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-e functionally graded honeycomb has the characteristic of light weight, low density, high impact resistance, noise reduction, and
energy absorption as a kind of new composite inhomogeneous materials. It has the advantages of both functionally graded
materials and honeycombs. In this paper, a functionally graded honeycomb sandwich plate with functionally graded distributed
along the thickness of the plate is constructed. -e equivalent elastic parameters of the functionally graded honeycomb core are
given. Based on Reddy’s higher-order shear deformation theory (HSDT) and Hamilton’s principle, the governing partial dif-
ferential equation of motion is derived under four simply supported boundary conditions. -e natural frequencies of the graded
honeycomb sandwich plate are obtained by both the Navier method from the governing equation and the finite element model.
-e results obtained by the two methods are consistent. Based on this, the effects of parameters and graded on the natural
frequencies of the functionally graded honeycomb sandwich plate are studied. Finally, the dynamic responses of the functionally
graded honeycomb sandwich plate under low-speed impacts are studied. -e results obtained in this paper will provide a
theoretical basis for further study of the complex dynamics of functionally graded honeycomb structures.

1. Introduction

It is known that the functionally graded material (FGM) can
be not only adapted to the need of modern high-tech areas
like the aerospace industry but also satisfied with the limited
environment and repeatedly used. -erefore, its properties
have certain advantages compared with general composite
materials [1]. Zhang et al. and Yao et al. [2, 3] analyzed the
nonlinear dynamics of FGM circular cylindrical shell with
clamped-clamped edges. Hao et al. [4] studied the bending-
torsion coupling vibrations of a functionally graded sand-
wich panel. Liu et al. [5] investigated the nonlinear vibra-
tions of the functionally graded shell with porosities on an
elastic substrate.

-e honeycombs are considered the best application
prospect materials as super lightweight materials in many
cellular materials [6]. Because honeycombs have many
advantages such as energy absorption, buffering, heat
insulation, noise elimination, light weight, and impact

resistance. More and more research works are focused on
honeycombs; for example, Hamidreza and Farid [7] studied
the vibrational behaviors of auxetic honeycomb composite
cylindrical shells subjected to moving pressures. Zhang et al.
[8] analyzed the nonlinear responses of bioinspired auxetic
honeycombs. Duc et al. [9] studied the dynamic response
and vibration of a composite honeycomb sandwich plate and
analyzed the influence of the geometric properties on the
natural frequencies. -e combination of functional graded
materials and honeycomb can produce more excellent
characteristics. -e functionally graded honeycomb can be
prepared for different fields such as aerospace, electronics,
and medical devices.

-e functionally graded honeycomb (FGH) sandwich
plate is composed of upper and lower skins, and the hon-
eycomb core layer and the graded are distributed along the
length or thickness of the plate. It is a new engineering
material integrated with physical and structural functions,
which attracts a large number of scholars to study deeply in
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terms of strength, stiffness, and stability. -e equivalent
elastic parameters of the core layer are very important for the
sandwich plate, and many researchers have proposed the
formulas for the ordinary uniform honeycomb; for example,
Gibson and Ashby [6] derived the equivalent elastic pa-
rameter formula of hexagonal honeycombs. Hui et al. [10]
gave the strains and Poisson’s ratios of auxetic honeycombs
and the effect of the geometric parameters of the cell on the
Poisson’s ratios. Xu et al. [11] studied the in-plane me-
chanical properties of hybrid honeycombs and computed
the equivalent elastic parameters. -e equivalent elastic
parameters for the functionally graded honeycomb layer
were rarely seen.

It is known that the natural frequency of the plate or shell
is one of the important characteristics of the structures.
When designing a certain structure, researchers often pay
attention to its natural frequency firstly. Zhang et al. [12]
investigated the frequency responses of a 3D-Kagome truss
core sandwich plate. Safaei and Fatahi [13] analyzed the free
vibrations of new material structures as single-layered
graphene sheets embedded in an elastic nonlocal plate. Safaei
[14] studied damped vibrations of lightweight foam sand-
wich plates with composite faces.

In recent years, the impact resistance and energy ab-
sorption mechanism of the honeycomb sandwich plate have
also become research hot topics. Palomba et al. [15] studied
the deformation mode and energy absorption mechanism of
the single-layer and double-layer honeycomb sandwich
plates under the action of explosion load through experi-
mental methods. Yu et al. [16] constructed a square hon-
eycomb sandwich plate with in-plane graded and studied the
impact resistance and energy absorption mechanism of the
graded on the sandwich plate with finite element analysis.
Xie et al. [17] studied the failure state and high-speed impact
deformation mechanism of the honeycomb sandwich plate
under high temperature by using the finite element method
and phenomenological analysis. Ma et al. [18] designed five
different honeycomb core layers for sandwich panels, and
the energy absorption of graded honeycomb cores was
analyzed. Arslan and Gunes [19] studied the mechanical
behavior of the functionally graded honeycomb sandwich
plate under high-speed impact by using a single-stage air
gun through experiments and evaluated the failure and
deformation mechanism of the specimen impact test results.
Li et al. [20] studied the response of the three-layer graded
honeycomb core sandwich plate under explosion load
through experiments and analyzed the structural response
by the finite element software.

In this paper, the equivalent elastic parameters for the
functionally graded honeycomb core are given and then
established the model of the sandwich plate with the
functionally graded honeycomb core by using HSDT and
Hamilton’s principle. -e natural frequencies are compared
from the theoretical model and finite element model which
prove the effectiveness of equivalent parameters and the
model of the graded honeycomb sandwich plate. -e fre-
quency changes with the geometric parameters of the plate
are obtained, and the vibration energy absorptions of auxetic
functionally graded honeycomb panel are studied.

2. FGH Sandwich Plate Model

2.1. FGH Sandwich Plate. -e functionally graded honey-
comb sandwich plate consists of three layers, which are the
upper surface, honeycomb core, and lower surface from top
to bottom, respectively, as shown in Figure 1.-e coordinate
system is established in the central cross section of the plate,
and the displacements at any point in the central plane in the
x, y, and z directions are represented as u, v, and w, re-
spectively. -e thickness of the whole sandwich plate and
honeycomb core is h and hc, respectively. -e length and
width of the plate are represented by a and b, respectively.
Suppose that the honeycomb core layer is tightly bonded to
the skins on both sides, and the thickness of the skin is very
thin compared to the thickness of the honeycomb core layer.
-erefore, the influence of the skin on the deformation of the
honeycomb core layer is ignored, and the deformation of the
whole plate is continuous.

2.2.-e Form of Functionally Graded. It is assumed that the
material properties change continuously in the direction of
thickness, and the two types of the FGH sandwich plate are
discussed as Type A and Type B.-e coordinate system is set
in Figure 1 at z � ± h/2 (ξ1 � −h/2, ξ4 � +h/2), and the
middle two interfaces are represented by ξ2 and ξ3,
respectively.

2.2.1. Type A: Functionally Graded Surface and Homogeneous
Honeycomb Core. -e FGH sandwich plate is composed of
two functionally graded surfaces and a homogeneous
honeycomb core, as shown in Figure 2. -e two functionally
graded surfaces are composed of metal and ceramic mate-
rials, and the honeycomb core is made of homogeneous
ceramics. -e content of ceramics can be expressed in the
form of a volume fraction [21]:

V1(z) �
z − ξ1
ξ2 − ξ1

􏼠 􏼡

N

, z ∈ −
h

2
, ξ2􏼢 􏼣, (1a)

V2(z) � 1, z ∈ ξ2, ξ3􏼂 􏼃, (1b)

V3(z) �
z − ξ4
ξ3 − ξ4

􏼠 􏼡

N

, z ∈ ξ3,
h

2
􏼢 􏼣, (1c)

where V1, V2, and V3 are the volume fraction of the upper
surface layer, honeycomb core layer, and lower surface layer
from top to bottom, respectively, and N represents the
volume fraction index. -e core of the plate is composed of
homogeneous ceramics. -erefore, the volume fraction is 1,
as shown in equation (1b). Since the volume fraction is less
than 1, as shown in equations (1a) and (1c), the volume
fraction of the ceramic decreases correspondingly when the
power-law exponent N increases.

2.2.2. Type B: Homogeneous Surface and Functionally Graded
Honeycomb Core. -e two surface layers are homogeneous,
and the honeycomb core is the functionally graded material
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in type B, as shown in Figure 3. -e upper and lower layers
are homogeneous metal and ceramic materials, respectively,
and the core layer is composed of functionally graded
materials. -e metal content is expressed in the form of the
volume fraction as follows:

V1(z) � 0, z ∈ −
h

2
, ξ2􏼢 􏼣, (2a)

V2(z) �
z − ξ2
ξ3 − ξ2

􏼠 􏼡

N

, z ∈ ξ2, ξ3􏼂 􏼃, (2b)

V3(z) � 1, z ∈ ξ3,
h

2
􏼢 􏼣. (2c)

It is assumed that the material composition changes
graded in the z direction and conforms to the power-law
distribution. For the physical parameters of each layer,
namely, Young’s modulus E(k), shear modulus G(k), Pois-
son’s ratio ], and density ρ(k) can be obtained from the
following formula:

P
(k)

(z) � PmVm + PcVc, (3)

where k� 1, 3 are the upper and lower surface, respectively,
k� 2 represents the core layer of the honeycombs, Pc and Pm

represent the physical parameters of the ceramics and
metals, respectively, and Vc and Vm are the volume fractions
of component materials along the z direction. -e rela-
tionship between the volume fractions of the metals and
ceramics is

Vm + Vc � 1,

Vc �
z

h
+
1
2

􏼒 􏼓
N

, N≥ 0.

(4)

2.3. -e Equivalent Elastic Parameters of the FGH Sandwich
Plate. Figure 4 shows the cellular structure of a concave
hexagonal honeycomb core, where l1, l2, t1, t2 (t1 � t2), and θ
represent the length of the inclined siding, the length of the
straight siding, the thickness of the cell slant, the thickness of
the straight wall, and the cell inclination angle, respectively.
Based on the formulas for the honeycomb cores in literature
[22], combined with the volume fractions above, it can be
obtained by the equivalent elastic parameter formula of the
functionally graded honeycomb core as follows:

pure metal layer

pure metal layer

o
ceramic-rich layer

Z

X

ξ1

ξ2

ξ3

ξ4

Figure 2: Type-A FGM face sheet and homogeneous honeycomb core.
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Figure 1: Geometry of the FGH sandwich plate.
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E
(2)
1 � EmsVm

η33 η1 − sin θ( 􏼁

cos3 θ 1 + tan2 θ + η1sec
2 θ􏼐 􏼑η23􏽨 􏽩

+ EcsVc

η33 η1 − sin θ( 􏼁

cos3 θ 1 + tan2 θ + η1sec
2 θ􏼐 􏼑η23􏽨 􏽩

, (5a)

E
(2)
2 � EmsVm

η33
cos θ η1 − sin θ( 􏼁 tan2 θ + η23􏼐 􏼑

+ EcsVc

η33
cos θ η1 − sin θ( 􏼁 tan2 θ + η23􏼐 􏼑

, (5b)

G
(2)
12 � EmsVm

η33
η1 1 + 2η1( 􏼁cos θ

, (5c)

G
(2)
23 � GmsVm

η3 cos θ
η1 − sin θ

+ GcsVc

η3 cos θ
η1 − sin θ

+ EcsVc

η33
η1 1 + 2η1( 􏼁cos θ

, (5d)

G
(2)
31 � GmsVm

η3
2 cos θ

η1 − sin θ
1 + 2η1

+
η1 + 2 sin2 θ
2 η1 − sin θ( 􏼁

􏼢 􏼣 + GcsVc

η3
2 cos θ

η1 − sin θ
1 + 2η1

+
η1 + 2 sin2 θ
2 η1 − sin θ( 􏼁

􏼢 􏼣, (5e)

](2)
12 � −

sin θ 1 − η23􏼐 􏼑 η1 − sin θ( 􏼁

cos2 θ 1 + tan2 θ + sec2 θη1􏼐 􏼑η23􏽨 􏽩
Vm −

sin θ 1 − η23􏼐 􏼑 η1 − sin θ( 􏼁

cos2 θ 1 + tan2 θ + sec2 θη1􏼐 􏼑η23􏽨 􏽩
Vc, (5f)

](2)
21 � −

sin θ 1 − η23􏼐 􏼑

tan2 θ + η23􏼐 􏼑 η1 − sin θ( 􏼁
Vm −

sin θ 1 − η23􏼐 􏼑

tan2 θ + η23􏼐 􏼑 η1 − sin θ( 􏼁
Vc, (5g)

ρ(2)
� ρms

η3 η1 + 2( 􏼁

2 cos θ η1 − sin θ( 􏼁
Vm + ρcs

η3 η1 + 2( 􏼁

2 cos θ η1 − sin θ( 􏼁
Vc, (5h)

where η1 � l2/l1, η2 � t2/t1, and η3 � t1/l1. Subscripts ms
and cs represent the subscripts for the corresponding ma-
terial parameters of the metals and ceramics, respectively.

2.4. Equations Motion of the FGH Sandwich Plate.
According to Reddy’s higher-order shear deformation
theory, the displacement field is selected as the following
form:

u(x, y, z, t) � u0(x, y, t) + zϕx(x, y, t) −
4
3h

2z
3 ϕx +

zw0

zx
􏼠 􏼡,

(6a)

v(x, y, z, t) � v0(x, y, t) + zϕy(x, y, t) −
4
3h

2z
3 ϕy +

zw0

zy
􏼠 􏼡,

(6b)

w(x, y, z, t) � w0(x, y, t), (6c)

where h is the thickness of the honeycomb sandwich plate
and u0, v0, w0, ϕx, and ϕy are the axial displacement, lateral
displacement, and rotation angle of the middle plane,

respectively. According to the Von-Karman large defor-
mation relation, the expression of εi(i � xx, yy) and ci(i �

xy, yz, zx) strain-displacement relation can be obtained as

εxx �
zu

zx
+
1
2

zw

zx
􏼠 􏼡

2

, (7a)

εyy �
zv

zy
+
1
2

zw

zy
􏼠 􏼡

2

, (7b)

cxz �
1
2

zu

zz
+

zw

zx
􏼠 􏼡, (7c)

cyz �
1
2

zv

zz
+

zw

zy
􏼠 􏼡, (7d)

cxy �
zu

zy
+

zv

zx
+

zw

zx

zw

zy
, (7e)

εzz �
zw

zz
. (7f)
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From equations (6) and (7) we can obtain:

εxx
εyy
cxy

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

⎫⎪⎪⎪⎬

⎪⎪⎪⎭

�

ε(0)
xx

ε(0)
yy

c
(0)
xy

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

+ z

ε(1)
xx

ε(1)
yy

c
(1)
xy

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

+ z
3

ε(3)
xx

ε(3)
yy

c
(3)
xy

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

,

cyz

cxz
􏼨 􏼩 �

c
(0)
yz

c
(0)
xz

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
+ z

2 c
(2)
yz

c
(2)
xz

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
.

(8)

-e honeycomb sandwich plate with the negative
Poisson’s ratio is the anisotropic laminated plate, so the
constitutive equation can be written as

σxx
σyy
σyz
σxz
σxy

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

(k)

�

Q
(k)
11 Q

(k)
12 0 0 0

Q
(k)
21 Q

(k)
22 0 0 0

0 0 Q
(k)
44 0 0

0 0 0 Q
(k)
55 0

0 0 0 0 Q
(k)
66

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

εxx
εyy
cyz

cxz

cxy

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

(9)

where the stiffness coefficient can be expressed as

Q
(k)
11 �

E
(k)
1

1 − ](k)
12 ]

(k)
21

, (10a)

Q
(k)
12 �

E
(k)
1 ](k)

12

1 − ](k)
12 ]

(k)
21

, (10b)

Q
(k)
22 �

E
(k)
2

1 − ](k)
12 ]

(k)
21

, (10c)

Q66 � G12,

Q44 � G23,

Q55 � G13,

Q21 � Q12,

(10d)

where E
(k)
1 , E

(k)
2 , G

(k)
12 , G

(k)
13 , G

(k)
23 , ]

(k)
12 , and ](k)

21 are the elastic
modulus, shearmodulus, andPoisson’s ratio of the skin and core
layer, respectively. -e superscript k � 1, 3 represents the upper
and lower surface. -e parameters are from equation (3). k � 2
represents the honeycomb core layer. -e equivalent elastic
parameters of the honeycomb core layer are calculated by
formula (5).

According to Hamilton’s principle, the nonlinear gov-
erning equation of a honeycomb sandwich board is ob-
tained. Hamilton’s principle can be expressed as follows:

􏽚
t2

t1

(δU − δK)dt+ � 0. (11)

For the honeycomb sandwich plate with the negative
Poisson’s ratio, the kinetic energy δK, potential energy δU,
and external virtual work δW of the system are expressed as

δK � 􏽚
Ω0

I0 _u0 + I1
_ϕx − c1I3 _φx􏼐 􏼑δ _u0 + I1 _u0 + I2

_ϕx − c1I4 _φx􏼐 􏼑δ _ϕx􏽨

− c1 I3 _u0 + I4
_ϕx − c1I6 _φx􏼐 􏼑δ _ϕx + I0 _v0 + I1

_ϕy − c1I3 _φy􏼐 􏼑δ _v0

+ I1 _v0 + I2
_ϕy − c1I4 _φy􏼐 􏼑δ _ϕy − c1 I3 _u0 + I4

_ϕy − c1I6 _φy􏼐 􏼑δ _φy

+ I0 _v0 + I1
_ϕy − c1I3 _φy􏼐 􏼑δ _v0 + I1 _v0 + I2

_ϕy − c1I4 _φy􏼐 􏼑δ _ϕy

− c1 I3 _u0( + I4
_ϕy − c1I6 _φy􏼑δ _φy − I0 _w0δ _w0􏽩dxdy.

(12a)

pure metal layer

o

ceramic-rich layer

Z

X

ξ1

ξ2

ξ3

ξ4

Figure 3: Type-B homogeneous faces sheet and FGH core.
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θ

Figure 4: -e unit cell of concave hexagonal honeycomb core.
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Among them,

_φx � _ϕx +
zw0

zx
,

_φy � _ϕy +
zw0

zy
,

(12b)

δU � 􏽚
Ω0

Nxxδε
(0)
xx + Mxxδε

(1)
xx − c1Pxxδε

(3)
xx + Nyyδε

(0)
yy + Myyδε

(1)
yy − c1Pyyδε

(3)
yy􏽨

+ Nxyδc
(0)
xy + Mxyδc

(1)
xy − c1Pxyδc

(3)
xy + Qxδc

(0)
xz − c2Rxδc

(0)
xz + Qyδc

(0)
yz − c2Ryδc

(0)
yz 􏽩dxdy,

(12c)

δW � 􏽚
Ω0

Fδw0dxdy − 􏽚
Ω0

cδ _w0dxdy, (12d)

where Ω0 represents the mid-plane of the plate.

Nαβ

Mαβ

Pαβ

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

⎫⎪⎪⎪⎬

⎪⎪⎪⎭

� 􏽚
h/2

−h/2
σαβ

1

z

z
3

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
dz,

Qα

Rα
􏼨 􏼩 � 􏽚

h/2

−h/2
σαz

1

z
2􏼨 􏼩dz,

Ii � 􏽚
h/2

−h/2
ρs(z)

idz, (i � 0, 1, 2, . . . , 6),

(13)

where subscripts α and β denote x and y, and N, M, and I
represent the surface internal force, moment of torque, and
moment of mass of inertia, respectively.

By substituting equation (12) into (11), the nonlinear
dynamic equation of the honeycomb sandwich plate can be
obtained as follows:

zNxx

zx
+

zNxy

zy
� I0 €u0 + J1

€ϕx − c1I3
z €w0

zx
, (14a)

zNxy

zx
+

zNyy

zy
� I0€v0 + J1

€ϕy − c1I3
z €w0

zy
, (14b)

zQx

zx
+

zQy

zy
+

z

zx
Nxx

zw0

zx
+ Nxy

zw0

zy
􏼠 􏼡 +

z

zy
Nxy

zw0

zx
+ Nyy

zw0

zy
􏼠 􏼡 + c1

z
2
Pxx

zx
2 + 2

z
2
Pxy

zx zy
+

z
2
Pyy

zy
2

⎛⎝ ⎞⎠ � I0 €w0

− c
2
1I6

z
2

€w0

zx
2 +

z
2

€w0

zy
2􏼠 􏼡 + c1 I3

z €u0

zx
+

z€v0

zy
􏼠 􏼡 + J4

z€ϕx

zx
+

z€ϕy

zy
⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦,

(14c)

zMxx

zx
+

zMxy

zy
− Qx � J1 €u0 + K2

€ϕx − c1J4
z €w0

zx
, (14d)

zMxy

zx
+

zMyy

zy
− Qy � J1€v0 + K2

€ϕy − c1J4
z €w0

zy
. (14e)
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Among them,

Mαβ � Mαβ − c1Pαβ, (α, β � 1, 2, 6),

Qα � Qα − c2Rα, (α � 4, 5),

(14f)

Ii � 􏽘
N

k�1
􏽚

zk+1

zk

ρ(k)
(z)

idz, (i � 0, 1, 2, . . . , 6), (15a)

Ji � Ii − c1Ii+2,

K2 � I2 − 2c1I4 + c
2
1I6,

c1 �
4
3h

2,

c2 � 3c1.

(15b)

-e internal force-strain relationship is in the following
form:

Nxx

Nyy

Nxy

⎧⎪⎪⎪⎨

⎪⎪⎪⎩
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�
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⎪⎪⎩
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xx
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yy

c
(0)
xy
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⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

, (16a)

Mxx

Myy

Mxy
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�
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D21 D22 0
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⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭

ε(1)
xx
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yy

c
(1)
xy

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

⎫⎪⎪⎪⎬

⎪⎪⎪⎭

+

F11 F12 0
F21 F22 0
0 0 F66

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭

ε(3)
xx

ε(3)
yy

c
(3)
xy

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

⎫⎪⎪⎪⎬

⎪⎪⎪⎭

, (16b)

Pxx

Pyy

Pxy

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
�

F11 F12 0
F21 F22 0
0 0 F66
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⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭

ε(1)
xx

ε(1)
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c
(1)
xy

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

⎫⎪⎪⎪⎬

⎪⎪⎪⎭

+

H11 H12 0
H21 H22 0
0 0 H66

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭

ε(3)
xx

ε(3)
yy

c
(3)
xy

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

⎫⎪⎪⎪⎬
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, (16c)

Qy

Qx

􏼨 􏼩 �
A44 0
0 A55

􏼨 􏼩
c

(0)
yz

c
(0)
xz

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
+

D44 0
0 D55

􏼨 􏼩
c

(2)
yz

c
(2)
xz

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
, (16d)

Ry

Rx

􏼨 􏼩 �
D44 0
0 D55

􏼨 􏼩
c

(0)
yz

c
(0)
xz

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
+

F44 0
0 F55

􏼨 􏼩
c

(2)
yz

c
(2)
xz

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
. (16e)

-e stiffness matrix of the laminated plate is expressed as
follows:

Aij, Dij, Fij, Hij􏼐 􏼑 � 􏽚
h/2

−h/2
Qij 1, z

2
, z

4
, z

6
􏼐 􏼑dz, (i, j � 1, 2, 6),

(17a)

Aij, Dij, Fij􏼐 􏼑 � 􏽚
h/2

−h/2
Qij 1, z

2
, z

4
􏼐 􏼑dz, (i, j � 4, 5).

(17b)

Substituting equations (16) and (17) into (14), the
nonlinear dynamic equation of the functionally graded
honeycomb sandwich plate in the displacement form can be
obtained; due to space limitations, it is omitted here.

3. Boundary Conditions and Navier Method

Assuming that the boundary condition of simple support in
four sides be the following equations:

when x � 0 andx � a, v0 � w0 � ϕy � Nxx � Mxx � 0,

(18a)

wheny � 0 andy � b, u0 � w0 � ϕx � Nyy � Myy � 0.

(18b)

According to the Navier method, the displacement
component of the honeycomb plate system under the
condition of simple support of four sides u0, v0, w0, ϕx, and
ϕy can be expressed respectively as

u0 � 􏽘

∞

m�1
􏽐
∞

n�1
Umn(t)cos(αx)sin(βy), (19a)

v0 � 􏽘
∞

m�1
􏽘

∞

n�1
Vmn(t)sin(αx)cos(βy), (19b)

w0 � 􏽘
∞

m�1
􏽘

∞

n�1
Wmn(t)sin(αx)sin(βy), (19c)

Shock and Vibration 7



ϕx � 􏽘
∞

m�1
􏽘

∞

n�1
ϕXmn(t)cos(αx)sin(βy), (19d)

ϕy � 􏽘

∞

m�1
􏽘

∞

n�1
ϕYmn(t)sin(αx)cos(βy), (19e)

where Umn(t), Vmn(t), W0mn(t), φxmn(t), and φymn(t) are
the parameters about time, α � mπ/a, β � nπ/b, andm and n
are the half-wave number of two orthogonal curvilinear
coordinate directions, respectively. Assuming the periodic
solution is of the form

Umn(t)

Vmn(t)

Wmn(t)

ϕXmn(t)

ϕYmn(t)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
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⎪⎪⎪⎪⎪⎪⎪⎪⎭

�
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0
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⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

e
iωt

U
0
mn

V
0
mn

W
0
mn

ϕ0Xmn

ϕ0Ymn

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

≠ 0, (20)

where i �
���
−1

√
and ω is the natural frequency of the system.

By substituting equation (19) into (20), the characteristic
equation of the honeycomb plate can be obtained:

K − ω2
M � 0, (21)

where M and K are the mass matrix and stiffness matrix of
the system, respectively. M is from equation (14f) and K is
from equations (9) and (10); the expressions forM and K are
similar as the Appendix of reference [23].

4. Finite Element Analysis

-e finite element models are obtained by using ABAQUS/
Standard. An ideal elastic-plastic model is adopted, and an
S4R shell element is selected for mesh generation. -e
Lanczos method is used to extract characteristic values for
linear perturbation analysis steps and to calculate the natural
frequency and corresponding array of the system. Because
the theoretical model of the FGH sandwich plate above is
established through the functional relationship between the
physical parameters of the material and the radial position,
in order to ensure the convergence of the results in the finite
element method, a discrete method is adopted to solve the
finite element models.

4.1. Validity of the Finite Element Model. It is necessary to
test the effectiveness of the model. Taking Type A and Type B
as examples, Type A is made of a functionally graded surface
and homogeneous ceramic material core, Type B is made of a
functionally graded core and the homogeneous ceramic top
face-sheet and the homogeneous metal aluminum honey-
comb bottom face-sheet. Both A and B are under the four
edges of a simply supported boundary. -e honeycomb core
layer of the sandwich plate is arranged in a concave hex-
agonal structure, and the lengths of the plate are a� 0.069m
and b� 0.067m, and the total thickness of the plate
h� 0.045m. -e size of the single cell l1 � 0.003m, l2 � 2l1,
and t1 � t2 � 0.001m. -e theoretical solution by using the

Navier method and numerical results by using the FE
method of sandwich plates are shown in Table 1. From the
results given in Table 1, it can be seen that the theoretical
solutions obtained by the Navier method are closer to the
numerical results obtained by the current finite element
method. Especially, it verified the correctness of the
equivalent elastic parameters of the graded honeycomb core
for the Type B obtained from equation (5).

4.2. Numerical Results and Discussions. -e parameters of
the FGH sandwich plate are chosen as follows: the length of
the plate are a� 0.1m and b� 0.098m, the total thickness of
the plate h � 0.01m, the parameters of the honeycomb cell
l1 � 0.005m, l2 � 2l1, t1 � t2 � 0.001m, and θ � π/6. All the
equivalent elastic parameters are calculated through formula
(5). -e material parameters are shown in Table 2.

Tables 3 and 4 give the natural frequencies of the
functionally graded honeycomb sandwich plate for Type A
and Type B when the volume fraction index N and the core
thickness change.

In order to more intuitively observe the effect of the core
layer thickness and volume fraction index on functionally
graded honeycomb plates, Figures 5 and 6 are obtained
according to Tables 3 and 4, respectively. From Table 3 and
Figure 5, it can be seen that for Type A, the natural frequencies
increase when the volume fraction index N increases.
Compared withN, the core thickness has less effect on natural
frequencies. As for Type B, it can be seen from Table 4 and
Figure 6 that when the core is made of functionally graded
materials, the effect of the volume fraction index on the
natural frequencies is less than that in Type A. However, the
effect of the core thickness is slightly larger than that in Type
A. -e case is a little bit more in type B than in type A that as
the core thickness increases, the natural frequency increases
and then decreases. It can be seen from Tables 3 and 4 that the
natural frequencies of Type A are much higher than that of
Type B with the same core thickness, same volume fraction
index, and same model (m, n).

5. Performance of the FGH Sandwich
Plate under Low-Speed Impact

In this section, the energy absorptions and crushing
mechanism of the FGH sandwich plate for Type A and Type
B are analyzed and compared with the honeycomb sandwich
plate without functionally gradedmaterials named “Type C.”
-e finite element models under impact loads are established
by using ABAQUS/Explicit, as shown in Figure 7. -e pa-
rameters of the plate are the same as those in Section 4. -e
impact object is a rigid ball with a diameter of r � 10mm,
and its mass is 5 kg. -e boundary conditions of the lower
layer are set and completely fixed, and “con-
tact_tied_nodes_to_surface contact” is set between the
upper and lower layers and the honeycomb core layer.

5.1. Analysis of Numerical Results. -e ordinary nongraded
honeycomb sandwich plate named “Type C” is introduced as
a comparison object. Figure 8 shows the kinetic energy of the
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rigid ball with time t. At about t� 0.0017 s, the rigid ball
touches the upper surface of the sandwich plate. It can be
seen from Figure 8 that the top blue line is the kinetic energy
of the ball impacting the Type C honeycomb plate without
being graded, which indicates that the graded honeycomb
plate has a better energy absorption capacity. Table 5 shows
the impact energy absorption capacity of the three honey-
comb plates at the same impact velocity of the rigid ball.
Type B has the strongest energy absorption capacity, fol-
lowed by Type A, and Type C is the weakest. -at is to say,
the sandwich plate which core is made of the graded
honeycomb has a strong energy absorption capacity.

In order to further compare the impact resistance of the
three honeycomb sandwich plates, Figure 9 shows the
contact reaction force of the rigid ball over time which
means that the bearing capacity of the functionally graded
honeycomb sandwich plate is higher than that of the
nongraded plate. Similarly, Figure 10 shows the change of
the strain energy over time which means that the graded
honeycomb plates have more strain energy under the same

impact load.-erefore, the combination of the two materials
takes advantage of the functional graded and improves the
mechanical behavior of the structure.

5.2. Influence of the Parameter on Energy Absorption of the
Plate. Taking the aforementioned Type A and Type B as
research objects, the effects of the volume fraction index, the
thickness of the honeycomb core layer, and the impact
velocity on the energy absorption capacity of the two
functionally graded honeycomb sandwich plates are studied,
respectively. -e energy lost during the impacting is ignored
in the calculation.

Table 6 represents the energy absorption capacity of the
functionally graded honeycomb sandwich plates under
different volume fraction indexes. It can be seen that the
energy absorption capacity becomes weaker as the volume
fraction index increases for Type A. While for Type B, the
Sandwich plate with functionally graded honeycomb core,
the energy absorption capacity becomes stronger as the

Table 3: Type A: the first five natural frequencies ω of the simply supported FGH sandwich plate.

Volume fraction index (N) m n
Core thickness (hc/m)

0.004 0.005 0.006 0.007 0.008 0.009

0

1 1 113.1143 119.1696 125.1222 130.5536 134.4407 132.8545
1 2 275.9721 290.6332 304.9596 317.8596 326.8175 323.2968
2 1 288.9092 304.2515 319.2424 332.7445 342.1682 338.6695
2 2 451.2983 475.0157 497.9900 518.2752 531.6414 525.1794
1 3 546.5282 575.1648 602.8417 627.1444 642.9709 636.4158

1

1 1 148.2252 161.6798 176.7878 193.6571 212.2255 231.0084
1 2 361.5727 394.2069 430.6859 470.9909 513.9364 550.1039
2 1 378.5149 412.6644 450.8250 492.9580 537.7648 575.2849
2 2 591.2158 644.2299 703.1958 767.6059 833.8414 878.1383
1 3 715.8673 779.8603 850.8524 927.9117 1005.5225 1049.0553

2

1 1 177.6786 192.2506 207.2047 222.1366 236.3566 246.6403
1 2 433.3435 468.6475 504.6524 540.0343 571.8150 583.0676
2 1 453.6414 490.5800 528.2335 565.1887 598.2265 608.9659
2 2 708.4573 765.7574 823.8039 879.8600 926.9166 923.8460
1 3 857.7251 926.8319 996.5809 1063.2875 1117.1166 1100.4585

5

1 1 211.5154 217.4290 224.2472 232.1923 241.0141 247.6679
1 2 515.5570 529.7031 545.8134 564.0796 582.5511 584.4944
2 1 539.6793 554.4651 571.2873 590.3178 609.4069 610.3341
2 2 842.3328 864.9783 890.4173 918.3691 943.4398 924.5607
1 3 1019.4419 1046.5443 1076.7582 1109.3650 1136.4637 1100.5041

Table 1: Comparison of natural frequencies (Hz).

Mode Type A Type B
m n -eoretical solution FEM result -eoretical solution FEM result
1 2 275.9721 276.06 226.9837 235.35
2 1 288.9092 284.24 237.2282 239.29
2 2 451.2983 446.08 355.8742 349.01

Table 2: Material parameters of the FGH sandwich plate.

Elasticity modulus (E) (GPa) Density (kg/m3) Shear modulus (G) (GPa) Poisson’s ratio (])
Metal aluminium 69 2700 27 0.3
Ceramic alumina 380 3800 146 0.3
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Table 4: Type B: the first five natural frequencies ω of the simply supported FGH sandwich plate.

Volume fraction index (N) m n
Core thickness (hc/m)

0.004 0.005 0.006 0.007 0.008 0.009

0

1 1 93.8293 98.76310237 103.5649 107.8586 110.7274 108.5318
1 2 226.9837 238.1190884 248.6973 257.9076 264.0070 260.1520
2 1 237.2285 248.7270141 259.6171 269.0838 275.3979 271.6402
2 2 355.8742 369.0205917 380.7708 390.4503 396.5941 392.4074
1 3 414.6251 427.054062 438.0477 447.2150 453.5988 452.2424

1

1 1 93.9876 99.0091734 103.9421 108.4404 111.6602 110.3572
1 2 227.3491 238.6789793 249.5414 259.1763 265.9495 264.0463
2 1 237.6063 249.3051434 260.4864 270.3873 277.4007 275.7181
2 2 356.4367 369.9074751 382.1595 392.6546 400.2923 400.5990
1 3 415.2020 427.9615474 439.4731 449.5008 457.5133 461.1549

2

1 1 94.0404 99.0913374 104.0678 108.6324 111.9534 110.9047
1 2 227.4669 238.8557671 249.7981 259.5354 266.3934 264.7569
2 1 237.7276 249.4855364 260.7459 270.7446 277.8313 276.4339
2 2 356.5854 370.1171245 382.4453 393.0287 400.7142 401.2751
1 3 415.3283 428.1261526 439.6789 449.7417 457.7164 461.3341

5

1 1 94.0933 99.17355126 104.1936 108.8238 112.2351 111.3560
1 2 227.5803 239.0210756 250.0285 259.8343 266.6629 264.7135
2 1 237.8432 249.6518918 260.9730 271.0286 278.0539 276.3188
2 2 356.7005 370.2522101 382.5782 393.0962 400.4581 399.8910
1 3 415.3939 428.1643223 439.6385 449.5104 456.9349 458.6987

250

200

150 ω
100
50
0

5
2
N1

00.004
0.005

0.006hc
0.007

0.008
0.009

N=0
N=1

N=2
N=5

(a)

600
500
400

ω
200
300

100
05

2
N1

00.004
0.005

0.006hc
0.007

0.008
0.009

N=0
N=1

N=2
N=5

(b)

600
500
400

ω
200
300

100
05

2
N1

00.004
0.005

0.006hc
0.007

0.008
0.009

N=0
N=1

N=2
N=5

(c)

1000

800

600
ω

400

200

0
5

2
N1

00.004
0.005

0.006hc
0.007

0.008
0.009

N=0
N=1

N=2
N=5

(d)

1200
1000
800

ω
400
600

200
05

2
N1

00.004
0.005

0.006hc
0.007

0.008
0.009

N=0
N=1

N=2
N=5

(e)

Figure 5: Type A first five natural frequencies ω of the simply supported FGM sandwich plate: (a) 1st natural frequency, (b) 2nd natural
frequency, (c) 3rd natural frequency, (d) 4th natural frequency, and (e) 5th natural frequency.

10 Shock and Vibration



volume fraction index increases. Furthermore, under the
same volume fraction index, the energy absorption capacity
of type B is stronger than type A.

Table 7 shows the energy absorption capacity of the
two plates with different core thickness. For Type A, as
the thickness of the honeycomb core layer increases, the
energy absorption capacity decreases. Because the hon-
eycomb core layer of Type A is a homogeneous ceramic
material, with the increase in thickness and increase in
ceramic materials, so the energy absorption capacity is
weakened. For Type B, as the thickness of the honeycomb

core layer increases, the energy absorption capacity be-
comes stronger. -is is because the honeycomb core layer
of Type B is the functionally graded layer composed of
ceramics and metals. -e structural advantages of
functional graded materials are fully utilized for Type B
under impact loads.
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Figure 6: Type B first five natural frequencies ω of simply supported FGM sandwich plate: (a) 1st natural frequency, (b) 2nd natural
frequency, and (c) 3rd natural frequency.

Figure 7: FE model of the FGH sandwich plate under impact.
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Figure 8: Impact kinetic energy-time history of the rigid ball.
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Figure 11 gives the energy absorption-time curve with
different initial impact velocities. It can be obtained that the
energy absorption capacity begins to decrease at about 0.08 s;
then, brittle failure occurs in the honeycomb core. With the
increase of the impact speed, the energy absorption capacity
curve of the FGM honeycomb plate appears at a peak point
and then decreases sharply; that is, the greater the impact
speed is, the stronger the impact damage of the honeycomb
core is. It can be concluded that the energy absorption
capacity of the honeycomb sandwich plate under low-speed

impact is better. By comparing Figures 11(a) and 11(b), it
can be seen that the impact resistance of Type B is a bit
longer than Type A.

-e central deflections of the sandwich plates under the
impact load are derived.-e parameters chosen are the same
as above except for the ones that need to be changed. Table 8
provides the central deflections among the three plates; it can
be obtained that the deflections of Type B with graded
honeycomb core are relatively small. Since Type A and Type
B contain ceramics, its Young’s modulus is greater than

Table 5: Energy absorption characteristics of the three types of the honeycomb sandwich plates.

Structure type Initial impact velocity (m/s) Initial kinetic energy (J) Absorbing energy (J) Energy absorption rate
Type A 5 62.5 59.93 95.88%
Type B 5 62.5 60.09 96.14%
Type C 5 62.5 58.91 95.53%
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Figure 9: Contact force-time history curve of steel ball.
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Figure 10: Strain energy-time history curve of plate.
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Table 7: Energy absorption capacity with different thicknesses of honeycomb cores.

Honeycomb core
thickness (mm)

Type A Type B
Initial kinetic
energy (J)

Absorbing
energy (J)

Energy absorption
rate (%)

Initial kinetic
energy (J)

Absorbing
energy (J)

Energy absorption
rate (%)

4 62.5 59.93 95.88 62.5 60.09 95.88
5 62.5 58.72 93.95 62.5 60.24 96.38
6 62.5 57.26 91.61 62.5 60.38 96.60
7 62.5 55.58 88.92 62.5 60.45 96.72
8 62.5 54.22 86.75 62.5 60.45 96.72
9 62.5 54.05 86.48 62.5 60.46 96.73
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Figure 11: Energy absorption capacity with different initial impact velocities. (a) Type A. (b) Type B.

Table 8: Central deflections of three plates under same impact velocity.

Structure type Initial impact velocity (m/s) Central deflections (mm)
Type A 5 5.156
Type B 5 5.155
Type C 5 5.192

Table 9: Central deflections of the plates with different volume fraction indexes.

Volume fraction index (N) Central deflections (mm) Central deflections (mm)
Type A Type B

0 5.187 5.151
1 5.171 5.15
2 5.156 5.155
5 5.156 5.152

Table 6: Energy absorption capacity with different volume fraction indexes.

Volume fraction
index (N)

Type A Type B
Initial kinetic
energy (J)

Absorbing
energy (J)

Energy absorption
rate (%)

Initial kinetic
energy (J)

Absorbing
energy (J)

Energy absorption
rate (%)

0 62.5 59.93 95.88 62.5 60.09 95.88
1 62.5 59.74 95.58 62.5 60.30 96.48
2 62.5 59.60 95.36 62.5 60.56 96.89
5 62.5 59.45 95.12 62.5 60.62 96.99
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aluminum. by calculations, the central deflections increase
when the impact speed increases; the deflections of Type B
are 3.098, 5.155, and 7.177 when the impact velocities are 3,
5, and 7, respectively.

-e central deflections are given when the volume
fraction index N is changed. It can be seen from Table 9 that
the volume fraction index has less influence on Type B. -e
rigid ball impacts from the top, while the upper face of Type
A is metal and Type B is ceramic; therefore, the deflection of
Type A is a little larger than Type B.

6. Conclusions

In this paper, the equivalent elastic parameters of the
functionally graded honeycomb core are given; on this basis,
the model of the sandwich plate is obtained by using the
HSDT. -e Navier method is used to compute the natural
frequencies of the plate. -e natural frequencies from the
finite element model are compared which prove the effec-
tiveness of equivalent parameters and the model of the
graded honeycomb sandwich plate. -e following conclu-
sions can be drawn from the analysis of the results from this
paper.

(1) -is paper derived the equivalent elastic parameters
of the honeycomb core layer are applicable to the
functionally graded honeycomb sandwich plate.

(2) When the volume fraction index increases, the
natural frequencies increase and Type A increases
more than Type B.

(3) When the thickness of the core layer increases, the
natural frequencies increase but drop slightly when
the core layer thickness is larger than 0.008m.-is is
because as the thickness of the core layer increases,
the facesheet becomes very thin. -e change of the
natural frequencies for Type A is larger than that of
Type B.

(4) -e energy absorption capacity of Type A decreases
with the volume fraction index or the thickness of the
core layer increases, while Type B’s increases. -e
functionally graded honeycomb sandwich plate ex-
hibits good energy absorption and impact resistance
under low-speed impact.
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