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Vibration analyses on axially moving functionally graded nanoplates exposed to hygrothermal environments are presented. The
theoretical model of the nanoplate is described via the Kirchhoff plate theory in conjunction with the concept of the physical
neutral layer. By employing the nonlocal strain gradient theory, the governing equation of motion is derived based on Hamilton’s
principle. The composite beam function method, as well as the complex modal approach, is utilized to obtain the vibration
frequencies of axially moving functionally graded nanoplates. Some benchmark results related to the effects of temperature
changing, moisture concentration, axial speed, aspect ratio, nonlocal parameter, and the material characteristic scale parameter on
the stiffness of axially moving functionally graded nanoplates are obtained. The results reveal that with increasing the nonlocal
parameter, gradient index, temperature changing, moisture concentration, and axial speed, the vibration frequencies decrease.
The frequencies increase while increasing the material characteristic scale parameter and aspect ratio. Moreover, there is an
interaction between the nonlocal parameter and material characteristic scale parameter, influencing and restricting each other.

1. Introduction

With the rise of micro/nanotechnologies, the develop-
ment and application of micro/nano-electromechanical
systems (MEMS/NEMS) have developed rapidly, such as
micro/nanosensors, micro/nanoresonators, smart wear-
able devices, and medical nanorobots [1, 2]. The sys-
tematic and in-depth understandings of the mechanical
properties of these devices and their key micro/nano-
components are needed to provide theoretical guidance
for the mechanical-based design and regulation [3, 4]. So
far, there have been numerous investigations on this
topic, especially the studies on the mechanical behavior of
uniform nanomaterials and structures based on the
molecular dynamic simulation or nonclassical contin-
uum approaches [5-9]. These results play an important

role in perfecting performances and promoting the in-
dustrialization of MEMS/NEMS [10] and cellular me-
chanics [11]. However, while the MEMS/NEMS work in
some harsh environments, such as high temperature, high
pressure, humidity and heat, high-strain rate, and high-
speed impact, the nanostructure composed of a single
uniform material gradually fails to meet the engineering
requirements [12]. Introducing the concept of func-
tionally graded materials at macroscale into micro/
nanoscale and constructing functionally graded nano-
structures is one of the effective ways to overcome the
problems in extreme working environments [13-15].
Functionally graded nanostructures, as one of the com-
ponents in nanodevices or nanosystems, may produce an
unwanted vibration caused by external excitations or
their own factors during work. Hence, the studies on the


mailto:licheng@suda.edu.cn
https://orcid.org/0000-0003-1018-0087
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/8332125

vibration characteristics of functionally graded nano-
structures are of great significance.

To study the dynamic behaviors of micro/nanodevices
composed of functionally graded nanostructures, there are
generally three kinds of theoretical approaches including the
discrete methods [16], modified continuum theories [17],
and atom-continuum multiscale models [18]. The discrete
methods refer to that the micro/nanomaterials and struc-
tures are equivalent to a number of molecules or atoms, and
the dynamics of materials and structures can be simulated by
calculating the interaction between molecules or atoms. For
a special micro/nanosystem with a large number of mole-
cules/atoms, the application of discrete methods may take
plenty of time with a higher requirement of computing
hardware. Therefore, the modified continuum theories that
regard the nanomaterials and structures as generalized
continuous structures are more suitable for this case. Using
the traditional analysis thought and modeling procedure
(e.g., Hamilton’s principle) of the macroscopic continuum,
the mechanical properties of nanomaterials and structures
can be predicted by establishing the nonclassical continuum
constitutive relations containing internal characteristic scale
parameters of the nanomaterials. Although the modified
continuum theories still adopt the basic ideas of a classical
macroscopic continuum, the constitutive relations of mac-
roscopic continuum mechanics have not been duplicated
directly but improve them to include new phenomena at the
nanoscale, such as a long-range interaction between atoms
and strains with higher-order gradient. The atom-contin-
uum multiscale models aim to establish an atomic calcu-
lation framework on the micro/nanoscale and a continuum
framework on the macroscale according to different geo-
metric sizes in different dimensions of micro/nanomaterials
and structures, so as to develop the spatial multiscale model.
It may also introduce temporal multiscale into the dynamic
analysis of atom-continuum multiscale models. In the
present study, the dynamics of two-dimensional functionally
graded nanostructures are investigated by using the modi-
fied continuum theories. Hence, the nonclassical continuum
model is applied to characterize the inherent features at the
nanoscale. Since functionally graded nanostructures are
composed of inhomogeneous materials and there are a huge
number of molecules/atoms contained in two-dimensional
functionally graded nanostructures, it is relatively difficult to
deal with inhomogeneous materials and structures by mo-
lecular dynamic simulation, atomic simulation, or atom-
continuum multiscale models.

The modified continuum theories mainly include the
micropolar and micromorphic theory [19], the couple stress
theory [20], the strain gradient theory [21], and the nonlocal
theory [22], which have been widely applied in the me-
chanical analysis of micro/nano-structures. For example, Li
et al. explored the size dependence of nanorods [23] and
nanobeams [24] based on the nonlocal integral model, and
the results show that the nonlocal effect was more sensitive
in the thickness direction, which implies that the thickness
effect plays a dominant role in the contribution of size
dependence. Jalaei and Civalek [25] investigated the dy-
namic instability of viscoelastic porous functionally graded
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nanobeams embedded on the visco-Pasternak medium
according to Eringen’s differential law, and the model is
exposed to the magnetic field as well as an axial oscillating
load. Lu et al. [26] performed the factors influencing the
postbuckling properties of multilayer microtubules rein-
forced by functionally graded graphene platelets containing
initial geometrical imperfection via the modified couple
stress theory.

In recent years, with the continuous deepening of the
research, these modified continuum theories have shown
some disadvantages [27]. For example, the internal char-
acteristic scale parameters of the same nanomaterial are
different in different studies due to the inconsistency in the
determination methods. For another example, there have
been different kinds of nonlocal effects predicted. The
equivalent stiffness softening and stiffness hardening models
were established, and even some paradoxes were found in
the literature. On the basis of these theoretical models, Lim
et al. [28] proposed a nonlocal strain gradient theory. By
introducing three internal characteristic scale parameters,
the nonlocal effects of classical strain and strain gradients, as
well as the gradient effects of traditional Eringen’s nonlocal
stress and high-order nonlocal stresses are comprehensively
considered in the theory. Therefore, the theoretical pre-
dictions by the nonlocal strain gradient theory were satis-
factorily consistent with the experimental results [29].
Recently, the nonlocal strain gradient theory has become one
of the most widely applied nonclassical continuum ap-
proaches [30]. For instance, Saffaria et al. [31] studied the
dynamics of a cantilever nanotube resting on a nonlinear
viscous Pasternak foundation in the context of the nonlocal
strain gradient theory, in which the viscoelastic fluid was
conveyed, and the magnetic field and harmonic loads were
also taken into account. Based on the nonlocal strain gra-
dient theory, Li et al. [32] examined the effect of size-de-
pendent parameters on the stiffness of functionally gradient
beams using the Timoshenko beam model. To sum up, the
strain gradient theory is applied to analyze the free vibration
of functionally graded nanoplates so as to obtain accurate
mechanical results.

Generally, the functionally graded nanostructures can be
modeled as one-dimensional beam/tube/rod structures,
two-dimensional plate/shell/film structures, and three-di-
mensional solid structures according to their size charac-
teristics. Among them, the one-dimensional functionally
graded structures have been fully studied [33]. In terms of
functionally graded nanoplates plate/shell/film, there is also
some research literature. For example, Lu et al. [34] de-
veloped a functionally graded cylindrical shell model in the
framework of the nonlocal strain gradient theory and the
Gurtin-Murdoch surface elasticity theory. Three typical size
effects including nonlocal effect, strain gradient effect, and
surface energy effect on the free vibration were carried out.
Vinh and Tounsi [35] analyzed the influence of the spatial
variation of the nonlocal parameter on the free vibration of
functionally graded sandwich nanoplates by modifying the
classical nonlocal theory, and the motion equation was
established based on the new inverse hyperbolic shear de-
formation theory and Hamilton’s principle. The rigid body
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motion of the model itself is not taken into account in most
literature on nanoplates. However, there are some phe-
nomena similar to the motion at the macroscale [36] in
nanosystems. For instance, medical nanorobots often need
to move in the human blood as a whole to complete the
auxiliary diagnosis and treatment of diseases through
structural vibration. At this moment, kinematics and dy-
namics are coupled with each other. Of course, the out-of-
plane vibration of a plate is more obvious than the in-plane
vibration, and the nanoplate is no exception.

As mentioned above, functionally graded nanostructures
tend to be designed for extreme working environments, and
taking NEMS (e.g., nanosensors/resonators/nanorobots) as
an example, they often need to work in some humid and hot
environments. Therefore, it is of great significance to in-
vestigate the vibration characteristics of functionally graded
nanoplates in the hygrothermal environment. In the in-
vestigation of mechanical behaviors of functionally gradient
nanoplates, the hygrothermal effects have been attended by
many researchers. Refrafi et al. [37] analyzed the buckling
responses of simply supported functionally graded sandwich
plates rested on the Winkler-Pasternak elastic foundation
subjected to hygrothermal and mechanical loads. Tounsi
et al. [38] proposed a simple four-variable trigonometric
integral shear deformation model to perform the mechanical
properties of advanced functionally graded ceramic-metal
plates seated on a two-parameter elastic foundation, which
exposed to a nonlinear hygro-thermomechanical load.

There are some performed studies on the axially moving
nanoplates. In [39, 40], the nonlocal theory was adopted to
analyze the free vibration of axially moving nanoplates, but the
strain gradient effect was not taken into account. In [41, 42], the
nonlocal strain gradient theory was employed to study the
mechanical behaviors of axially moving nanoplates. However,
sometimes, it is necessary to consider the hygrothermal effects
because of the extreme working environments of functionally
graded nanomaterials. For this purpose, the hygrothermal effect
on the axially moving functionally graded nanoplates is con-
sidered herein. The novelty of this research is to explore the
effects of the axial speed, gradient index, and internal and
external characteristic parameters on the vibration of axially
moving functionally graded nanoplates exposed to hygro-
thermal environments. In addition, the coupling effect between
the internal characteristic parameters is also considered. The
remaining parts of the present work are arranged as follows: In
Section 2, the theoretical model of the axially moving func-
tionally graded nanoplate subjected to hygrothermal loads is
established, and the effect of the gradient index on the bending
stiffness is demonstrated. Then, the partial differential gov-
erning equations describing the out-of-plane vibration are
developed based on Hamilton’s principle in the context of the
nonlocal strain gradient theory. In Section 3, in order to cal-
culate the natural frequencies, the composite beam function
method in conjunction with the complex mode approach is
employed according to the boundary conditions, and then the
correctness of the approach is verified by comparisons. Af-
terwards, the effects of temperature variation, moisture con-
centration, axial speed, gradient index, nonlocal parameter,
material characteristic scale parameter, and aspect ratio on the

out-of-plane vibration frequency are analyzed via numerical
examples. Finally, the summary is concluded in Section 4. The
results of the present work are of reference significance for the
design, optimization, and control of axially moving MEMS/
NEMS based on functionally gradient nanoplates, such as
nanorobots and nanosensors subjected to hygrothermal
environments.

2. Theoretical Constitutive and
Governing Equations

The core constitutive equations of the nonlocal strain gra-
dient theory were expressed in an integral form initially [28].
However, the spatial integration of strains and its gradients
is difficult to be solved. Hence, an equivalent differential
constitutive equation was transformed for a two-dimen-
sional nanostructure as

[1-(ea)’V?|t=C(1-PV*)e, (1)

where t is a total stress tensor, ¢/ is a classical strain tensor, C
is an elastic tensor, V* is a Laplace operator, a is a material
internal scale, [ is a strain gradient characteristic scale, and e
is a nonlocal material parameter.

As depicted in Figure 1, given an axially moving func-
tionally graded nanoplate with length L,, width L, and
thickness A, the x-y plane coordinate system is established in
the geometric middle plane and z coordinate is along the
thickness of the nanoplate. The axial speed is denoted by v.
The functionally graded nanoplate is exposed to the
hygrothermal environment with uniform temperature
changing AT (K) and moisture concentration rise AH (%),
where AT = T-T, in which T'is the applied temperature and
To=300K is the reference temperature; AH=H-H,, in
which H is the applied moisture concentration and Hy=0 is
the reference moisture. In the present work, we assume that
the nanoplate is composed of the ceramic and metal, namely,
the inner compositions of the two-dimensional thin
nanostructure are the mixture of two materials by the
gradient law so that the characteristics vary regularly
according to the gradient index. Therefore, Young’s modulus
E, mass density p, thermal expansion coefficient &, and
moisture expansion coefficient  of the functionally graded
nanoplate can be respectively expressed as [43]

E(2) = (. - Em)<% + %)P ‘E,,

p(2) = (p, —pm)(% + %)P + P>
, (2)
a(z) = (ac—(xm)<%+%> +a,,

p@ =) C+3)

where p is the gradient index and two subscripts ¢ and m
denote the material properties of ceramic and metal phases,
respectively.
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FIGURE 1: The schematic configuration of an axially moving functionally graded nanoplate in hygrothermal environments.

Because the changing trend of the above four types of
material properties is identical, only taking Young’s mod-
ulus of functionally graded nanoplates as an example, the
variation along the thickness of the nanoplate is shown in
Figure 2 under different gradient indexes, where
E.=380GPa and E,, =70 GPa are adopted for ceramic and
metal materials, respectively.

Let u, v, and w represent the displacements of the
nanoplate along x, y, and z axes, respectively. Because the
physical neutral layer is not equal to the geometric middle
plane (x-y plane coordinate established herein) for an in-
homogeneous functionally graded nanoplate, the position
coord1}r11ate of t}}lle physical — neutral layer is
z, —I iz zE(z)dz/f h/ZE(z)dz Then, by applying the
classic plate theory [44] and the concept of physical neutral
plane [45], the displacement fields can be expressed as

oy ) = ~(z - ) 2L
ow(x, y,t
V% y2) = ~(z - Zo)%> 3)

w(x, y,2,t) = w(x, y,t).

According to the relationship between the classic
Kirchhoff thin plate theory and the nonlocal strain gradient
differential constitutive equation, the physical equations of
the functionally graded nanoplate can be acquired as

Oxx 1 u 0 Exx
[1-(ea)’V?]| 0,y |=(1-PV*)Blu1 0O &y |
Txy 00 (1_#)/2 ny

(4)

where the functionally graded nanoplate is regarded as a
plane stress problem, B = E(z)/(1 — ?), and u is Poisson’s
ratio.

It is noted that the definition of the bending moment
and its relationship with stress are valid in both mac-
roscale and microscale. Therefore, the defining expres-
sion of the bending moment in the nonlocal strain
gradient theory is consistent with that in the classical
continuum theory. The difference is that the stress in the
definition is nonlocal stress and classical stress, respec-
tively. Then, by applying the classic plate theory [44], the
bending moment, ~ can be expressed as
(Mxx’ xy’Myy) = .[—h/Z (Uxx, ny; Uyy) (Z - ZO)dZ.
According to equation (3), the relationship between the
bending moment and the displacement can be derived
from equation (4) as

w
ox’
M, lu O
202 202 o'w
[1—(ea)V] M,, =(1—lV)Dy1 0 _a_yz ,
M,, 00 1-u
_azw
0x0y
(5)

where w represents the out-of-plane displacement and D =
f Bz = zo) dz is the equivalent bending stiftness. The
effect of the gradient index on the equivalent bending
stiffness is shown in Figure 3.

As clearly visible in Figure 3, when the gradient index
increases, the equivalent bending stiffness decreases quickly
at first and then gradually slows down, which indicates that a
higher gradient index reduces the equivalent bending
stiffness of functionally graded nanoplates. The observations
can provide reference for the design of functionally graded
nanoplates subjected to different working conditions.

To analyze the out-of-plane vibration of axially moving
functionally  graded nanoplates in  hygrothermal



Shock and Vibration

environments, Hamilton’s principle is utilized to derive the
governing equation of motion, which requires

t
(08U + 6V - 6K)dt =0,

where 6U, 0V, and 6K are the variations of the strain po-
tential energy, external potential energy, and kinetic energy,
respectively, and t, and ¢, represent two arbitrary moments.

J (6)  Firstly, the strain potential energy for the nanoplate may be
h calculated as
t, t, 2 2 2
J U dt = - J ” Mxxaa—"; + Myy(Sa—u; + 2Mxyi)‘a—w dAdt
t tJla 0x oy 0x0y
r 2 o ooM,, . | ool oM
= J JMxxa—“’ dydt + I J—""&u dydt - I ” 2 Swd Adt
t 0x 0 f 0x 0 t,JJa ox
t 0 b t (0 b 123 82
[, 0S | anacs [T 20 | axae- [ [ S5 bwdaa
t 0 t 0 t, JJa oy
t ow 6 OM v t M t ow te th OM e
—J JMX P dydt+J I X7 dxdt—ZJ ” xyéwdAdt—J JMX Pl dydt+j J 5w | dxdt,
t 4 ay t 0x 0 t JJA axay t 7" ox 0 t ay 0
(7)

where A is the region of the middle plane of the nanoplate.
Then, we assume that the temperature changing results in
the external potential energy which is reverse to work done
by external loads, and it can be written as

ow ow ow
e[ [ (2o
A\ Tox ox oy
ow_ | 2
= —J ij—“’aw ” N, 22 swdAdt
t 0x 0 A T Ox
gNRE |
A
(8)

Nyaaw
where N,=N,=Nr+ Ny are the hygrothermal loads, in
which Ny is the temperature load and Ny is the humid

[
[ v aw | ea- .

t
I h— A-
g du| 4 J
t)

b ow

t
sVt = - s

t

N >dAdt

t

L3 t 2

dydt + J

3

t Ly t tw
axde+ [ [] N5 owaadr,
0 ox

t t

aw+
o Y

ow
ot

ow

ow N
v ox

A
3x >d dt

2

o
” 1,2Y swdAdt
A Ot

tl
1

” 1 vaz—w&u
A 0 0x0t

2
Y swdA

[

0xot

[}

Ll/l
J Ioa—wvéw dydt - I
f ot 0

ow
I -
+ ”A oV 3x ow

31

t

t
dA—J
t

tl
1

environment load, respectively. And, the hygrothermal re-
sultant can be expressed by

hi2
Ny = J E(2)a(2)ATdz = npATh,
~(h/2)

hl2 (9)
Ny = J E(2)B(2)AHdz = nyy AH,
—(h/2)
in which
[Ec + (E. + E,)pla, + p(E. + 2B, p)a,
}’lT = s
(1+p)(1+2p)
(10)
n,, = et (B Bn)plBe + p(Ec + 2B, p)B,,

(1+p)(1+2p)

Finally, the kinetic energy of the nanoplate is given by

(11)
dAdt

J

2

” 1,07 swdAdt,
A Ox

t i

Lﬂ
dt + dydt - J

0

ow
J Iovza&u

t t
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where I = ﬁf/zp(z)dz (45].

Substituting equations (7), (8), and (11) into equation
(6), and then integrating by parts, the partial differential
equation that governs the out-of-plane vibration can be
written as

2 2
IM,, OTM, TM,
2 2
ax* 0y 0x0y

dw dw
rea22.2)
ox

According to

the variational principle, the essential/

natural boundary conditions of the model along x =0, L,
can be obtained as

— 0 XX
w or Ix
0
% =0orM,, =
ow Dor M
—=0or =
oy x>

oM
xy Nxa—w _ Oa—w‘V 26w _
oy Ox ot

-I,v—=0,
oV ox

0)

0.

(13)
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And the boundary conditions along y =0, L, are ac-

quired as
oM,, OM, 0
w=0or =2 +—2_N o,
oy 0x Yoy
0
%zOoery =0, (14)
ow 3
@—OOI'M;V;V—O.

22 o'w o'w o'w
ox"  0dy 0x°0y

+[1 - (ea)’V?| [(NT +NH)<

In order to obtain the dimensionless governing equation
and analyze the out-of-plane vibration characteristics of
axially moving functionally graded nanoplates qualitatively,
the following variables and parameters are necessary:

L, — N> NyL?
x=y=2w="1= Ny =~ N, =~ H
L’ L, h ) D D
ea I I _
T:_’(:_>E: _OL ,t_ —t
L L, D* oL
(16)
’w .., Ow ., O°w
—+30° +3(°)A
ox° ox* 0y’ ox°0y"

4__
+ [TZ(NT + Ny + fz) - 1] ZTT + [TZAZ(ZNT +2Ny + 52) - 2/12]
X

4

+ /\4[12 (Ny+Ny) - 1] Z—w +27°¢

3
Y

4— 4
+ 2778\ ow 22 0

0%0y OF 0y ot

o’w d’w dw

oxot of

- (Np + NH)A2T2 -2
0y

o w dFw

—+_
ox> 9y’

+

— —(NT + Ny + Ez)

Substituting equation (5) into (12) and the governing
equation in terms of out-of-plane displacement can be
expressed as

(15)

+1 vzaz—w+2vaz—w+az—w =0
N7 ax? oxot ot '

Accordingly, the dimensionless form of the governing
equation (15) can be rewritten as

6—
2 A6aTL:
0y
o'w

o'w  , o'w

x> Of

+ (17)

T —_—
x>0t

o’w

ox*



The spatial variables ¥ and ¥ and time variable ¢ are
coupled in equation (17). In the linear elasticity and small
deformation, one can separate these variables. The solution
of out-of-plane displacement is set to
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where w,,, is the vibration circular frequency, usually a
complex frequency, of which the real and imaginary com-
ponents can be used to describe the vibration frequency and
related stability, respectively.

Substituting equation (18) into (17), the nondimensional

w(x,y,f) = W (x, )", (18)  frequency-domain governing equation can be obtained as
6TAT 6747 6 e
{23 VZ 1300 ?4‘/\12 + 302 ?2‘/\14 . (2A6a VX
ox 0x dy 0x°dy ay
+ [TZ(N + Ny + 52) _ 1]84_W+ [TZ)LZ(ZN +IN +€2) B zAZ]ﬂ
T H e T H Pz
AT 25 ’w ., oW, W i
+ M7 (Np + Nyp) = 1] == + 2it% @, + 20N 0, —— (19)
ay 0% 0xdy
N 2 NOW s 2 \OW
_(NT +Ng+&+7 wmn)—_2 -2 (NT +Ny+7 wmn)j
o0x oy

- ZiEwmng + wfnnW =0.

3. Numerical Results and Discussion

Unlike most research studies applying Galerkin method to
investigate the moving nanosystems [39, 41, 46], the present
work employs the composite beam function method [47] to
develop the dynamic stability of axially moving nanoplates.
The approach assumes the displacement function according
to boundary conditions, so that the governing equation can
be solved numerically directly. Compared with other ac-
curate solution methods such as Galerkin and Navier’s
solution, the advantage of the present method is that it can
analyze systems with various boundary conditions.

) ow Fw dFw
Essential : w = =

Natural D Iw
ural : — ——
0x?

3y ok " gk =

28411)
! Ot |x=O,La =

In addition to the governing equations of axially moving
functionally graded nanoplates established in the previous
section, the boundary conditions are needed to solve the out-
of-plane vibration theoretical model. Taking the edge con-
straint of simply supported on four sides as an example,
according to equations (13) and (14), the corresponding
natural boundary conditions at x =0,L, are chosen as
M, =0, and the natural boundary conditions at y = 0, L,
are chosen as M, = 0. Then, considering the relationship
between bending moment and displacement in equation (5),
the details of the basic boundary conditions of the nano-
plates can be obtained as

0 _aw_azw_azw
’ w_ax_axz_ayz

0. -D aziw_lzazliw
’ 0y oyt

y=0.L;,
(20)

y=0.L,
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Therefore, the dimensionless boundary conditions can
be written as

W(x,7) =

W (%) _ o'W (%,7) _ o'W (%,7) _ o'W (%,7)

oy ox*
. W(xY) IW(EY)
Wy =% - 0% :

Utilizing the composite beam function method [47], the
dimensionless out-of—plane displacement can be assumed as

M N
Z Vo (o 7) = YD Ay (D) (7,

m=1 n=1 m=1 n=1

W (x,y) =
(22)

where ¢,,, (%) and ¢, (¥) are the adopted mode functions of x
and y directions, respectively, and correspondingly,
Y, (X, ) is the product of two mode functions.

'S ¢"‘+[T (NT+NH+§)

{0 2= (2N + 2Ny + )] + 30 ~(Ny + Ny + & + P )} 0

- 2iéw,,, [ (nm\)zr2 + 1] a{;ﬁ%

+ [ (nml)“(rzWT + "Ny -

The solution to equation (24) can be written in form as
¢, (X) = Ce’*, and the following equation can be obtained
by substituting the solution into equation (24):

’pe +[ (nmd)* ¢ —T(NT+NH+£)

—3(nm\)* ¢

1) + (mn))*(Np + Ny + T, ) +

9
=0,
672 ox* x=0,1
(21)
_IW(xY) OW(x ) 0
0y* A

For the nanoplate simply supported on four sides, the y-
direction mode function can be defined as a sine function
that satisfies the boundary conditions in equation (21).
Hence, the product of mode functions can be expressed as

Vo (X, 9) = ¢, (X)sin nmy. (23)

Substituting equation (23) into (22), and further into
equation (19) yields

3’4,
" ox°

]¢m

+21{w

ox’ (24)

W) - (nﬂ)t)6(2]¢m =

]ﬁ4 - 2T2£wmnﬁ3

+{(m)?[2- (2N + 2Ny + 8)] +3(mm)) ' —(Ny + Ny + & + 7202, |52

-2¢w,,, [ (A7 + 1]/3
+[(mm))° ¢ = (mal)* (N + ©°Np -

As a sixth-order ordinary differential equation, the so-
lution to equation in (25) can be assumed as

¢m (E) = C1

1) - (m))*(Np + Ny + w0y, ) -

(25)

wfm] =0.

m(eiﬁlmf + szeiﬁzmx + C3meiﬁ3m§ + C4meiﬁ4mx + CSmeiﬁsm} + C6meiﬁ6m})’ (26)
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where C;, (j=1,2,3, ...... , 6) denotes six unknown co-
efficients introduced by integral, and ﬁjm (=1,2,3,...... ,6)

are corresponding six roots of algebraic equation (25).
According to equation (21), the boundary conditions can be
written as

O (0) _0°¢,,(1) _0"9,,(0) _3'¢,, (1) _

0)=¢ (1)= 0.
O (0) = $ (1) ox’ ox’ ox* ox*
(27)
1 1 1
oo oiBon oo
«n2 «n2 «n2
lﬁ 1m lﬁ 2m lﬁ 3m

4
ﬁ3m

ﬁgm ei:B 3m

4
/32m

ﬁgm eiﬁZm

4
/31m
ﬁ[f eiﬁlm

m

Combining equations (25) and (28), the dimensionless
vibration frequency can be determined numerically. In the
calculation process, the other parameters are set as constant
values firstly; then, an interval of the remaining parameter is
provided, so that the variation of vibration frequencies with
respect to the remaining parameter can be achieved via a
numerical calculation program. Consequently, the rela-
tionships between the dimensionless vibration frequency
and each parameter can be obtained.

In order to demonstrate the accuracy and validity of the
present analyses, a benchmark result is given by the com-
parison with previous results available in the literature. First,
by ignoring the strain gradient, axial velocity, and hygro-
thermal environment effects, the present results are com-
pared with those reported by Natarajan et al. [48] and
Jandaghian and Rahmani [49] in Table 1. The results agree
well with those from the literature, which proves that the
model and method proposed in this paper are reliable in
vibration analyses. In addition, the influence of uniform
thermal effects on nanoplates is also compared in Table 2
[50]. The verification example reveals that the proposed
approach can accurately predict the behavior of nanoplates
under the influence of external environmental loads.

In the present examples, we take #n =1, and the material
properties of the functionally graded nanoplate are shown as
follows [51].

iﬁz lmeiﬁlm iﬂz 2m eiﬂm iﬁz 3m eiﬁm iﬁz 4m eiﬁm iﬁz 5m eiﬁSm iﬁz 6m eiﬁm

Shock and Vibration

As a result, a set of algebraic equations are acquired by
substituting equation (26) into the simplified boundary
condition equation (27). To ensure the existence of the
nontrivial solutions of the coeflicients or mode function in
equation (26), the determinant of the coefficient matrix in
the algebraic equations should be set to zero.

1 1 1
oPi oo oo
.02 .02 .02
lﬁ 4m lﬁ 5m lﬁ 6m
=0. (28)
4 4 4
ﬁ4m ﬁSm ﬁém
Bine™  Boe™ B
E. = 380 GPa,
#. = 0.3,
p. = 3800 kg/m’,
a, =7x10 °K™,
B. = 0.001%, (29)
E,, = 70 GPa,
Uy = 0.3,
P, = 2702kg/m’,
a,, =23x107°K,
B, = 0.44%.

As for the magnitude of the nonlocal parameter ea and
the strain gradient parameter I, some literature [52, 53] has
made a special discussion, but there are no experimental
methods to determine it. In the physical sense, these two
parameters represent the continuous range of nonlocal long-
range action and the strength of strain gradient influence. In
the present work, following the method used by Lu et al.
[54], the two length parameters are normalized by length L,
to obtain numerical results, and it is used that both ea/L, and
I/L, are in the range of 0 to 0.2.

Firstly, the influences of the hygrothermal environment
on vibrating functionally graded nanoplates are examined.
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TaBLE 1: Comparison of nondimensional fundamental natural frequencies of FG nanoplates.
N Mode 1 Mode 2
L,/Ly L./h (ea)

Ref. [48] Ref. [49] Present Ref. [48] Ref. [49] Present

0 0.0441 0.0458 0.0458 0.1051 0.1127 0.1144

10 1 0.0403 0.0420 0420 0.0418 0.0860 0.0934 0.0936

2 0.0374 0.0390 0.0388 0.0745 0.0814 0.0812

1 4 0.0330 0.0345 0.0342 0.0609 0.0670 0.0664
0 0.0113 0.0115 0.0114 0.0278 0.0286 0.0286

20 1 0.0103 0.0976 0.0105 0.0228 0.0235 0.0234

2 0.0096 0.0098 0.0097 0.0197 0.0204 0.0203

4 0.0085 0.0086 0.0086 0.0161 0.0167 0.0166

0 0.1055 0.1127 0.1144 0.1615 0.1795 0.1831

10 1 0.0863 0.0934 0.0936 0.1208 0.1376 0.1396

2 0.0748 0.081400.0 0.0812 0.1006 0.1158 0.1140

2 4 0.0612 0.0670 0.0664 0.0793 0.0920 0.0898
0 0.0279 0.0286 0.0286 0.0440 0.0458 0.0458

20 1 0.0229 0.0235 0.0234 0.0329 0.0345 0.0342

2 0.0198 0.0204 0.0203 0.0274 0.0288 0.0285

4 0.0162 0.0167 0.0166 0.0216 0.0227 0.0224

TaBLE 2: Comparison of nondimensional fundamental natural frequencies of FG nanoplates subjected to uniform temperature rise.

5 AT =20K AT =50K AT =100K
L,/Ly (ea)
Ref. [50] Present Ref. [50] Present Ref. [50] Present
0 3.40990 3.44383 3.20129 3.33459 2.79383 3.14409
1 1 3.09232 3.13424 2.86011 3.0138 2.39481 2.80157
2 2.84287 2.89195 2.58795 2.76059 2.06147 2.52759
0 8.60641 8.71642 8.40893 8.60958 8.04297 8.42849
2 1 6.98983 7.1038 6.74242 6.97228 6.27787 6.67923
2 6.01404 6.13386 5.72297 5.98105 5.16622 5.71731
0 16.9869 17.5035 16.7959 17.3974 16.4414 17.2191
3 1 11.9593 11.4132 11.6773 11.2662 11.1543 11.017
2 9.70001 9.37428 9.34623 9.19483 8.68094 8.88769

Taking L,/h=10, 7=0.1, (=01, A=1, {=1, p=1, and
AH =0, 1%, and 2%, respectively, we reveal the variation of
dimensionless first- and second-order vibration frequencies
with temperature changing. It can be seen from Figures 4(a)
and 4(b) that, the smaller the moisture concentration is, the
greater the vibration frequency is. In addition, when the
moisture concentration is fixed, the dimensionless vibration
frequency decreases with the increase of temperature
changing. For example, when the temperature changing
increases from 0 to 200K and the moisture concentration
remains unchanged compared with H,, the first-order vi-
bration frequency decreases by 9.3% and the second-order
decreases by 3.56%. This is because the high temperature
leads to expansion in nanoplate structures, which reduces
the structural stiffness. Consequently, it is believed that the
influence of temperature changing should be paid more
attention to in lower-frequency vibration stage.
Subsequently, vibration frequencies versus continuous
moisture concentrations are presented in Figures 5(a) and
5(b). Let AT be 0, 50K, and100K, respectively, and other
fixed parameters remain the same as Figures 4(a) and 4(b).
The change of vibration frequencies with increasing mois-
ture concentration can be observed. It can be revealed that
the dimensionless vibration frequency is smaller when the

temperature is higher. For example, if the temperature is
kept as a constant at Tj, when the moisture concentration
changes from 0 to 2%, the first-order vibration frequency
decreases by 12.25% and the second-order decreases by
4.63%. The influence of hygrothermal environmental factors
on fundamental frequencies of vibrating nanoplates is in-
dispensable in the design of nanoplates working in special
environments. The decrease of vibration frequency means
that the equivalent stiffness of the nanoplate is weakened.
Therefore, an increase in the moisture concentration may
reduce the stiffness of functionally graded nanoplates. This is
because the nanoplate structure degrades and swells with the
adsorption of water molecules. Hence, in the actual design of
NEMS, the damage effect of the high temperature and
moisture on the structure should be considered.

In addition, the effect of the axial speed of functionally
graded nanoplates on the vibration is considered. Let other
parameters remain unchanged. For example, take
AT=100K, AH=1%, and p=1. Then, let 7=0.01, {=0.05;
7=0.05, {=0.05; and 7=0.05, { = 0.1, respectively. The trend
of the dimensionless vibration frequency with the increasing
axial speed is presented in Figures 6(a) and 6(b). It can be
seen that the vibration frequency increases when the non-
local parameter becomes smaller or the material
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FIGURE 4: Variation of the vibration frequency with respect to temperature changing under different moisture concentrations. (a) The first-
order vibration frequency. (b) The second-order vibration frequency.
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FIGURE 5: Variation of the vibration frequency with respect to moisture concentration under different temperature changing. (a) The first-
order vibration frequency. (b) The second-order vibration frequency.

characteristic scale parameter becomes larger. At the same
time, it is apparent that with the increase of the axial speed,
the vibration frequency decreases faster and faster. For
example, choosing 7=0.05 and {=0.05, when the dimen-
sionless speed increases from 0 to 2, the first-order vibration
frequency decreases by 9.36%, while the dimensionless speed
increases from 2 to 4, the first-order frequency decreases by
59.99%, and so the decline rate increases significantly.

Hence, the increase of axial speed leads to the instability of
functionally graded nanoplates, and such a conclusion is a
common sense which also holds at the macroscale. In the
actual NEMS design, the appropriate speed should be chosen
to ensure the stability of the system by considering the
reduction effect of speed on the structure stiffness. More-
over, it can be observed that, when the nonlocal parameter is
a constant, there is a significant difference between the



Shock and Vibration

20

16 -

12

= 7=001,(=005
—eo— 17=0.05,{=0.05
—a— 17=0.05,({=0.1

()

13

60

56

52 4

48

44

40

36

= 7=0.01,(=005
—e— 7=0.05,(=0.05
—a— 17=0.05,(=0.1

(b)

FIGURE 6: Variation of the vibration frequency with respect to the axial speed under different internal scale parameters. (a) The first-order

vibration frequency. (b) The second-order vibration frequency.

vibration frequencies with {=0.05 and {=0.1. Therefore,
there is a remarkable effect of the material characteristic
scale parameter on the stability of the functionally graded
nanoplates. Unlike the axial speed, the material character-
istic scale parameter belongs to an internal influence factor,
which is particularly significant at the nanoscale but can be
ignored at the macroscale. It can also be seen from the
Figure 6 that, for different nonlocal parameters and the
material characteristic scale parameters, the curve has ba-
sically the same change trend. This shows that internal in-
fluence factors basically have no influence on the effect of
axial speed changes on the system stability, which also in-
dicates that the internal characteristic parameters affect little
on the system at the macro scale.

As the gradient index increases, the properties of
nanoplates gradually change from ceramic to metal. The
effect of the gradient index on the dimensionless natural
frequency under different material characteristic scale pa-
rameters is described in Figures 7(a) and 7(b). It can be seen
that the natural frequency decreases as the gradient index
increases, and for smaller material characteristic scale pa-
rameters, the rate of decrease is greater. In other words,
when the material characteristic parameter is small, the
change of the gradient index has a stronger influence on the
vibration behaviors of the nanoplate. In the range of the
gradient index from 0 to 4, the vibration frequency is
constant and the first-order frequency is always lower than
the second-order frequency, indicating that the nanoplate
system is stable in this range. Similarly, for both the first- and
second-order frequencies, the frequencies are significantly
different as the material characteristic scale parameters in-
crease, which proves the size dependence of the nanoplates.
For different d material characteristic scale parameters, the

slope of the curve in Figure 7 is different when it drops,
which indicates that the material characteristic scale pa-
rameters will affect the stiffness effect of the gradient index
on the system.

Then, the influence of the nonlocal parameter on the
vibration stability is analyzed. The other parameters are
kept unchanged and then take £=1, {=0.05; £{=2.5,
(=0.05; and £=2.5, {=0.1, respectively. The changes of
the dimensionless vibration frequency with increasing
the nonlocal parameter under different dimensionless
axial speeds and material characteristic scale parameters
are plotted in Figures 8(a) and 8(b). It can be observed
that the vibration frequency is larger with a smaller speed
or a larger material characteristic scale parameter. Be-
sides, it is clear that the dimensionless vibration fre-
quency decreases with increasing the nonlocal parameter.
Taking the case of £ =1 and {=0.05 as an example, when 7
increases from 0 to 0.2, the dimensionless first-order
vibration frequency decreases by 34.99%, and the second-
order decreases by 48.24%, which reflects the softening
behavior in the nonlocal effect. Meanwhile, we observe
that, when £ =2.5 and { =0.1, the calculated results are in
the middle in Figure 8(a), but they are at the top in
Figure 8(b). This is because the increase of stiffness caused
by the increase of material characteristic scale parameter
is greater than the stiffness weakening effect by the in-
crease of the axial speed.

Furthermore, the influence of the nonlocal parameter on
the vibration of functionally graded nanoplates with dif-
ferent rectangular shapes is discussed. The aspect ratio of the
nanoplate A is chosen as 1, 1.05, and 1.1, respectively. As
clearly visible in Figures 9(a) and 9(b), the dimensionless
vibration frequency changes with the nonlocal parameter
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under different aspect ratios. While the nonlocal parameter ~ order frequency decreases by 46.58%. If the aspect ratio is
changes from 0 to 0.2, if the aspect ratio is 1, the first-order 1.1, the first-order frequency decreases by 34.29% and the
frequency decreases by 33.2% and the second-order fre-  second-order frequency decreases by 46.90%. It is obvious
quency decreases by 46.26%. If the aspect ratio is 1.05, the  that, in the case of higher-order vibration, when the aspect
first-order frequency decreases by 33.74% and the second-  ratio increases, the vibration frequency decreases more and
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FIGURE 9: Variation of the vibration frequency with respect to the nonlocal parameter under different aspect ratios. (a) The first-order

vibration frequency. (b) The second-order vibration frequency.

more significantly. The vibration of the nanoplate can be
controlled by changing the shape of the nanoplate to avoid
system resonance and ensure the stability of the structure.

Then, the influence of the material characteristic scale
parameter is investigated. Keep the aspect ratio A=1, and
then select different axial speeds and nonlocal parameters as
comparison; that is, taking £ =1, 7=0.05; £ =2, 7=0.05; and
£=2, 7=0.1, respectively. Figures 10(a) and 10(b) present
the variation of vibration frequencies with the material
characteristic scale parameter. Similar to previous conclu-
sions, a lower axial speed and a smaller nonlocal parameter
result in a higher vibration frequency. In addition, it can be
seen that vibration frequencies increase with an increase in
the material characteristic scale parameter. For instance, if
&=1 and 7=0.05, when the material characteristic scale
parameter increases to 0.2, then the first-order vibration
frequency increases by 30.27% and the second-order in-
creases by 79.42%. This indicates that the stiffness of the
nanoplate becomes larger while increasing the material
characteristic scale parameter, which reflects the stiffness
hardening effect. Besides, it is found that the influence of the
material characteristic scale parameter on higher-order
frequencies is greater than that on lower-order ones with
different nonlocal parameters, reflecting a coupling effect
between the material characteristic scale parameter and
nonlocal parameter.

Finally, based on the coupling effect of the nonlocal
parameter and the material characteristic scale parameter
mentioned above, keeping {=1 and A=1 invariant, the
different material characteristic scale parameters are taken to
observe the changes of vibration frequencies with the in-
ternal scale parameter ratio in Figure 11. It is concluded that
vibration frequencies become greater in case of increasing

the material characteristic scale parameter when the ratio 7/{
is less than 1 (i.e., < {). Herein, the material characteristic
scale parameter representing the strain gradient effect plays a
dominant role, and the increase of vibration frequencies
means the stiffness hardening. On the other hand, vibration
frequencies diminish with an increase in the material
characteristic scale parameter in the case of 7 > (. Herein, the
nonlocal parameter representing the nonlocal effect domi-
nates the mechanism of stiffness variation and thus exhibits a
softening behavior. In particular, the vibration frequency is
restored to that of the classical thin plate vibration theory
when the ratio 7/{ is equal to 1 (i.e., 7={(). The stiffness
softening and hardening behaviors were commonly seen in
the nanostructures. In fact, the coupling effect of the non-
local parameter and material characteristic scale parameter
results in the behaviors of stiffness softening and hardening.
In the nonlocal strain gradient theory, two nanoscaled in-
ternal scale parameters including the nonlocal parameter
and the material characteristic scale parameter are in the
same magnitude, and the nonlocal effect and strain gradient
effect respectively represented by the two parameters are
equivalent. Moreover, the two kinds of internal scale effects
are coupled in out-of-plane vibrations of axially moving
functionally graded nanoplates in hygrothermal environ-
ments as analyzed before. In this coupling interaction, the
effect of a nanoscaled nonlocal parameter is almost equal to
that of the nanoscaled material characteristic scale param-
eter. This explains why the boundary between the softening
behavior and hardening behavior is determined by the
magnitude relationship between the two internal
parameters.

In this study, the competition relationship between
different internal characteristic parameters under the
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respect to the ratio of the nonlocal parameter to the material
characteristic scale parameter.

external elastic deformation and rigid motion is revealed for
the first time, which can provide a reference for the design of
MEMS/NEMS with a macroscopic motion in hygrothermal
environments. Due to the coupling effect, the nonlocal effect
and strain gradient effect should be considered compre-
hensively to control the stability of the system in an actual
situation. It should also be mentioned that although the
coupling phenomenon in the nonlocal and strain gradient

effects is observed, the influences of internal characteristic
parameters and external physical parameters on axially
moving hygrothermal functionally graded nanoplates are
independent.

4. Conclusions

Based on the nonlocal strain gradient theory, the func-
tionally graded nanoplate with an axial motion in hygro-
thermal environments is investigated. The governing
equation of motion for a vibrating and moving functionally
graded nanoplate is derived via Hamilton’s principle. The
out-of-plane vibration characteristics of functionally graded
nanoplates with boundary constraints simply supported on
four sides are presented by solving the frequency-domain
equation numerically. The effects of the dimensionless pa-
rameters on the vibration frequencies such as the temper-
ature changing, moisture concentration, axial speed,
gradient index, nonlocal parameter, material characteristic
scale parameter, and aspect ratio are discussed. The fol-
lowing conclusions are obtained:

(i) The effect of hygrothermal environmental factors on
fundamental frequencies of vibrating nanoplates is
obvious and the increase of moisture concentration
and temperature change reduces the vibration
frequency.

(ii) The variation of axial speed plays an important role
in the stability of axially moving nanoplates. With
the increase of axial speed, the vibration frequency
decreases faster and faster. Hence, the increase of
speed leads to the instability of the system.
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(iii) The shape of the nanoplate and the mixing mode of
its internal components have effects on the dynamic
stability of the system. The greater the aspect ratio is,
the higher the vibration frequency is. When the
gradient index becomes larger, the natural fre-
quency gets decreasing.

(iv) The vibration frequencies decrease with the increase
of the nonlocal parameter and increase with the
increase of the material characteristic scale pa-
rameter. The two internal characteristic parameters
influence and restrict each other. If the nonlocal
parameter is greater than the material characteristic
scale parameter, the nonlocal effect plays a domi-
nant role, and the stiffness softening is observed. If
not, the strain gradient effect dominates, and the
stiffness hardening is observed. Hence, the com-
petition relationship existing in internal charac-
teristic parameters at the micro/nanoscale is
revealed.
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