are learned by
minimizing reconstruction error between the input and
output layers; the reconstruction error is expressed as follows:

JAE(θ) �
1
N



N

i�1

1
2

xi − zi

����
����
2
, (3)

where N is the number of samples and θ � W, b,W′, b′, .
,e hidden layer features of an AE are used as the

input of the next AE, which can stack multiple AEs to
construct a DAE. ,e structure of a DAE is presented in
Figure 2. DAE has the strong ability to mine deep features
of input feature data so that it can improve accuracy of
fault classification [41].

2.2. Random Forest (RF)- Based Feature Selection.
Random forest (RF), firstly proposed by Breiman [47], is
one of ensemble classifiers that obtained wide attentions
by researchers. RF can achieve desirable performance for
classification and regression tasks with high dimensional
and ill-posed feature dataset [48]. ,e mainly idea of RF is
to construct some unbiased decision trees (DT) by using
the randomly selected samples, where each tree votes for a
class and the forest chooses the classification having the
most votes over all the trees [47, 48].

Given a dataset S � (X,Y),X � xi  ∈ RD,Y � yi  ∈
1, 2, . . . , C{ }}

N
i�1, where xi is a feature sample with D di-

mension and yi represents the class label, C and N are
respectively the number of classes and training samples. RF
algorithm is usually described as follows [49].
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(1) ,e M (the number of decision trees) bootstrap
datasets are drawn from the training sample S by
using bagging [50].

(2) For each bootstrap datasets, a decision tree is con-
structed by employing the Classification and Re-
gression Tree (CART) algorithm [51]. At each node
of DT, a subspace including p features is sampled and
split points based on this subspace are computed.
,en, the best split, for example, by the maximum
Gini parameters impurity decrease, is applied to
segment the data and grow the tree. ,at is, all data
are pure with regard to the class.

(3) M DT are combined into a RF ensemble, and a
majority vote manner is used to make the classifi-
cation decision.

In RF algorithm, the performance and the diversity of
DT can affect the performance of RF. A generalization error
of RF is defined as

error �
ρ 1 − s

2
 

s
2 , (4)

where ρ and s2 represent the average correlation between
DT and the average strength of DT, respectively. In ad-
dition, one of the important properties of RF is that the
importance score (IS) of feature can be measured. For the
high dimensional feature data, IS can be used to select
relevant, compact, and discriminative features, which can
help to improve the performance of classification. ,e
Gini index (GI) is used to construct DTand determine the
class in each tree [47, 49]. ,e GI at node t, GI(t), is
applied to quantify the impurity of node t; the expression
is defined as follows:

GI(t) � 
I

i�1
fraci 1 − fraci( , (5)

where fraci represents the fraction of category and i records
at node t. Based on the GI, the GI information gain (GIG) of
feature xi, which is used to separate node t, is expressed as
follows:

GIG xi, t(  � GI(t) − WLGI t
L

  + WRGI t
R

  , (6)

where tL and tR are respectively the left and right child nodes
of node t and WL and WR are respectively the corresponding
fraction. Moreover, the IS of feature xi can be obtained by
calculating the following expression:

IS xi(  �
1

nDT


k∈Sxi

GIG xi, t( , (7)

where nDT represents the number of DT in RF and k ∈ Sxi

represents the set of split nodes. Finally, in the original high
dimensional feature set, according to the IS of each feature,
the features with high IS value can be selected to construct
feature subset, so that many features with small IS are
eliminated and improve the performance of classification.

2.3. Maximum Mean Discrepancy (MMD). Given two fea-
ture datasets DS � x1, x2, . . . , xnS

  (source domain) and
DT � y1, y2, . . . , ynT

  (target domain) drawn from two
different probability distributions, PS(DS)≠PT(DT), where
nS and nT are respectively the number of DS and DT. For the
purpose of estimating the distance between two distribu-
tions, MMD [52] was introduced by Gretton et al. for
measuring distance of distributions based on reproducing

x1

{W, b}

x2

x3

xm

z1

z3

zm

z2

h1

hn

h2

{W’, b’}

Encoder Decoder

Figure 1: ,e structure of an AE.
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kernel Hilbert space (RKHS). ,e empirical distance esti-
mate of distributions between DS and DT is defined as the
following expression [53]:

Dist DS, DT(  �
1
nS


xi ∈ DS

ϕ xi(  −
1

nT


xj ∈ DT

ϕ xj 

�����������

�����������

2

H

, (8)

where ‖•‖H represents the RKHS norm and ϕ is the kernel-
induced feature map. For the issue that the inconsistent feature
distribution exists in fault diagnosis across variable operating
conditions, based on the above-mentioned description, the
MMD can be applied to estimate the discrepancy of two dis-
tributions and align these two distributions.

3. Proposed Method and System Framework

3.1. Dominant Feature Selection by Importance Score and
Domain Differences (DSID). In order to reduce redundant
features in the high dimensional raw feature set (HRFS)
and select dominant features (fault-discriminative but
operating-condition-invariant (FDOCI) features), we
suppose that features should be evaluated from two as-
pects: fault-discriminative ability and domain invariance.
,erefore, a new feature selection approach, dominant
feature selection by importance score and domain dif-
ferences (DSID), is proposed in this article. In DSID,
firstly, the RF is employed to quantify the fault-dis-
criminative ability of each feature based on labeled source
domain data. Secondly, the MMD is used to evaluate the
domain invariance of each feature based on normal state
data of source and target domain data. Finally, a new
selection index, the ratio of IS and MMD (RIM), is
constructed to select dominant features for enhancing the
performance of fault diagnosis across different operating
conditions. ,e specific description of the DSID is
summarized as follows.

(a) Compute Importance Score of Features. Given a raw
feature set (RFS) [f1, f2, . . . , fp]T of source domain
that contains p feature samples, each sample has q
features; that is, fi � f1

i , f2
i , . . . f

q
i , i ∈ [1, p]. Let

IS(k) denote the importance score of the k-th feature,
according to the introduction of RF-based feature se-
lection in Section 2.2. IS (k) can be calculated by (5)–(7);
thus, the sequence IS � IS(1), IS(2), . . . , IS(q)  of q
features can be obtained. In this paper, we suppose that
the fault-discriminative ability of feature is greater when
the value of IS is larger.

(b) Evaluate the Domain Invariance of Features. MMD is
employed to estimate the distribution discrepancy of
the same feature in different domains, and the value
of MMD is used as the quantitative index of domain
invariance of feature. Let nfS and nfT denote
normal state feature data from source and target
domains, respectively. Both nfS and nfT consist of p
feature samples, and each sample has q features. ,e
expressions of nfS and nfT are presented as follows:

nfS �

nf
11
S nf

12
S · · · nf

1q

S

nf
21
S nf

22
S · · · nf

2q

S

⋮ ⋮ ⋱ ⋮

nf
p1
S nf

p2
S · · · nf

pq

S

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

nfT �

nf
11
T nf

12
T · · · nf

1q

T

nf
21
T nf

22
T · · · nf

2q

T

⋮ ⋮ ⋱ ⋮

nf
p1
T nf

p2
T · · · nf

pq

T

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(9)

where the j-th column elements of nfS and nfT

represent the p samples of the j-th feature from
source and target domains (j ∈ [1, 2, . . . , q]), re-
spectively. ,e expression of them is presented as

nf
j

S � nf
1n
S , nf

2n
S , · · · , nf

pj

S 
T
,

nf
j

T � nf
1n
T , nf

2n
T , · · · , nf

pj

T 
T
.

(10)

,e MMD between nf
j

S and nf
j

T can be computed
by (8). ,erefore, a MMD sequence of q features can
be further obtained, MMD � MMD(1),MMD{

(2), . . . ,MMD(q)}. In this article, we suppose that
the domain invariance of feature is greater when the
value of MMD is smaller.

(c) Construct the Selection Index RIM. Based on the IS
and MMD of features obtained in the previous two
steps, a new selection index, RIM, is constructed for
selecting dominant features from RFS. ,e RIM of
the j-th feature is defined as follows:

RIM(j) �
IS(j)

MMD(j)
. (11)

,us, for q features, the corresponding RIM values
construct a RIM sequence, RIM � RIM(1),{

RIM(2), . . . ,RIM(q)}. We suppose that the feature
with higher value of RIM is more beneficial to cross-
domain fault diagnosis, because the feature has great
fault-discriminative ability and domain invariance at
the same time. Finally, we can select the feature with
higher value of RIM from the sorted RIM sequence
that is sorted in descending mode to perform cross-
domain fault diagnosis model training.

3.2. Transferable Fault Diagnosis Framework Based on DSID
and DAE (TFDD)

3.2.1. De Mechanism of Deep Transfer AE Model. ,e
structure of the deep transfer AE (DTAE)model is presented
in Figure 3. In model, 1 input layer, 3 hidden layers, and 1
softmax layer are designed. ,e softmax layer is used to
classify deep feature representations. ,e construction steps
of a DTAE are shown in Figure 3 and stated as follows.,ere
are 4 steps:
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(1) Train a DAE model by using sufficient feature data
from SD; this is sourcemodel.,e parameters weight
matrix W(S) and bias vector b(S) can be obtained.

(2) Construct another DAEmodel (target model), which
has the same architecture as source model; that is, the
number of layers and modes are the same as source
model.

(3) Parameters transfer: the parameters weight matrix
W(S) and bias vector b(S) learned from the procedure
of source model training are transferred to target
model; that is, W(S) � W(T) and b(S) � b(T).

(4) Fine-tuning target model: the normal state feature
data from TD are employed to fine-tune the target
DAE model. Finally, the fine-tuned target model is
used to test remaining unlabeled target domain data.

3.2.2. Step Description of the Proposed Framework. In this
article, TFDD, a novel transferable fault diagnosis frame-
work based on DSID and DAE, is proposed for cross-do-
main fault diagnosis of rotating machinery. ,e framework

TFDD is given in Figure 4, and specific descriptions are
organized as the following four steps.

Step 1: Signal Process and Feature Extraction. ,e
original vibration signals sampled from rotating ma-
chinery by acceleration sensors under operating con-
ditions 1 and 2 are respectively the source and target
domains data. ,en, the signal process and statistical
features extraction are performed by using MODWPT
and calculating statistical parameters. ,e mixed do-
mains statistical characteristics are generated to con-
struct a raw feature set (RFS).
Step 2: Dominant Features Selection. Firstly, based on the
RFS obtained in Step 1, the sufficient labeled feature data
from source domain under all fault states are used to
evaluate the fault-discriminative ability of features by RF,
and the IS of features can be obtained to quantify the fault-
discriminative ability. Secondly, the normal state feature
data from two domains are used to evaluate the domain
invariance of features byMMD. Finally, the proposed new
dominant features selection index, RIM, is constructed.
,e features with high value of RIM can construct feature

{W1, b1}

{W1’, b1’}

Encoder

Decoder

{W2, b2}

{W2’, b2’}

Encoder

Decoder

{WN,bN}
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Layer

Hidden
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Input
Layer 

, ,

Figure 2: ,e structure of DAE.
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Figure 3: ,e mechanism of the DTAE model.
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subset that is beneficial to cross-domain fault diagnosis.
,us, the sorted RIM sequence in descending mode is
used for dominant features selection.
Step 3: Construct Deep Transfer Autoencoder Model.
Firstly, a DAE model (source model) is trained by
feature data from source domain and the parameters
weight matrix W(S) and bias vector b(S) are obtained.
Secondly, the parameters W(S) and b(S) are transferred
to target the model that has the same architecture as the
source model. ,irdly, the normal state feature data
from target domain is applied to fine-tune the target
model. Finally, the construction of DTAE model is
completed.
Step 4: Output the Fault Diagnosis Results. Based on the
learned DTAE model, the unlabeled feature data from
target domain are used to test the performance of
DTAE model and output diagnosis results.

4. Experimental Verification

In this article, motor and bearing fault datasets obtained from
the SQI-MFS test platform [10, 18, 20, 54] are employed for
experimental verification. ,e test platform is shown in Fig-
ure 5, and fault bearings and motors are presented in Figures 6
and 7. ,e vibration signals are sampled by acquisition cards
and acceleration sensors installed at the drive end and fan end of
the motor, and the sampling frequency is 16 kHz. Aiming at
proving the availability and flexibility of the proposed trans-
ferable fault diagnosis framework across variable operating
conditions, we collected faultymotor and bearing vibration data
under different operating speeds, the experimental verification
of two cases is carried out, and the detailed description is as
follows.

4.1. Case 1: Transfer Diagnosis of FaultMotors underDifferent
Operating Speeds

4.1.1. Introduction of Motor Dataset and Tasks. In this
section, motor vibration data under two speeds of 1730 rmp

and 1750 rmp are used for experimental verification. ,e
main parameters of motor are shown in Table 1. Four faulty
motors, including broken rotor bar fault (BF), winding fault
(WF), rotor bowed fault (RF), and single phase voltage
unbalance fault (SF), and a normal state motor (NM) are
used in experiments. ,us, there are 5 motor conditions that
correspond to 5 patterns. For each pattern, 30 and 60 vi-
bration data samples are respectively random selected as the
training and testing data. Each sample contains 5000 con-
tinues sampling points. More specific introduction of motor
dataset is presented in Table 2. Based on the vibration data
under speeds of 1730 rmp and 1750 rmp, we set up 2 cross-
domain fault diagnosis tasks, as shown in Table 3. According
to the details in Table 3, the vibration data under speeds of
1730 rmp and 1750 rmp are respectively chosen as the source
datasets of tasks 1 and 2. ,e vibration data under speeds of
1750 rmp and 1730 rmp are respectively used as the target
datasets of tasks 1 and 2. Source and target domains contain
150 and 300 samples, respectively.

4.1.2. Transfer Diagnosis Results of the Proposed TFDD
Framework. According to the steps of the proposed
framework TFDD, firstly, the raw vibration signals are
processed by MODWPT, and statistical features are gen-
erated by calculating statistical parameters of single branch
reconstruction signals of wavelet packet nodes. In this ar-
ticle, we apply the “dmey” as the mother wavelet in
MODWPT, and the layer of wavelet decomposition is set to
4. ,erefore, 16 terminal wavelet packet nodes (TWPN) are
generated and the corresponding reconstruction signals (RS)
are used for calculating 11 statistical parameters; thus, 176
time-domain statistical features are generated. Moreover,
,e Hilbert envelope spectra (HES) of 16 reconstruction
signals are also used for generating 176 frequency-domain
statistical features by 11 statistical parameters. ,ese 11
statistical parameters are range, mean value, standard de-
viation, kurtosis, energy, energy entropy, skewness, crest
factor, impulse factor, shape factor, and latitude factor,
respectively [10, 18, 20, 29, 54, 55]. ,erefore, 352 statistical
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Output the cross-domain
fault diagnosis results

Figure 4: ,e proposed transferable fault diagnosis framework for rotating machinery across different operating conditions.
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characteristics are generated from a vibration sample to
construct a raw feature set (RFS). ,e sampled vibration
signals of 5 motor conditions under rotating speeds of
1730 rmp and 1750 rmp are shown in Figure 8, and the RS of
TWPN that are obtained by decomposing normal state
vibration signals are shown in Figure 9. Moreover, 352
statistical features extracted from NM and BF vibration
signals under 1730 rmp and 1750 rmp are shown in Fig-
ure 10; these features have been normalized. From Figure 8,
it is obvious that the distribution discrepancy existed be-
tween vibration signals from different operating speeds.

Based on the RFS obtained from signal process and
features extraction, the proposed dominant feature selection
method DSID is performed to evaluate the fault-discrimi-
native ability and domain invariance of features, and the
selection index RIM of each feature can be calculated by the
equation (11). In this article, we suppose that the feature with
higher value of RIM is more beneficial to cross-domain fault
diagnosis. ,en, the RIM sequence that includes RIM of 352
statistical features is obtained, the RIM sequence is sorted in
descending mode, and the sorted RIM sequence is used to
select dominant features for constructing feature subset. ,e
IS, MMD, and RIM of 352 features are respectively shown in
Figures 11–13.

According the sorted RIM sequence, some dominant
features are chosen to construct feature subset. ,en, the

DTAE model training is performed; based on the source
domain, the selected dominant features are used for training
source DAE model, and the learned parameters W(S) and
b(S) are directly transferred to initialize the target DTAE
model that has the same architecture as source DAE model.
Next, the normal state feature data from target domain are
used for fine-tuning the target DTAE model. Finally, the
testing data (unlabeled feature data from target domain) are
inputted to the DTAEmodel, and the softmax layer of DTAE
model can achieve fault classification for testing data. In this
article, some parameters used in DTAEmodel training are as
follows: the number of hidden layers is 4 and the sizes of
hidden layers are respectively 400, 100, 50, and 50. ,e it-
eration is set to 200.

,e experimental results of the proposed TFDD
framework are respectively given in Figure 14 and Table 4.
From the details of Table 4, when dominant features number
is set as 352, that is, all 352 statistical features from source
domain are applied for training DATE model, the diagnosis
results of tasks 1 and 2 are only 69.00% and 66.67%, re-
spectively. However, when the proposed DSID is performed
before training DTAE model, it can significantly improve
diagnosis accuracy. ,e maximum average accuracy of tasks
1 and 2 can attain 81.67% (dfn:101) and 82.67%(dfn:140),
respectively. Figure 14 presents the diagnosis accuracies of
tasks 1 and 2 when the dfn is from 40 to 352. We can

Figure 5: SQI-MFS test platform.

Figure 6: SER205 fault bearings.

8 Shock and Vibration



conclude that the proposed TFDD framework using DSID
can enhance the performance of cross-domain diagnosis
when a suitable dfn is selected.

4.1.3. Comparisons with Other Models. In order to further
prove the advantages of TFDD framework on cross-do-
main fault diagnosis, we chose some common and com-
petitive methods for comparison. Based on these methods,
some comparative models are constructed, as shown in
Table 5. ,ese comparative models can be divided into two
categories. (1) ,e model is not combined with transfer
learning method; for example, the model RFS-KNN is a
common model that the RFS is directly inputted to the
KNN classifier. (2) ,e model is combined with transfer
learning method; for example, RFS-TCA is a transfer
learning-based model such that RFS is directly inputted to
the TCA and the SVM classifier is applied to classify the
fault features. For the RFS-DSID-TCAmodel, it is based on
the RFS-TCA model, and the proposed DSID method is
employed to select dominant features from RFS for the
subsequent transfer learning.

,e experimental results of comparative models are
given in Table 6, Figures 15 and 16. According to the
details in Table 6, the diagnosis accuracies of comparative
models are obviously smaller than the accuracies of
TFDD. ,e transfer learning-based models, RFS-TCA,
RFS-JDA, RFS-DSID-TCA, and RFS-DSID-TCA, can
achieve better diagnosis performance than other models.
When the DSID is embedded in transfer learning-based
model, the diagnosis performance can be further en-
hanced; the diagnosis accuracies of RFS-DSID-TCA and
RFS-DSID-JDA models for task 1 are 71.67% and 77.00%,
which are 5.67% and 4.67% higher than RFS-TCA and
RFS-JDA models, respectively. ,e diagnosis accuracies
of RFS-DSID-TCA and RFS-DSID-JDA models for task 2
are 77% and 78.00%, which are 7.33% and 8.00% higher
than RFS-TCA and RFS-JDA models, respectively.
However, the models using TCA and JDA do not out-
perform the proposed TFDD model, and the maximum
average accuracy of TFDD is higher than RFS-DSID-TCA
and RFS-DSID-JDA models. ,ese comparison results
can validate the advantages of the TFDD, which includes
two aspects:

(1) For the cross-domain diagnosis tasks 1 and 2, the
proposed TFDD model can effectively classify 5
motor conditions, and the maximum average ac-
curacy can attain over 80%. ,e proposed dominant
features selection method DSID can help in selecting
features that have high fault-discriminative and
domain invariance, which can significantly improve
cross-domain diagnosis performance.

(2) According to the comparison results, it reveals that
the diagnosis performance of TFDD is obviously
better than comparative models shown in Table 6.
Moreover, the diagnosis model combined transfer
learning strategy can help in enhancing diagnosis
accuracy across different domains.

4.2. Case 2: Transfer Diagnosis of Fault Bearings under
Different Operating Speeds

4.2.1. Introduction of Bearing Dataset and Tasks. In this
section, bearing vibration data under two speeds of
1200 rmp and 1600 rmp are used to further prove the
availability, flexibility, and advantages of the TFDD. ,ree
kinds of faulty bearings (inner race fault (IRF), outer race
fault (ORF), and ball fault (BF)) are manufactured by laser
machining, and three kinds of fault diameters (0.05mm,
0.1mm, and 0.2mm) are set for each fault type for exper-
iments. ,ese faulty bearings are given in Figure 6. In ad-
dition, a normal bearing is also used for experiments; thus,
there are 10 bearing states that correspond to 10 patterns.
For each pattern, 30 and 60 vibration data samples are
respectively random chosen as the training and testing
samples. Each sample contains 5000 sampling points. More
details of bearings dataset are presented in Table 7. Based on
the vibration data under speeds of 1200 rmp and 1600 rmp,
we set up 2 cross-domain fault diagnosis tasks, as shown in
Table 8.

4.2.2. Transfer Diagnosis Results of the Proposed TFDD
Framework. In this section, the process of experiment is the
similar to that of Section 4.1.2. ,e fault diagnosis results of
tasks 1 and 2 obtained by TFDD framework are shown in
Table 9 and Figure 17. From the experimental results, it is
obvious that the TFDD can effectively diagnose bearing
faults across different operating speeds, and the highest
diagnosis accuracies of tasks 1 and 2 can respectively reach
90.33% (dfn: 150) and 90.00% (dfn: 152), which are 8.83%
and 9% higher than the models without using DSID. From
Figure 17, when a suitable dfn is selected according to the
sorted RMI sequence, the performance of model can obtain
an obvious enhancement.,is further proves the availability
of the DSID.

4.2.3. Comparisons with Other Models. For the comparative
experiments, these are the same as Section 4.2.3. ,e models
used for comparison are shown in Table 5. ,e experimental
results are presented in Table 10, Figures 18 and 19. ,e
diagnosis results obtained by TFDD are significantly better
than other models, and the maximum accuracies of tasks 1
and 2 can respectively reach 90.33% and 90%. For task 1, the
diagnosis results of RFS-SVM, RFS-KNN, RFS-DAE, RFS-
DBN, RFS-CNN, RFS-TCA, RFS-JDA, RFS-DSID-TCA, and
RFS-DSID-JDA are 70.83%, 65.17%, 62.83%, 75.67%,
65.00%, 56.83%, 65.50%, 69.50%, and 85.67%, respectively.
For task 2, the diagnosis results of RFS-SVM, RFS-KNN,
RFS-DAE, RFS-DBN, RFS-CNN, RFS-TCA, RFS-JDA, RFS-
DSID-TCA, and RFS-DSID-JDA are 50.83%, 56.33%,
58.33%, 52.67%, 57.50%, 52.17%, 61.33%, 61.83%, and
83.50%, respectively. ,is further proves the advantages of
the TFDD. According to the diagnosis results given in
Figures 18 and 19, the transfer learning-based models can
obtain an improvement on diagnosis accuracy by combining
the DSID; thus, the availability of the DSID is also verified.
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Table 2: Details about the motor vibration dataset.

Motor
conditions

Sampling frequency
(kHz)

Rotating speeds Rotating speeds

Class label1730 rmp 1750 rmp
Size of training

samples
Size of testing

samples
Size of training

samples
Size of testing

samples
NM

16

30 60 30 60 1
BF 30 60 30 60 2
WF 30 60 30 60 3
RF 30 60 30 60 4
SF 30 60 30 60 5

Table 3: 2 cross-domain fault diagnosis tasks for 5 motor conditions.

Task 1 Task 2
Rotating speeds (rmp) Motor conditions Size of samples Rotating speeds (rmp) Motor conditions Size of samples

Source domain 1730 Classes 1–5 150 1750 Classes 1–5 150
Target domain 1750 Classes 1–5 300 1730 Classes 1–5 300

Figure 7: Motor fault data collection and fault motors.

Table 1: Main parameters of motor.

Name Value
Poles 1
Number of stator slots 34
Number of rotor slots 24
Stator bore 82.1mm
Rotor bore 80.5mm
Rated power 370W
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Figure 8: Raw signals of the 5 kinds of motor conditions. (a) Raw signal under normal state. (b) Raw signal under broken rotor bar fault.
(c) Raw signal under winding fault. (d) Raw signal under rotor bowed fault. (e) Raw signal under single phase voltage unbalance fault.
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Figure 9: Reconstruction signals for wavelet packet nodes obtained by decomposing normal state vibration signals. (a) ,e reconstruction
signals of NM signal under 1730 rmp by MODWPT. (b) ,e reconstruction signals of NM signal under 1750 rmp by MODWPT.
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Figure 10: 352 statistical features extracted from NM and BF vibration signals under 1730 rmp and 1750 rmp (the feature data are
normalized). (a) NM feature data under 1730 rmp. (b) NM feature data under 1750 rmp. (c) BF feature data under 1730 rmp. (d) BF feature
data under 1730 rmp.
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Figure 11: ,e maximum mean discrepancies of 352 features.
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Figure 12: ,e importance scores of 352 features.
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Figure 13: ,e dominant feature selection indexes of 352 features.
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Figure 14: ,e diagram of cross-domain fault diagnosis results of TFDD framework.

Table 4: Cross-domain fault diagnosis results of TFDD framework.

Dominant features number (dfn) Results of task 1 (%) Results of task 2 (%)
40 68.33 47.33
50 76.33 77.67
70 76.67 75.67
90 77.00 77.67
110 78.33 77.33
130 79.33 77.67
150 79.33 81.33
170 78.00 76.33
190 80.00 76.33
210 78.67 72.00
230 78.67 71.67
250 76.00 75.67
270 74.67 75.00
290 72.33 73.67
310 72.33 68.33
330 70.00 67.33
352 69.00 66.67
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Table 5: Comparative models based on common and competitive methods.

,e model is not combined with the transfer learning method ,e model is combined with the transfer learning method
RFS-SVM RFS-TCA
RFS-KNN RFS-JDA
RFS-DAE RFS-DSID-TCA
RFS-DBN RFS-DSID-JDA
RFS-CNN TFDD

Table 6: Cross-domain fault diagnosis results of comparative models.

Models Results of task 1 (%) Results of task 2 (%)
RFS-SVM 60.33% 72.33%
RFS-KNN 48.00% 51.00%
RFS-DAE 46.33% 63.33%
RFS-DBN 36.33% 64.67%
RFS-CNN 69.67% 64.33%
RFS-TCA 66.00% 69.67%
RFS-JDA 72.33% 70.00%
RFS-DSID-TCA 71.67% (dfn:46) 77.00% (dfn:52)
RFS-DSID-JDA 77.00% (dfn:181) 78.00% (dfn:122)
TFDD 81.67% (dfn:101) 82.67% (dfn:140)
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Figure 15: ,e diagram of cross-domain fault diagnosis results of transfer learning-based comparative models.
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Comparison of motor fault diagnosis results
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Figure 16: Comparison of fault diagnosis results of comparative models.

Table 7: Details about the bearing vibration dataset.

Bearing
conditions

Fault diameters
(mm)

Rotating speeds Rotating speeds

Class label1200 rmp 1600 rmp
Size of training

samples
Size of testing

samples
Size of training

samples
Size of testing

samples

IRF
0.05 30 60 30 60 1
0.1 30 60 30 60 2
0.2 30 60 30 60 3

ORF
0.05 30 60 30 60 4
0.1 30 60 30 60 5
0.2 30 60 30 60 6

BF
0.05 30 60 30 60 7
0.1 30 60 30 60 8
0.2 30 60 30 60 9

Normal 0 30 60 30 60 10

Table 8: 2 cross-domain fault diagnosis tasks for 10 bearing conditions.

Task 1 Task 2

Rotating speeds (rmp) Bearing
conditions Size of samples Rotating speeds (rmp) Bearing

conditions Size of samples

Source
domain 1200 Classes 1–10 150 1600 Classes 1–10 150

Target domain 1600 Classes 1–10 300 1200 Classes 1–10 300
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Table 9: Cross-domain fault diagnosis results of TFDD framework.

Dominant features’ number (dfn) Results of task 1 (%) Results of task 2 (%)
50 85.33 83.50
70 86.33 84.00
90 85.67 83.33
110 86.83 85.17
130 86.50 84.67
150 90.33 89.33
170 87.50 86.50
190 86.00 85.83
210 82.50 81.33
230 81.67 80.83
250 81.50 80.83
270 81.50 80.83
290 81.50 80.83
310 81.67 81.00
330 81.50 80.83
352 81.50 81.00
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Figure 17: ,e diagram of cross-domain fault diagnosis results of TFDD framework.

Table 10: Cross-domain fault diagnosis results of comparative models.

Models Results of task 1 (%) Results of task 2 (%)
RFS-SVM 70.83 50.83
RFS-KNN 65.17 56.33
RFS-DAE 62.83 58.33
RFS-DBN 75.67 52.67
RFS-CNN 65.00 57.50
RFS-TCA 56.83 52.17
RFS-JDA 65.50 61.33
RFS-DSID-TCA 69.50% (nkf:142) 61.83% (nkf:231)
RFS-DSID-JDA 85.67% (nkf:175) 83.50% (nkf:271)
TFDD 90.33% (nkf:150) 90.00% (nkf:152)
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5. Conclusions

A new transferable fault diagnosis approach of rotating
machinery based on deep autoencoder and dominant fea-
tures selection, TFDD, is proposed. Firstly, the signal process
and features extraction are performed. ,en, based on the
sufficient labeled source feature data and normal state target
feature data, the proposed DSID is performed to evaluate the

features, the new selection index, RIM, is used to selected
dominant features for training DTAE model. Next, by using
labeled feature subset of source domain, a source DAE
model can be learned and the corresponding parameters are
transferred to the target DTAE model. Finally, this DTAE
model classifies the unlabeled data from target domain.

A series of experiments are carried out by using motor
and bearing fault datasets sampled from SQI-MFS test
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Figure 18: ,e diagram of cross-domain fault diagnosis results of transfer learning-based comparative models.
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Figure 19: Comparison of fault diagnosis results of comparative models.
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platform. ,e experimental results prove the availability,
flexibility, and advantages of the TFDD.,e details are as the
following aspects: (1) the proposed TFDD model can ef-
fectively diagnose faulty motors and bearings across dif-
ferent operating speeds, and the diagnosis performance
significantly outperforms comparative models. (2) ,e
proposed DSID can help to select features that have high
fault-discriminative and domain invariance, when a suitable
dfn is chosen, which can significantly improve cross-domain
diagnosis performance.
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