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Metamodel-based seismic fragility analysis methods can overcome the challenge of high computational costs of problems
considering the uncertainties of earthquakes and structural parameters; however, the accuracy of metamodels is difficult to
control. To enhance the efficiency of analyses without compromising accuracy, a metamodeling method using Gaussian process
regression (GPR) and active learning (AL) for seismic fragility analysis is proposed. In this method, a GPR metamodel is built to
estimate the stochastic seismic response of a structure, in which the record-to-record variability is considered as in the dual-
metamodel-based fragility analysis approach. ,e metamodel can also predict the estimation error. Taking advantage of this
ability, we present an AL strategy for adaptive sampling, so that the metamodel can be improved adaptively according to the
problem. Using this metamodel and Monte Carlo simulation, seismic fragility curves can be obtained with a small number of calls
for time history analysis. To verify its effectiveness, the proposed method was applied to three examples of nonlinear structures
and compared with existing methods. ,e results show that this method has high computational efficiency and can ensure the
accuracy of fragility curves without making the metamodel globally accurate.

1. Introduction

Structural seismic fragility analysis is an important part of the
performance-based earthquake engineering framework [1].
From the analysis, the fragility function of a structure can be
obtained in the form of fragility curves that describe the
conditional probability that the engineering demand pa-
rameter (EDP) exceeds a certain limit state for a given in-
tensity measure (IM). ,e EDP is usually a structural
response, such as the maximum displacement or maximum
interstorey angle [2]. Seismic fragility analysis can be used to
assist designers in improving the seismic performance of
structures according to their degree of damage and provide a
basis for postearthquake loss assessment. Fragility curves can
be obtained by experience, expert judgment, or analytical
methods [3].,e former two approaches tend to be limited by
the lack of seismic damage data; therefore, analytical methods
are more widely used in engineering. In analytical methods, a
number of time history analyses need to be performed to
consider the uncertainties of seismic ground motions [1].

Besides the uncertainties of earthquake ground motions,
the uncertainties of structural parameters also have a sig-
nificant impact on the structural response [4]; therefore, they
need to be considered in the fragility analysis as well. Such
problems can be addressed by Monte Carlo simulation
(MCS) methods combined with incremental dynamic
analysis [2, 5–7]. However, numerous nonlinear time history
analyses are required in these methods, which results in high
computation costs for large complex structures. To reduce
the calculation cost of MCS, metamodel (also called sur-
rogate model) approaches are introduced into the fragility
analysis. ,ese approaches use approximate functions with
low computational cost to estimate the results of finite el-
ement analysis, thereby greatly improving the calculation
efficiency.,emetamodel is built based on a training sample
set T� (X, y)� {(x(i), y(i))|i� 1, 2, . . ., m }, where x(i) is an n-
dimensional input vector,X� [x(1), x(2), . . ., x(m)] is the input
matrix, and the corresponding output vector is y� [y(1), y(2),
. . ., y(m)]. Commonly used metamodels include the response
surface methodology [8], radial basis function [9], artificial
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neural network [10], and support vector machine [11]. In
recent years, many investigations have been conducted on
the application of metamodels in fragility analysis. Towa-
shiraporn [12] proposed a dual-metamodel-based seismic
fragility analysis (D-M-SFA) method, in which two meta-
models were employed to fit the mean and standard devi-
ation of random responses, respectively, and the damage
probabilities for a given IM level were calculated by Monte
Carlo sampling. De Grandis et al. [13] proposed an improved
D-M-SFA method for nuclear power plants by integrating
the first-order reliability approach into metamodeling. With
the general damage selected as the EDP, Park and Towa-
shiraporn [14] analyzed the seismic vulnerability of track-on
steel-plate-girder bridges using the D-M-SFA method. Saha
et al. [15] applied D-M-SFA to base-isolated liquid storage
tanks and studied the influence of uncertainties in isolator
parameters on the seismic response of liquid storage tanks in
which the peak ground acceleration (PGA) is taken as the
IM. Ghosh et al. [16] improved the D-M-SFA approach with
the moving least squares method and applied it to reinforced
concrete bridge piers. Zhang and Wu [17] used the Kriging
model for metamodeling in D-M-SFA and applied the
improved fragility analysis method to reinforced concrete
bridges. Xiao et al. [18] proposed an improved D-M-SFA
approach for base-isolated structures that considered the
correlation of the seismic demands of components. Ghosh
et al. proposed a metamodeling method based on support
vector regression [19] and a Kriging-based metamodeling
method [20] for seismic fragility analysis, both of which fit
the structural responses for different earthquake records.

In most existing metamodel-based seismic fragility
methods, training samples are generated by one-shot
sampling, which makes it difficult to control the accuracy of
the metamodel. In fact, for structures with different com-
plexities, the number of training points required for met-
amodeling is different, and it is difficult to predetermine
these [21]. Excessive sampling will lead to unnecessary
calculation costs, whereas too small a sample size may result
in poor accuracy of the model, which tends to cause
problems for engineering designers. To achieve high global
accuracy of the metamodel, these methods evenly distribute
the training points in the sampling space; however, little
attention is paid to the locations that have a key impact on
the accuracy of the probability results.

Active learning (AL) sampling is an ideal tool for
adaptively improving the accuracy of metamodels according
to the complexity of the structure, and it has been widely
used in the field of structural reliability analysis [22–25].
Generally, the AL-based reliability analysis (AL-RA)
methods first establish the initial metamodel with a small
number of training samples and select new training points
from the candidate sample set according to the learning
function values of candidate points to update the meta-
model. ,e result of this type of method is very close to that
of MCS, but the calculation burden is much less than the
latter, endowing it with a great advantage in reliability
problems. In recent years, a variety of efficient AL sampling
strategies have been proposed. However, they cannot be
directly used in metamodel-based seismic fragility analysis

because there are some differences between the AL-RA
problems and seismic fragility analysis problems. In the
former case, whether the structure fails is judged according
to the approximate value of the performance function, and
the uncertainties can be described by several random var-
iables or interval variables. Nevertheless, in the fragility
analysis problem, multiple damage levels rather than only
two states of safety and failure need to be considered, and the
metamodel is used to estimate the structural responses but
not the performance function values. Moreover, the record-
to-record variability caused by the uncertainties of the
frequency content and other attributes of ground motions
[3] is difficult to express using only several variables. To the
best of the authors’ knowledge, there are few studies on the
application of AL in seismic vulnerability analysis consid-
ering multiple thresholds of damage levels.

To enhance the efficiency and ensure the accuracy of
seismic fragility analysis, in this study, the D-M-SFA ap-
proach is improved with a metamodeling method using
Gaussian process regression (GPR) and AL. In this method,
a GPR model is employed to predict the seismic response of
the structure. Based on the characteristics of GPR that can
reveal the error of prediction, an AL strategy is presented to
realize the adaptive sampling of metamodels for a given
problem. With the real response values obtained by non-
linear time history analysis replaced by the predicted values
in MCS, the approximate failure probability at different IM
levels can be calculated. In this study, the procedure of the
D-M-SFA method and the basic theory of GPR are first
reviewed. Second, the details of the proposed method are
presented. Finally, the proposed method is applied to three
examples of nonlinear structures—a single degree of free-
dom (SDOF) system, a concrete frame, and a steel frame-
—and the fragility curves are compared with those of the
MCS and D-M-SFA methods. ,e nonlinear time history
analysis was performed using OpenSeesPy (the Python
version of OpenSees).

2. Dual-Metamodel-Based Seismic Fragility
Analysis Method

,e D-M-SFA is an efficient seismic fragility analysis
method that has been used on a variety of engineering
structures. In this method, the response of a structure under
seismic loading is assumed to follow a certain distribution
[14]. In other words, when the structural parameters and IM
level are fixed, the seismic response D is still a random
variable, and its statistical characteristics can be completely
determined by the mean and variation [13]. Based on this
assumption, the record-to-record variability can be im-
plicitly incorporated in a suite of seismic waves, thus
avoiding the use of high-dimensional earthquake time
history as the input of the metamodel [16]. In many studies,
the seismic response is considered to be lognormally dis-
tributed [26–30], and in this study, that assumption is also
made. In D-M-SFA, the input variables of the metamodel
include the structural parameter s and IM variable im. First,
a set of training points are selected in the input variable space
using the experimental design method. At each training
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point, a time history analysis is performed for all the selected
seismic records, and the mean μlnD and standard deviation
σ lnD of the logarithms of the response results can be ob-
tained. ,en, the metamodels of μlnD and σlnD can be built.
,e approximations yμlnD

(s, im) and yσlnD
(s, im) of themean

and standard deviation can be obtained from these meta-
models. ,e stochastic seismic response [18] can be esti-
mated from

ln D � yμlnD
(s, im) + N 0, y

2
σlnD

(s, im) , (1)

where N(0, y2
σlnD

(s, im)) represents a normally distributed
variable with a mean of 0 and a standard deviation of
yσlnD

(s, im). Generally, multiple damage levels need to be
considered in fragility analysis, and their corresponding
limit states can be expressed as D� z1, D� z2, . . ., D� zQ,
where Q represents the number of damage levels, and zl
(l� 1, . . ., Q) represents the threshold corresponding to the
l-th limit state LSl. With the damage state evaluated
according to D, the probability of the seismic response
exceeding zl can be calculated using Monte Carlo sampling.

Compared with MCS, the computational burden of
D-M-SFA is significantly reduced. However, the training set
is usually obtained by one-shot sampling, and the number of
points is difficult to determine. In addition, to pursue the
global accuracy of the metamodel, error indicators such as
the coefficient of determination R2 and root mean square
error are employed for model testing. In fact, for the
evaluation of the structural damage level, it is not necessary
to make the metamodel highly accurate at any position.
Additional computation on the time history analysis will
also be needed in the accuracy verification based on test
points. To overcome these problems, in this study D-M-SFA
is improved by introducing the AL technique into the
metamodeling.

3. Gaussian Process Regression

,e Gaussian process is a supervised machine learning
method based on a Gaussian random process and Bayesian
theory. GPR is a regression method that uses the Gaussian
process model to fit the data. GPR can not only provide the
approximation but also predict the error of the approxi-
mation, which is conducive to the realization of AL sampling
[31]. ,erefore, GPR was adopted to establish the meta-
model in this study.

,e GPR regards the target function F(x) as a random
process whose statistical characteristics are completely de-
termined by the mean function M(x) and covariance
function k(x, x’) [32]. To simplify the calculation, M(x) is
usually set to 0. For the n-dimensional input vector x, the
output value y is assumed to be

y(x) � F(x) + εN, (2)

where εN denotes the noise, which follows a normal dis-
tribution with a mean value of 0 and a standard deviation of
σN.

,e model is built based on the training sample set
T� (X, y)� {(x(i), y(i))|i� 1, 2, . . ., m }. For a given point x∗,

the joint prior distribution of y and the function value F(x∗)
is

y

F x∗( 
  ∼ N 0,

K(X,X) + σ2NIm K X, x∗( 

K x∗,X(  k x∗, x∗( 
⎡⎣ ⎤⎦⎛⎝ ⎞⎠, (3)

where K(X, X)� [kij]m×m is the covariance matrix, kij � k(x(i),
x(j)) is the covariance between x(i) and x(j),
K(X, x∗) � K(x∗, X)T is the m× 1 covariance matrix be-
tween x∗ and X, and Im is the m-dimensional identity
matrix. ,e prediction F(x∗) and predicted variance σ2F(x∗)
of x∗ are expressed as

F x∗(  � K x∗,X(  K(X,X) + σ2NIm 
− 1
y,

σ2F x∗(  � k x∗, x∗(  − K x∗,X(  K(X,X) + σ2NIm 
− 1

K X, x∗( .

(4)

,e distribution of F(x∗) is as follows:

F x∗(  ∼ N F x∗( , σ2F x∗(  . (5)

,e covariance function k(x, x’) is usually of the square
exponential type and is expressed as

k x, x′(  � σ2f exp −
1
2
x − x′( 

TL− 2 x − x′(  , (6)

where L� diag(l) and l � (l1, l2, . . ., ln). θ � (l, σf, σN) is a
hyperparameter, and its optimal value can be obtained by
minimizing the negative log-likelihood function of the
conditional probability expressed as

L(θ) � −ln p(y|X, θ) �
1
2
y

T
K(X,X) + σ2NIm 

− 1
y

+
1
2
ln|K(X,X) + σ2NIm| +

n

2
ln 2 π.

(7)

,e “L-BFGS-B” algorithm provided by the SciPy library
is used here to solve this optimization problem.

4. Proposed Metamodeling Method Using GPR
and AL

4.1. Metamodel of Seismic Response. In the proposed
method, the assumption of seismic response in the D-M-
SFA method to handle the record-to-record variability is
still adopted. To facilitate the prediction of the error of
the approximation, only one GPR metamodel is
employed to estimate the seismic response, which avoids
establishing metamodels of mean and standard deviation,
respectively, as in the D-M-SFA method. Because the
seismic response follows a lognormal distribution, with
reference to (1), the logarithm of the stochastic response
can be expressed as

lnD � μlnD + N 0, σ2lnD . (8)

,e normally distributed variable N(0, σ2lnD) can be
transformed into u · σlnD, where u is a standard normally
distributed variable. ,en, (8) is converted into
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D � exp μlnD + u · σ lnD( . (9)

Given the structural parameters s and IM variable im, the
statistical characteristic of D obtained by (9) is the same as
that obtained in equation (8).

,e input variable vector x of the metamodel is com-
posed of s, u, and im, that is, x� [s, u, im]. By selecting
sample points in x space and calculating their responses, the
training set can be obtained, based on which the GPR model
of seismic response is built. ,is metamodel can predict the
approximation yD(x) and estimation error σD(x) in the
structural response. By randomly generating the value of u,
the approximation of the seismic response with randomness
can be obtained, as in the D-M-SFAmethod. Compared with
the D-M-SFA method, the number of metamodels of the
developed method is reduced to one, and a variable u related
to the randomness of the seismic response is added to the
input variables. ,e differences between the metamodels in
the two methods are shown in Figure 1.

Based on the surrogate model of seismic response,
Monte Carlo sampling can be used to calculate the proba-
bility that the structure reaches a certain damage level. By
combining the given IM value im with N points randomly
generated according to the distribution parameters of the
random variables s and u, the MCS samples
XMC � [xMC

1 , xMC
2 , . . . , xMC

N ] are obtained. ,en, the prob-
ability of an EDP exceeding LSl is calculated as

P EDP≥ LSl|IM � im  �


N
j�1 I zl − yD xMC

j  

N
, (10)

where I(·) is an indicator function for counting the number
of sample points where the structural response exceeds the
threshold. ,e value of I(·) is 0 if the value in brackets is
greater than 0; otherwise, it is 1. ,e fragility curve can be
plotted by calculating the damage probabilities for different
IM levels.

4.2. Initial Training Set. In this study, Latin hypercube
sampling (LHS) [6, 33] is employed to sample the initial
training points within the range of input variables. LHS has
the advantage that the number of sample points can be
arbitrarily specified and excessive aggregation of sample
points can be avoided. If x contains n variables and ns sample
points are to be selected in the sampling space, the basic steps
of LHS are as follows: (1) divide the sampling ranges of
variables into ns cells; (2) select a number randomly within
each cell to generate n groups of numbers; and (3) pair these
n groups of numbers randomly to obtain ns sample points.
Because the responses for MCS samples are predicted by the
metamodel, the sampling range of the training points should
be a region into which most MCS samples fall. ,e upper
and lower limits of the i-th random variable xi in x can be
taken as F−1

i [Φ(±4)], where F−1
i (·) is the inverse function of

the probability distribution function of xi. ,e range of im is
the variation range of the IM concerned in the fragility
analysis. As the training set is updated by AL sampling, only
a small number of initial points are required. For example,
the number of initial samples can be equal to the dimensions
of the metamodel input vector [31].

Training set Dynamic
analysis Metamodeling

Seismic records

im

μln D

σln D

s yμln D (s,im),ˆ

yσln D (s,im)ˆ

D = exp[yμln D (s,im) + N (0,y2
σln D (s,im))]ˆ ˆ ˆ

(a)

Dynamic
analysis Metamodeling

Seismic records

Training set

im

μln D

σln D

s
D = exp (μln D + u·σln D)

ŷD (x)

u

D

(b)

Figure 1: Schematic of metamodeling. (a) D-M-SFA. (b) Proposed method.

4 Shock and Vibration



4.3. AL Sampling Strategy. Owing to the plastic deformation
of structures under seismic loading, the relationship between
the output response and the input variables is a complex
function, and it is difficult to establish a metamodel with
sufficient accuracy by only using the initial training set.
,erefore, an AL sampling strategy is presented to adaptively
enrich the training sample set according to the complexity of
the structure.

First, a candidate sample set Xc � [xc
1, x

c
2, . . . , xc

R] is
generated without calculating the corresponding responses.
,en, according to the learning function values of candidate
points, the point xnew that is most favorable for improving
the accuracy of the metamodel is selected and its response
y(xnew) is calculated. ,e GPR model gets updated once by
adding xnew to the training set. ,e accuracy of the meta-
model is gradually improved by sequentially selecting new
training points from the candidate set. It can be seen from

(10) that the accuracy of the probability results depends on
the accuracy of yD in the vicinities of the thresholds, while
the accuracy at a position far from the limit states does not
affect the judgment of the sign of zl − yD. ,erefore, the
accuracy of the metamodel near the limit states is more
critical, and the learning function should be able to evaluate
the contribution of candidate points to improve the
accuracy.

Various learning functions have been proposed by re-
searchers [34–36]. ,e expected feasibility (EF) learning
function is commonly used, and it can provide a balance
between the search in the vicinity of the limit state and
exploration in the area where the uncertainty is high [24].
,is function is used to select the new training points in this
study. ,e EF value at a point is obtained based on the
prediction response and the predicted error provided by the
metamodel. ,e EF function [37, 38] is defined as

EF x|zl(  � yD(x) − zl(  2Φ
zl − yD(x)

σD(x)
  −Φ

zl − ξ − yD(x)

σD(x)
  −Φ

zl + ξ − yD(x)

σD(x)
  −

σD(x) 2ϕ
zl − yD(x)

σD(x)
  − ϕ

zl − ξ − yD(x)

σD(x)
  − ϕ

zl + ξ − yD(x)

σD(x)
  +

ξ Φ
zl + ξ − yD(x)

σD(x)
  −Φ

zl − ξ − yD(x)

σD(x)
  ,

(11)

where ξ is taken as 2σD(x). ,e EF value at a point indicates
how well the true function value at this point is expected to
satisfy the equality constraint D � zl [39, 40]. A point with a
prediction close to zl and a large predicted error will have a
large EF value [41]. In AL-RA problems, the safety state is
evaluated according to whether the approximate value G of
the performance function is greater than the threshold z, and
z is generally 0 [24]. However, for vulnerability analysis
problems, it is necessary to consider the accuracy of yD(x) in
the vicinities of multiple thresholds z1, z2, . . ., zQ. ,erefore,
the maximum EF (MEF) value at a certain point for all limit
states is taken as the learning function value of this point,
which is expressed as

MEF(x) � maxQ
l�1 EF x|zl( ( . (12)

,en, xnew is selected as the point with the greatest MEF
value in the candidate set, which is described as

xnew � argmax
x∈Xc

(MEF(x)) � argmax
x∈Xc

maxQ
l�1 EF x|zl( (  .

(13)

,e new training point may affect the accuracy of yD(x)

in the vicinities of all thresholds, but this point mainly
improves the accuracy of the model for a certain limit state.
After updating the metamodel with the new sample, the
next new training point can be searched in the same
manner. During the sampling process, the new points will
switch in the areas close to these limit states with the change

in model precision, so that the accuracy of yD(x) in the
vicinities of all thresholds will be improved together. When
MEF(xnew) is less than a specified tolerance ζ (e.g., a value
of about 1/20∼1/50 of the standard deviation of the
function values at the initial training samples), the meta-
model is considered to have sufficient accuracy and the
sampling can be stopped.

,e candidate sample points in the proposed method are
also generated using the LHS method, but they are not
uniformly selected in the space of variables. MCS random
points are very sparse at the locations where the joint
probability density of random variables is very small. At such
locations, the precision of the metamodel is not important;
consequently, there is no need to scatter many candidate
points. ,e candidate sample set is generated as follows: a
group of points H� [hi]R � [hij]R×n are uniformly selected in
the space of (0, 1)n by LHS; then, the candidate set Xc is
obtained by the transformation [6] as

Xc
� xc

i R � F
−1
i hij  

R×n
. (14)

In this transformation, im can be regarded as a variable
that follows a uniform distribution.

4.4.Main Steps of Seismic FragilityAnalysis. In summary, the
flowchart of the developed fragility analysis procedure based
on adaptive metamodel is shown in Figure 2, and the basic
steps are as follows:
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(1) Construct a finite element model of the structure and
select seismic wave records.

(2) Choose ns (e.g., the dimension of the input vector)
initial training points from the space of x � [s, u, im]
using the LHS method and perform a time history
analysis for all earthquake records at each training
point to calculate the seismic responses according
to equation (9) to obtain the initial training sample
set.

(3) According to equation (14), generate a candidate
sample set containing R points (R� 2,000 in this
study) using LHS.

(4) Build the GPR metamodel of the seismic response
based on the training sample set.

(5) Find the point xnew with the maximum MEF value
from the candidate set according to equation (13). If
MEF(xnew) is less than a specified tolerance ζ (e.g., a
value of approximately 1/20∼1/50 of the standard
deviation of the function values at the initial training
samples), proceed to step (6), otherwise, add the new

point xnew with its seismic response to the training
set, and return to step (4).

(6) According to equation (10), calculate the damage
probabilities of the structure on different IM levels
using MCS based on the metamodel and plot the
fragility curves by fitting the probability results.

5. Numerical Study

In this section, three examples of nonlinear structures—a
nonlinear SDOF system, a five-storey concrete frame, and a
four-storey steel frame—are analyzed, and the results are
compared with those of the D-M-SFA and MCS [17]
methods to verify the effectiveness and efficiency of the
proposed method. In the examples, it is assumed that the
seismic fortification intensity is 8, and the site classification
is II. ,e structural damping ratio was set at 0.05. Referring
to the requirements for seismic records in time history
analysis and the design response spectrum provided in the
current Chinese code for seismic design of buildings
(GB50011-2010) [42], a suite of records were derived from
the ground motion database of the Pacific Earthquake
Engineering Research Center. According to Ref. [27], at least
10 seismic records are required to evaluate the seismic
performance of structures. ,erefore, 12 seismic waves
(listed in Table 1) were selected for the time history analysis.
,e response spectra of the ground motions and the design
spectrum are shown in Figure 3. In the fragility analysis,
PGA is taken as the IM, and the IM level varies from 0 to
1.0 g. As the maximum interstorey angle is widely accepted
as a practical response parameter to evaluate the structural
damage [43] and has been used in many design guidelines
(e.g., GB50011-2010), it was selected as the EDP for the
frames in this study.

,e calculation code was programmed in Python, and
the finite element model of the structures was constructed
using OpenSeesPy. Because the computational time is
mainly spent on the nonlinear time history analysis, the
number of calls to the finite element analysis, Nc, is used to
evaluate the computational efficiency. Nc is equal to the
number of training points. In a finite element analysis, a time
history analysis was performed for all selected earthquake
records.

5.1. Example 1: a Nonlinear SDOF System. Figure 4(a) shows
a nonlinear SDOF system [12, 17] composed of a lumped
massM and a spring with elastic stiffness k and yield force Fy.
,e force-deformation behavior of the spring was simulated
using a bilinear model (Figure 4(b)) in which the ratio of the
postyield to the initial stiffness α is 0.05.

,e maximum displacement of the structure, dm, was
selected as the EDP. Two damage levels were taken into
account, and their dm thresholds were set as z1 � 0.02m and
z2 � 0.08m, respectively.,e structural parameters k,M, and
Fy were considered as random variables. ,e distribution
information of the variables is presented in Table 2.

,e training set used to build the initial GPR model was
obtained using LHS, as listed in Table 3. ,ere were 2,000

Construct the finite element model
and select the seismic records

Generate the initial training set

Generate the candidate set using LHS

Build the metamodel of the seismic
response

Find the point xnew with the
maximum MEF value from the

candidate set

MEF (xnew) < ζ

Add xnew to the
training set

No

Calculate the damage probabilities
using MCS and plot the fragility

curves

Yes

Figure 2: Flowchart of seismic fragility analysis.
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Table 1: Earthquake records.

No. Earthquake name Year Station name Rupture distance (km) Magnitude
1 Chi-Chi, Taiwan-06 1999 TCU120 32.46 6.3
2 Darfield, New Zealand 2010 RKAC 16.47 7
3 Loma Prieta 1989 Salinas—John & Work 32.78 6.93
4 San Simeon, CA 2003 San Luis Obispo—Lopez Lake Grounds 48.11 6.52
5 San Fernando 1971 Whittier Narrows Dam 39.45 6.61
6 Iwate, Japan 2008 Omagari Hanazono-cho,_ Daisen 47.93 6.9
7 Northridge-01 1994 El Monte—Fairview Ave 44.79 6.69
8 Northridge-01 1994 LA—Pico & Sentous 31.33 6.69
9 Northridge-01 1994 LA—W 15th st 29.74 6.69
10 Parkfield 1966 Cholame—Shandon Array #12 17.64 6.19
11 Landers 1992 Barstow 34.86 7.28
12 Tabas, Iran 1978 Boshrouyeh 28.79 7.35
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Figure 3: Acceleration spectra of the earthquake records.
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Figure 4: Nonlinear SDOF system. (a) Schematic. (b) Force-deformation behavior of the spring.

Table 2: Random variables in Example 1.

Variable Distribution type Mean Standard deviation
k (N·m-1) Normal 2×107 2×106

M (kg) Normal 1.5×105 1.5×104

fy (N) Normal 2×106 2×105

u Normal 0 1
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points in the candidate set, and their distribution in k–M–Fy
space is shown in Figure 5. ,e ζ value in the termination
condition was taken as 0.003, which is about 1/50 of the
standard deviation of the function values at the initial

training points. During AL sampling, 29 training points were
added to the training set, and the changes in yD(xnew) and
MEF(xnew) in the sampling process are shown in Figure 6. It
can be seen that, with an increase in the number of training
points, the value of MEF(xnew) decreases gradually with
fluctuation. When the value of MEF(xnew) is reduced to ζ,
the sampling stops.,e response values and predicted values
of the newly added sample points were mostly near the
thresholds z1 and z2.

Once the metamodel was established, the approximate
damage probabilities at different IM levels were calculated by
Monte Carlo sampling, and the fragility curves are plotted in
Figure 7. In addition, the D-M-SFA and MCS methods were
used to draw fragility curves for comparison. In the D-M-
SFA method, the metamodels were built using GPR, and the
training points were generated by one-shot sampling, in
which the number of samples was set to be the same as that
of the proposed method. In the MCSmethod, the simulation
points were sampled using LHS [17], and a finite element
analysis was performed for each simulation sample.
According to Ref. [2], 200 samples that are selected using
LHS are sufficient to ensure that the accuracy of MCS results
meets the needs of fragility analysis. ,erefore, 2,000
samples were generated for the MCS. ,e damage proba-
bilities for PGAs of 0.0184, 0.1, 0.2, . . ., 1.0 g were calculated,
and the fragility curves were obtained by fitting these results.
Because MCS is generally regarded as a very accurate reli-
ability method, it was used to test the accuracy of other
methods.

,e fragility curves obtained using the different methods
are shown in Figure 7. In addition, the Nc values of the
proposed method, D-M-SFA, and MCS were 38, 38, and
22,000, respectively. It can be seen that the fragility curves
obtained using the proposed method are very close to those
of MCS, while the calculation cost of the former is only
0.17% of that of the latter. For damage level 1, the deviation
in the D-M-SFA results is obvious. Although the compu-
tational efficiency of D-M-SFA is also high, its fragility
analysis result is not as accurate as that of the proposed
method.

5.2. Example 2: A Reinforced Concrete Frame. A five-storey
reinforced concrete frame with a storey height of 3.2m is
considered, and its configuration and section information
are shown in Figure 8. ,e uniformly distributed load q was
set to 33.75 kN·m−1. ,e cross section of the member
consists of steel reinforcement, cover concrete, and core
concrete.,e thickness of the cover concrete was 0.03m.,e
cross section of the column was a square with a width of
0.4m, and the cross section of the beam was a rectangle with
a size of 0.3m× 0.5m. ,e material properties of the re-
inforcement were simulated using a bilinear model, in which
the initial elastic modulus and yield strength are Es and fs,
respectively, and the ratio of the postyield to the initial
stiffness was 0.05. ,e material properties of the cover
concrete and core concrete were simulated using the
Kent–Scott–Park model [44, 45], as shown in Figure 9. Ec
represents the compressive elastic modulus of concrete, and

Table 3: Initial training sample set in Example 1.

No.
Input variable vector x

dm (m)
k (107N·m−1) M (105 kg) Fy (106N) u PGA (g)

1 1.8 0.9 1.2 −1 0.5 0.0277
2 1.2 1.05 2.4 3 0.625 0.2275
3 2.2 1.5 2.8 2 0.25 0.0489
4 2.6 2.1 2.2 −2 0.375 0.0159
5 1.6 1.65 2.6 −3 0.875 0.0305
6 1.4 1.95 1.6 1 0.125 0.032
7 2.4 1.8 1.4 4 0.75 0.4077
8 2.8 1.35 1.8 0 1 0.0722
9 2 1.2 2 −4 0 0

Fy (106 N)
k (107 N/m)

1
2.5

1.5

M
 (1

05  k
g)

2.52

2

2
1.5 1.5

Figure 5: Candidate points.
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Figure 6: Iteration history of the response of the added training
points in Example 1.
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Figure 7: Fragility curves obtained by using different methods in Example 1. (a) Damage level 1. (b) Damage level 2.
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fc is the concrete compressive strength. ,e crushing
strength of the core concrete fu was 1.5×107 Pa, and the
corresponding strain εu was 0.015.,e ratio of the unloading
slope at εu to the initial slope was 0.1. ,e tensile strength of
the core concrete, ft, was 2.2×106 Pa, and the tension
softening stiffness Et was 1.1× 1010 Pa [46]. ,e crushing
strength of the cover concrete, fu′ was 5×106 Pa, and the
corresponding strain eu′ was 0.006 [47]. ,e beam and
column members were modeled using a displacement-based
beam-column element.

,e maximum interstorey angle of the structure θm was
taken as the EDP. ,ree damage levels, namely, immediate
occupancy, life safety, and collapse prevention, were con-
sidered, and their thresholds of θm were taken as z1 � 1/550,
z2 �1/150, and z3 �1/50 with reference to GB50011-2010.
,e material property parameters Ec, Es, fc, and fs were
considered as random variables. ,e distribution informa-
tion of the variables is presented in Table 4.

Nine initial training points were selected using LHS, as
listed in Table 5. A total of 2,000 candidate points were
generated. ,e value of ζ in the stop condition was taken as
4×10−4, which is approximately 1/50 of the standard deviation
of the function values at the initial training points. During AL
sampling, 42 training points were added to the training set, and
the changes in yD(xnew) and MEF(xnew) in the sampling
process are shown in Figure 10. It can be seen that the response
values and predicted values of newly added sample points are
mainly located near the limit state thresholds z1, z2, and z3.
With an improvement in the metamodel accuracy, the value of
MEF(xnew) decreases. ,e fragility curves obtained with the
metamodel are shown in Figure 11, in which the curves ob-
tained by the other twomethods are also given. In this example
and Example 3, the number of samples of the MCS method
selected by using LHS is 1,000. ,e Nc values of the proposed
method, D-M-SFA, and MCS were 51, 51, and 11,000, re-
spectively. For the three damage levels, the results of the

proposed method are close to those of MCS, and the calcu-
lation cost is 0.46% of that of the latter. Moreover, the fragility
curves obtained using this method are more accurate than
those obtained using D-M-SFA, although their calls for finite
element analysis are the same.

,e global accuracy of the metamodel established using
the proposed method was tested using the coefficient of
determination R2 [9], which is defined as

R
2

� 1 −


Nv

s�1 ys − ys( 
2


Nv

s�1 ys − y( 
2 , (15)

where Nv is the number of test points, ys and ys represent
the true and predicted responses of the s-th test point, re-
spectively, and y denotes the mean of the predicted values of
all test points. ,e value of R2 is between 0 and 1. ,e closer
the value is to 1, the higher the model accuracy. Twelve test
points were randomly selected, and the R2 value of the
metamodel obtained using equation (15) was only 0.70. ,is
indicates that the global accuracy of the metamodel is not
high; however, it does not affect the precision of the fragility
curves. It can be concluded that there is no need to build a
global accurate metamodel in the proposed method.

5.3. Example 3: a Steel Frame. A four-storey steel frame is
considered, in which the cross sections of beams and col-
umns are the same, as shown in Figure 12(a). ,e section
depth is 0.32m, the web thickness is 0.02m, the flange width
and thickness are 0.25 and 0.02m, respectively. ,e uni-
formly distributed load q on the structure was set to
30.0 kN·m−1. ,e nonlinear characteristics of steel were
simulated using a bilinear model [45, 48], as shown in
Figure 12(b). ,e initial elastic modulus, yield strength, and
ratio of postyield to the initial stiffness of the column steel
are E1, f1, and B1, respectively. ,e initial elastic modulus,

Table 4: Random variables in Example 2.

Variable Distribution type Mean Standard deviation
fs (Pa) Normal 4×108 4×107

fc (Pa) Normal 3×107 3×106

Es (Pa) Normal 2×1011 2×1010

Ec (Pa) Normal 3.15×1010 3.15×109

u Normal 0 1

Table 5: Initial training sample set in Example 2.

No.
Input variable vector x

θmfs (108 Pa) fc (107 Pa) Es (1011 Pa) Ec (1010 Pa) u PGA (g)
1 5.6 3.6 2.2 2.52 3 0.25 0.0215
2 3.2 3.9 2 4.095 −4 0.625 0.0018
3 3.6 1.8 1.8 3.78 4 0.375 0.045
4 4.8 2.1 2.4 2.205 −3 0.75 0.0041
5 4 4.2 1.4 1.89 0 0.5 0.0126
6 2.8 2.4 1.6 2.835 −2 0 0
7 4.4 3 2.8 4.41 −1 0.125 0.001
8 2.4 3.3 2.6 3.15 2 0.875 0.0438
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Figure 11: Fragility curves obtained by using different methods in Example 2. (a) Immediate occupancy. (b) Life safety. (c) Collapse
prevention.
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Table 6: Random variables in Example 3.

Variable Distribution type Mean Standard deviation
f1 (Pa) Normal 3.5×108 3.5×107

f2 (Pa) Normal 3.5×108 3.5×107

E1 (Pa) Normal 2×1011 2×1010

E2 (Pa) Normal 2×1011 2×1010

B1 Normal 0.03 0.003
B2 Normal 0.03 0.003
u Normal 0 1
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Figure 13: Continued.
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Figure 13: Iteration history of the response of the added training points in Example 3. (a) NI � 3. (b) NI � 6. (c) NI � 12. (d) NI � 15.
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yield strength, and ratio of the postyield to the initial stiffness
of the beam steel are E2, f2, and B2, respectively. ,e dis-
placement-based beam-column element was used to sim-
ulate the beam and column members.

,e thresholds of θm corresponding to the three damage
levels of immediate occupancy, life safety, and collapse
prevention were taken as z1 � 1/250, z2 �1/100, and z3 �1/50
according to GB50011-2010. ,e material property pa-
rameters f1, f2, E1, E2, B1, and B2 were considered as random
variables, whose distribution information is listed in Table 6.

,is example was analyzed four times using the proposed
method, and the numbers of initial training samples,NI, in the
analyses were 3, 6, 12, and 15, respectively. ,e value of ζ in
the stop condition was taken to be 5×10−4. ,e candidate set
contained 2,000 points.,e iteration process for each fragility
analysis is shown in Figure 13. ,e Nc values of the analyses
were 44, 40, 41, and 43, respectively. ,e fragility curves are
shown in Figure 14, which also show the fragility analysis
results obtained using MCS. ,e number of calls for finite
element analysis in theMCSwas 11,000. It can be seen that the
results of the four analyses are all very close to the fragility
curves plotted using MCS. In these cases of different initial
training sets, the iteration process of AL sampling can be
implemented, and the difference in the results is small. Even
when there are only three initial training points, the accuracy
of the fragility curves can still be ensured. ,erefore, this
method is insensitive to the number of training samples,
which reduces the difficulty of metamodeling.

6. Conclusions

To reduce the calculation burden and ensure the accuracy of
fragility curves, a metamodeling method using GPR and AL
is proposed for fragility analysis considering uncertainties of
the ground motions and structural parameters. In this
procedure, the same assumption of seismic response as in
D-M-SFA is adopted to handle record-to-record variability,
but the number of metamodels is reduced to one. ,e

presented AL sampling strategy for the metamodel can
adaptively enrich the training sample set according to the
complexity of the structure. In the developed approach, only
a few nonlinear time history analyses are needed to establish
the metamodel. ,is method was applied to a nonlinear
SDOF system, a reinforced concrete frame, and a steel frame,
and the results were compared with those of the MCS and
D-M-SFA methods. ,e main conclusions are as follows:

(1) ,e fragility curves obtained using the proposed
approach are very close to those of MCS, but the
calculation cost is much less than that of the latter,
which validates the efficiency and accuracy of this
method.

(2) With the same number of calls to finite element
analysis, the results of the developed method are
more accurate than those of the D-M-SFA method.
Moreover, this method avoids the extra computation
cost caused by model testing.

(3) In the AL sampling process, the proposed method
improves the accuracy of the metamodel in the vi-
cinity of the limit states corresponding to the damage
levels. As a result, even if the established metamodel
is not globally accurate, the accuracy of fragility
curves can still be ensured. Moreover, the number of
initial training samples has no obvious influence on
the results of this method, which demonstrates its
robustness.

,e developed procedure can be integrated into reli-
ability-based design optimization methods for solving op-
timization problems considering record-to-record
variability. ,is will be studied in future work.

Data Availability

,e data used to support the findings of this study are
available from the corresponding author upon request.
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Figure 14: Fragility curves obtained with different initial training sets. (a) Immediate occupancy. (b) Life safety. (c) Collapse prevention.
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