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Repetitive transients are usually generated in the monitoring data when a fault occurs on the machinery. As a result, many
methods such as kurtogram and optimized Morlet wavelet and kurtosis method are proposed to extract the repetitive transients
for fault diagnosis. However, one shortcoming of these methods is that they are constructed based on the index of kurtosis and are
sensitive to the impulsive noise, leading to failure in accurately diagnosing the fault of the machinery operating under harsh
environment. To address this issue, an optimized SES entropy wavelet method is proposed. In the proposedmethod, the optimized
parameters including bandwidth and central frequency of Morlet wavelets are selected. ,en, based on the wavelet coefficients
decomposed using the optimized Morlet wavelet, the SES entropy is calculated to select the scales of wavelet coefficients. Finally,
the repetitive transients are reconstructed based on the denoising wavelet coefficients of the selected scales. One simulation case
and vibration data collected from the experimental setup are used to verify the effectiveness of the proposed method. ,e
simulated and experimental analyses showed that the signal-to-noise ratio (SNR) of the proposed method has the largest value.
Specifically, the SNR in the experimental analysis of the proposed method is 0.6, while that of the other three methods is 0.043,
0.0065, and 0.0045, respectively. ,erefore, the result shows that the proposed method is superior to the traditional methods for
repetitive transient extraction from the vibration data suffered from impulsive noise.

1. Introduction

Fault diagnosis plays a vital role in ensuring long-term safe
running of rotating machinery for avoiding huge economic
loss and casualties. ,us, many fault diagnosis methods
based on the collected monitoring signals such as sound [1],
infrared images [2], and current [3] are carried out. Of all the
different types of monitoring signal, vibration signal con-
tains abundant information of machinery health conditions
and thus is the most analyzed signal, and many signal
processing based methods have been proposed to process
vibration signals for fault diagnosis [4, 5]. ,e abundant
information refers to the repetitive transients generated
periodically when faults occur on the rotatingmachinery [6].
By analyzing the frequency of these transients, it is easy to
know which part has faults or dynamic changes [7].

Although vibration signals containing repetitive tran-
sients can be used for diagnosing the fault, machinery
usually operates under harsh environment and the transients
are submerged in noise. As a result, it is difficult to extract
useful information from vibration signals and inaccurate
results probably obtained with ineffective methods. To solve
this problem, Qiao et al. [8–11] applied stochastic resonance
to fault diagnosis, making use of the enhancement of noise to
periodicity signals generated due to the faults. Multistable
stochastic resonance [12] can also be found for fault de-
tection. However, selecting the suitable optimal parameters
of stochastic resonance is not an easy thing; although the
stochastic resonance can exhibit the energy of noise for
transient extraction, these signal processing-based methods
cannot be widely used in real applications. Moreover, blind
deconvolution technique [13] and minimax concave
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regularized sparse representation [14] are also used for
extracting repetitive transients for fault diagnosis, but they
are not robust to heavy noise.

Time-frequency signal processing techniques including
wavelet transform and empirical mode decomposition are
also commonly used to process vibration signals for extracting
useful fault information. ,e empirical mode decomposition
and its variants [15] can be found to extract repetitive
transients in fault diagnosis of rotating machines. ,ese
methods decompose vibration signals into different models of
intrinsicmodel functions and then the signals can be classified
into nonstationary and nonlinear components for analysis.
However, it should be noted that these methods have many
problems such as endpoint effects, modal aliasing, and lacking
mathematical theory, which limit the use of these methods.
Wavelet transform is another commonly seen time-frequency
analysis method and is performed by decomposing signals
into different scales of frequency bands. Continuously, the
frequency bands of repetitive transients can be selected by
choosing scales for the reconstruction of repetitive transients.
Zhang et al. [16] achieved the bearing fault diagnosis based on
multiple Q-factor Gabor wavelets. Mishra et al. [17] used
envelope analysis and wavelet denoising to diagnose rolling
element bearing fault under slow-speed operation. In recent
years, more improved wavelet-based diagnosis methods in-
cluding M-band flexible wavelet transform [18], empirical
wavelet transform [19, 20], tunable Q-factor wavelet trans-
form [21], and dynamic Bayesian wavelet transform [22] are
proposed. But there exist some common issues for these
wavelet-transform-based methods. First, it is difficult to
choose a suitable wavelet function that should be similar to
the transients. A random selection of wavelet function may
lead to the wrong representation of transients and then no
useful information is probably obtained. Second, there are no
effective theories to guide the selection of wavelet scales. ,e
wavelet scales representing the frequency of repetitive tran-
sients should be selected, but which scales should be selected
should be guided with an effective index.

Kurtosis is sensitive to impulsive signals and exhibits large
values when there are impulsive signals [23]. Based on these
concepts, many useful kurtosis-based diagnosis methods have
been proposed. Antoni [24] constructed a kurtogrammethod,
which uses short-time Fourier transform to decompose sig-
nals into different frequency bands and select the optimal
frequency band based on the index of kurtosis. Wang [25]
proposed an enhanced kurtogram method for fault diagnosis
of rolling element bearings based on the binary wavelet packet
transform. Chen [26] constructed an improved fast spatial-
spectral ensemble kurtosis kurtogram and applied it to me-
chanical signature analysis of short duration data from ro-
tating machinery. By combining minimum entropy
deconvolution and spectral kurtosis, a new l0-norm em-
beddedMEDmethodwas proposed for roller element bearing
fault diagnosis at the early stage of damage [27]. A sub-band
averaging kurtogram was proposed by incorporating with
dual-tree complex wavelet packet transform [28]. Adaptive
correlated kurtogram was constructed based on scale-space
representation and empirical wavelet transform [29]. Qin [30]
proposed an optimized Morlet wavelet and kurtosis method,

in which the kurtosis is used to select the optimal scales.
Although kurtosis is sensitive to repetitive transients, it is also
more sensitive to the single impulsive noise. ,e single im-
pulsive noise is widely seen because the machinery usually
operates under harsh environment, and disturbances are
inevitable. ,e disturbance for short time can lead to im-
pulsive noise. As a result, these kurtosis methods probably fail
to detect fault from the data containing impulsive noise.
Infogram was proposed to overcome this issue by calculating
square envelope spectrum entropy, but this method is not
robust to heavy noise and there are usually several frequency
bands appearing with large values [30]. Afterward, the square
envelope spectrum entropy has attracted much attention and
many variants of infogram have been constructed [31–34].

To effectively extract repetitive transients from signals
suffered from heavy noise including the Gaussian white
noise and the impulsive noise, a new fault diagnosis
method is proposed based on the optimized Morlet wavelet
and the square envelope spectrum entropy. In the proposed
method, the Morlet wavelet function which is similar to the
impulsive signals is used. ,e parameters of Morlet in-
cluding bandwidth and the central wavelet frequency are
optimized according to the Shannon entropy of wavelet
coefficients. Based on the wavelet transform using the
optimal Morlet wavelet function, square envelope spec-
trum entropy is calculated for guiding the selection of
wavelet scales. Finally, the repetitive transients can be
reconstructed based on the selected wavelet coefficients
after denoising.,e effectiveness of the proposed method is
demonstrated using simulation signal and experimental
signal, respectively. ,e proposed method can be used for
the fault diagnosis of machinery suffered from both heavy
Gaussian white noise and impulsive noise. Impulsive noise
is widely seen in the collected data due to random dis-
turbance, and traditional methods such as kurtogram
cannot be used to process these data effectively. ,us, the
proposed method is suitable for a wide range of applica-
tions in real engineering.

Based on the previously mentioned statements, the
contributions of this paper are summarized as follows:

(1) An optimized SES entropy wavelet is proposed to
extract the repetitive transients for fault diagnosis,
and the proposed method presents good perfor-
mance even when impulsive noise is mixed in the
diagnosed signal

(2) ,e Morlet wavelet function which is similar to
impulsive signals is used and its parameters are
optimized and selected by calculating the Shannon
entropy of wavelet coefficients

(3) Square envelope spectrum entropy is introduced for
guiding the selection of wavelet scales

,e rest of this paper is organized as follows. Section 2 is
devoted to introduce the basic theory of wavelet transforms.
In Section 3, the detailed procedure of the proposed method
is present. In Section 4, the proposed method is demon-
strated based on simulated and experimental signals, re-
spectively. Finally, the conclusions are drawn in Section 5.
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2. The Theory of Wavelet Transform

Wavelet transform is widely used to analyze the signals in the
time-frequency domain and is efficient for capturing the
time of occurrence of a particular frequency. Accordingly,
this method is robust for analyzing nonstationary signals
and thus used in the proposed method. To help a better
understanding of the proposed method, the theory of
wavelet transform is introduced in detail.

Wavelet can be considered as a short-duration wave
growing and decaying over a limited period. ,e wavelet
denoted using ψ(t) satisfies the following two conditions:


+∞

−∞
ψ(t)dt � 0,


+∞

−∞
|ψ(t)|

2dt � 1.

(1)

By scaling and shifting ψ(t) through a and b, respec-
tively, a set of basis functions ψa,b(t) can be obtained
according to

ψa,b(t) �
1
��
a

√ ψ
t − b

a
 dt; a> 0, (t, a, b) ∈ R. (2)

Wavelet transform is a powerful mathematic tool for
obtaining a representation, decomposition, and recon-
struction of signals. Specifically, wavelet transform is per-
formed by decomposing the studied signals into a
combination of time-shifted and dilated or compressed local
basis functions according to

WT(a, b) � 
+∞

−∞
x(t)ψ∗a,b(t)dt, (3)

where x(t) denotes the studied signal b. ,e asterisk rep-
resents the computation of complex conjugate, and thus,
wavelet transform can be considered as a convolution of the
signal x(t) with a window ψa,b(t) that is dilated by a and
shifted in time by b.

As a result, each wavelet can be located at a different
position around b along the time axis. Furthermore, with the
help of a, wavelets of different frequencies can be obtained. a
with large values indicating that the frequency of wavelet of
frequency is low, while a with small values correspond to
high frequency.

3. The Proposed Method

In this section, a repetitive transient extraction method
based on an optimized SES entropy wavelet is constructed
and introduced for machinery fault diagnosis. ,e flowchart
of the proposed method is graphically shown in Figure 1,
and its detailed procedures are described as follows:

(1) First, the monitoring data are collected from ma-
chinery and used for fault diagnosis, and some
parameters of the Morlet wavelet including fb and
fc are initialized. fb and fc represent the band-
width and the central wavelet frequency,
respectively.

,eMorlet wavelet which is similar to the impulsive
signal generated due to faults is used in wavelet
transform. ,e Morlet transform is shown as

ψ(t) �
1
����
πfb

 exp
−t

2

fb

 cos 2πfct( . (4)

It can be found that the oscillation attenuation
depends greatly on fb, specifically, the increase of
fb enhances the oscillating of theMorlet wavelet, fc

Monitoring data

Initialize fb=xm and fc=R1 for the Morlet wavelet

Calculate wavelet transform using the above Morlet wavelet

Compute Shannon wavelet entropy E (fc, fb)

If fc<R2?

Select the optimal fc marked as fco according to the minimum E

Let fc=fco and fb=x1 for the Morlet wavelet

Calculate wavelet transform using the above Morlet wavelet

Compute Shannon wavelet entropy E (fc, fb)

If fb<x2?

Select the optimal fb marked as fbo according to the minimum E

Perform Morlet wavelet again under fc=fco and fb=fbo

Calculate the envelope of all the obtained wavelet coefficients 
of different scales

Apply Fourier transform to these envelope

Calculate the SES entropy of these Fourier coefficients

Select useful characteristic scales guided by the SES entropy 
and then obtain the corresponding wavelet coefficients

Reconstruct the repetitive transient signal after denoising

Based on the envelop spectrum the fault can be diagnosed

f c=
f c+

T c
f b=

f b+
T b

Figure 1: ,e flowchart of the proposed fault diagnosis method.
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controls the oscillatory frequency, and the increase
of fc leads to the decrease of the frequency reso-
lution of the Morlet wavelet. To find the optimal fc,
fb should be set as a large value. ,erefore, fb is set
to be 30, while fc is set as 0.2. fc will be iterated
from 0.2 to 1 with a step of 0.1, while fb remain
unchanged.

(2) Wavelet transform is calculated based on theMorlet
wavelet according to equation (4), so the wavelet
coefficients of different scales can be obtained.

(3) Wavelet Shannon entropy is computed using

E fc, fb(  � − 

K

i�1
pilog pi, (5)

where pi is the distribution sequence calculated
based on wavelet coefficients according to

pi fc, fb(  �
W ai, t( 


k
j�1 W aj, t 

. (6)

(4) If fc does not exceed R2, iterate fc with an increase
in Tc and then compute the new wavelet Shannon
entropy according to these above steps.

(5) ,e iteration stops until fc reaches R2 and selects
the optimal fc which is marked as fco. fc is selected
as fco when E(fc, fb) reach the minimum.

(6) ,e similar procedure will be performed to find the
optimal fb and set fc as fco.
During this process, fb is varied from [x1, x2],
where x1 and x2 is set to be 0 and 40, respectively.
,e optimal fb is marked as fbo and selected when
E(fco, fb) reach the minimum.

(7) ,e Morlet wavelet transform is performed again
on the monitoring data, where fc and fb is set as

fco and fbo, respectively. As a result, wavelet co-
efficients of different scales can be obtained and
denoted using |W(ai, t)|.

(8) ,e square envelope of these coefficients can be
calculated using

ω ai, t(  � W ai, t( 



2
. (7)

(9) Based on the discrete Fourier transform, the square
envelope spectrum (SES) can be calculated using

ω ai, α(  � 
L−1

n�0
W ai, n( e

− j2παn/Fs , (8)

where α denotes the cyclic frequency and Fs is the
sampling frequency.

(10) ,e SES negentropy of these Fourier coefficients is
calculated according to the following equation:

SES ai(  �〈
ω ai, α( 

2

〈 ω ai, α( 
2
〉
ln

ω ai, α( 
2

〈 ω ai, α( 
2
〉

⎛⎝ ⎞⎠〉. (9)

(11) ,e characteristic scales whose SES negentropy
satisfies the following conditions are selected as the
useful scales for reconstructing repetitive transients:

SES ai( >T∗ max(SES), (10)

where T is a threshold value and set to be 0.75. In
this way, the wavelet coefficients with larger SES
negentropy can be selected and they mostly contain
repetitive transients.

(12) ,e wavelet coefficients of the selected character-
istics are denoised using soft thresholding to en-
hance the ability of transient extraction according to

W′ ai, n(  �
sgn W ai, n( (  W ai, n( 


 − θ , W ai, n( 


> θ,

0, W ai, n( 


≤ θ,

⎧⎪⎨

⎪⎩
(11)

where θ is a threshold value.

(13) ,e repetitive transients can be extracted by
reconstructing the denoised wavelet coefficients
using

s(n) �
1

C1ψ

a

W′(a, n)a
− 3/2

, (12)

where C1ψ � 
+∞
−∞

ψ∗(w)/|w|dw.

In a continued manner, the reconstructed repetitive
transients can be used for fault diagnosis by calculating the
Hilbert envelop spectrum of these transients.

4. Simulation and Experimental Demonstrations

4.1. Transient Extraction for Simulated Signal of Bearing
Faults. In order to demonstrate the effectiveness of the
proposed method for repetitive transient extraction, the
simulated signals of the fault bearing are considered in this
case study. ,e signal is simulated using the following
model:
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x(t) � 
M−1

m

Am exp −βw t − m/fo( ( sin 2πfre t − m/fo( ( u t − m/fo(   + I(t) + N(t), (13)

where Am represents the amplitude value of the simulated
signal. Am is randomly selected and varies from 0.6 to 1.6.
u(t) denotes a unit step function, βw denotes structure
damping ratio, and βw � 900. ,e resonance frequency fre

and the sampling frequency fs are 3000Hz and 12 kHz,
respectively. ,e total sampling time is 0.5 s. Moreover, m

denotes the number of impulses that periodically appear in
the simulated signal. M is the total number of the simulated
impulses and is set to 200. fo is the fault characteristic
frequency and set to 50Hz in this simulation.

In addition, to simulate the impulsive noise due to the
harsh environment, I(t) is also added to the simulated
signal, and its amplitude, resonance frequency, and band-
width is 8 g, 5 kHz, and 800Hz, respectively. N(t) denotes
the additive Gaussian white noise with zero mean and
satisfies the following equation:

〈N(t)〉 � 0,

〈N(t), N(t + τ)〉 � 2Dδ(τ),
 (14)

where D is the intensity of the Gaussian white noise and is
selected as 0.125.

,e time domain of waveforms of the simulated signal is
shown in Figure 2. From Figure 2(a), it can be found that
transients are generated repetitively with a periodicity of 1/fo s.
Unlike the repetitive transients, the impulsive noise appears
with a large amplitude.,is noise is commonly seen in the real
monitoring data due to disturbance from the operational
environment. In addition to the impulsive noise, Gaussian
white noise is added to the signal shown in Figure 2(a) and the
repetitive transients are seriously deteriorated in the signal
shown in Figure 2(b). Obviously, it is difficult to extract the
repetitive transients for fault diagnosis from the signal using
traditional signal processing based fault diagnosis methods
such as kurtogram. ,e proposed method is applied to pro-
cessing this signal, and the time-domain waveform of the
extracted repetitive transients is shown in Figure 3(a). It can be
seen that the repetitive transients can be successfully extracted
using the proposed method by removing both the Gaussian
white noise and the impulsive noise.,en, theHilbert envelope
spectrum of the signal shown in Figure 3(a) is calculated and
presented in Figure 3(b). ,e amplitude of fault frequency and
its harmonic frequency such as the second, third, and fourth are
high and clearly seen. It can be inferred that a fault occurs on
the monitoring bearing, which agrees with the simulated data.
,erefore, the proposed method is effective for repetitive
transient extraction for fault diagnosis.

For comparison, the traditional methods including
kurtogram, infogram, and the optimized Morlet wavelet
and kurtosis method are used to process this simulated
signal. Kurtogram is a widely used method to extract
repetitive transients for fault diagnosis, so this method is
considered for comparison. ,e result of the kurtogram is
shown in Figure 4, and it can be found that the large value

appears at the center frequency (fc) of 4968.75 Hz and at
the level of 7, which can be detected as the optimal
frequency band and marked using a red color line.
Consequently, the signal at this frequency band is filtered
for extracting the repetitive transients. ,e extracted
repetitive transients using kurtogram are shown in
Figure 5(b). Obviously, the impulsive noise is contained
in the repetitive transients, indicating the kurtogram
cannot be used for repetitive transient extraction when
there exists heavy noise in the collected signal. ,e en-
velop spectrum of the signal shown in Figure 5(b) is
presented in Figure 5(c). ,ere is no useful information
presented in the spectrum graph and the bearing fault
cannot be successfully detected. Kurtogram is con-
structed by calculating the kurtosis index in different
frequency bands decomposed using a short Fourier
transform. ,e kurtosis index is very sensitive to im-
pulsive noise and has a very large value under a sole
impulsive noise. As a result, the frequency band of the
impulsive noise will be wrongly selected for fault
diagnosis.

Infogram is also proposed by Antoni for overcoming
the shortcomings of the kurtogram, which is constructed
based on Shannon entropy. ,e results of the infogram
are shown in Figure 6. ,ere are several frequency bands
with large values because the infogram is not robust to
noise. ,e frequency band with the largest value is at the
center frequency of 4500 Hz and at the second level,
which is also marked using a red color line. ,e extracted
repetitive transients are shown in Figure 7(b), and we can
find that both the repetitive transients and the impulsive
noise are contained in the repetitive transients. As shown
in Figure 7(c), although the amplitude of the fault fre-
quency can also be seen, there are also some disturbances
in the envelope spectrum due to the impulsive noise. In
sum, the infogram cannot be used to remove the im-
pulsive noise because of its coarsely calculated procedure.

Like the kurtogram, the Morlet wavelet and kurtosis
method is constructed based on the index of kurtosis and is
sensitive to impulsive noise. ,e time-domain waveform of
the extracted repetitive transients using the Morlet wavelet
and kurtosis method is shown in Figure 8(a), in which the
impulsive noise rather than the periodically appeared im-
pulsive is clearly seen. As a result, the amplitude at the fault
frequency has a small value and there are just low-frequency
components in the envelop spectrum, as shown in
Figure 8(b). It is because the scale of the signal containing
impulsive noise has the largest kurtosis and thus is wrongly
selected as the repetitive transients in the comparison
method.

For quantitative advantages of the proposed method,
the SNR is used for the envelope spectrum of the re-
petitive transients. ,e expression of SNR is generally
written as
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Figure 2: ,e time-domain waveforms of the simulated signal including (a) the repetitive transients with the impulsive noise and (b) the
signal added with Gaussian white noise.
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Figure 3: ,e result of the proposed method: (a) the extracted repetitive transients and (b) the Hilbert envelop spectrum of (a).
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SNR � 10log10


N
i Ai

E − 
N
i Ai

 , (15)

where i (0, 1, . . . N) denotes the order of the harmonics
and N is specified as 4. Ai represents the amplitude of the
extracted ith harmonic and E is the sum of the amplitude
of envelope spectrums. ,e SNR of the proposed method,
infogram, kurtogram, and the Morlet wavelet and kur-
tosis method can be calculated as 0.135, 0.092, 0.011, and

0.0124, respectively, which verify the effectiveness of the
proposed method.

4.2. Transient Extraction for Real Signal Collected fromaFault
Bearing. In this section, real signals collected from a fault
bearing are used to verify the effectiveness of the proposed
method. ,e data are provided by the bearing data center of
CaseWestern Reserve University [35] and is commonly used
for the demonstration of fault diagnosis methods. ,e
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Figure 5: (a) ,e signal after prewhitening, (b) the extracted repetitive transients using kurtogram, and (c) the Hilbert envelop
spectrum of (b).
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experimental setup is shown in Figure 9, which consists of a
2HP motor (left), a torque transducer (center), and a dy-
namometer (right). ,e bearing of 6205-2Rs JEM SKF is
used for testing, which is installed under the motor shaft.
Some structural parameters of the bearing are presented and
listed in Table 1. An accelerometer sensor, which is attached
to the housing with magnetic bases, is used to collect vi-
bration signals with a sampling of 12 kHz.

,e vibration signal of fault outer race was collected and
processed using the proposedmethod.,e fault is a single-point
fault that is produced using electro-discharge machining and
the fault diameter is 7mils (1mil� 0.001 inches). ,e rotation
speed of the motor is 1797 r/min, and the corresponding outer
fault frequency is 91.4Hz. ,e time-domain waveform of the

vibration signal is shown in Figure 10(a), and it can be found
that the repetitive transients are submerged in the noise.
Moreover, an impulsive noise whose amplitude value is 5 is
introduced into the signal and the corresponding waveform is
shown in Figure 10(b).

,e proposed method is applied to extract repetitive
transients from this signal for fault diagnosis. ,e time-
domain waveform of the repetitive transients is shown in
Figure 11(a). It can be found that the simulated impulsive
noise is not contained in the signal, indicating that the
proposed method is not sensitive to the noise. To further
verify the effectiveness of repetitive transients extracting and
diagnosis the fault of bearing, the envelope spectrum of the
signal is given in Figure 11(b). ,e amplitude of the outer
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Figure 8:,e extraction result of the Morlet wavelet and kurtosis method: (a) the extracted repetitive transients and (b) the Hilbert envelop
spectrum of (a).
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Table 1: ,e structural parameters of the bearings used in the experiment.

Inner diameter (mm) Outer diameter (mm) Pitch diameter (mm) Contact angle (°) Number of balls
25.001 51.999 39.040 0 9
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Figure 10: (a) ,e collected vibration data and (b) the data added with the impulsive noise.
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race fault frequency and its harmonic frequency can be
clearly seen. It can be inferred that the bearing suffers from
the outer fault, which agrees well with the fact.

,e traditional methods are also used for comparison. ,e
results of the kurtogram show that the center frequency of the
repetitive transients is 0Hz at the 7.5th level (seen in Figure 12),
but the extracted signal of the corresponding frequency marked

using the red line contains the impulsive noise (seen in
Figure 13(b)), and as shown in Figure 13(c), there is no useful
information in its Hilbert envelop spectrum. ,e center fre-
quency at 0Hz and 2nd level is selected for repetitive transient
extraction using infogram, as shown in Figure 14.,e extracted
repetitive transients are shown in Figure 15(b), and no useful
information can also be found in its Hilbert envelop spectrum,
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Figure 11: (a) ,e extracted repetitive transients using the proposed method and (b) the Hilbert envelop spectrum of (a).
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spectrum of (a).
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as shown in Figure 15(c). As shown in Figure 16, a similar result
is found, when the optimized Morlet wavelet and kurtosis
method is applied to the signal. ,e SNR of infogram, kur-
togram, and the Morlet wavelet and kurtosis method can be
calculated as 0.043, 0.0065, and 0.0045, respectively, while the
SNR of the proposed method is 0.6.

In sum, the proposed method is superior to the tradi-
tional methods and is robust to repetitive transient ex-
traction from the signal suffering impulsive noise.

5. Conclusions

,is paper presents a repetitive transient extraction method
based on the optimized SES entropy wavelet for machinery
fault diagnosis. In the proposed method, the parameters
including bandwidth and central wavelet frequency are
optimized by computing wavelet Shannon entropy. ,e
wavelet transform of monitoring signal using the Morlet
wavelet under these optimized parameters is performed.
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Next, the square envelope of wavelet coefficients is calculated
and then the SES entropy can be obtained. ,e repetitive
transients can be reconstructed using the denoised wavelet
coefficients for fault diagnosis. ,e effectiveness of the
proposed method is verified by the simulated and experi-
mental signals. Traditional methods including kurtogram,
infogram, and the optimized Morlet wavelet and kurtosis
method are used for comparison. ,e results show that the
proposed method is robust to extract repetitive transients
submerged in impulsive noise, while traditional methods
usually fail to do that because they are sensitive to impulsive
noise. ,erefore, the proposed method has a significant
advantage over traditional methods and is suitable for fault
diagnosis of machinery operating under harsh environment.
In future, some useful optimal methods [36–38] will be
introduced to make the proposed method more robust.
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