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Maximum cyclostationarity blind deconvolution (CYCBD) can recover the periodic impulses frommixed fault signals comprised
by noise and periodic impulses. In recent years, blind deconvolution has been widely used in fault diagnosis. However, it requires a
preset of filter length, and inappropriate filter length may cause the inaccurate extraction of fault signal. +erefore, in order to
determine filter length adaptively, a method to optimize CYCBD by using the seagull optimization algorithm (SOA) is proposed in
this paper. In this method, the ratio of SNR to kurtosis is used as the objective function; firstly, SOA is used to search the optimal
filter length in CYCBD by iteration, and then it uses the optimal filter length to perform CYCBD; finally, the frequency-domain
waveform is determined through Fourier transformation. +e method proposed is applied to the fault extraction of a simulated
signal and a test vibration signal of the closed power flow gearbox test bed, and the fault frequency is successfully extracted, in
addition, using maximum correlation kurtosis deconvolution (MCKD) and multipoint optimal minimum entropy deconvolution
adjusted (MOMEDA) to compare with CYCBD-SOA, which validated availability of the proposed method.

1. Introduction

+e gearbox is widely used in the transmission system; fault
diagnosis of the gearbox is necessary to ensure the safe and
stable operation of the equipment [1, 2]. At present, scholars
have put forward many methods to extract the fault signal in
the mixed vibration signal. +ese methods include deep
learning techniques [1–3], empirical mode decomposition
(EMD) [4–6], ensemble empirical mode decomposition
(EEMD) [7–9], local mean decomposition (LMD) [10],
variational mode decomposition (VMD) [11–13], and blind
deconvolution [14–16]. However, the forming process of
rolling bearing fault source signal is a convolutional mixing
process of source signal and noise, and the blind decon-
volution can extract fault pulse through the deconvolution
process, so the blind deconvolution has obvious advantage
in bearing fault diagnosis [15].

At present, the fault diagnosis methods based on decon-
volution theory include minimum entropy deconvolution
(MED), maximum correlation kurtosis deconvolution
(MCKD), multipoint optimal minimum entropy deconvolu-
tion adjusted (MOMEDA), and maximum cyclostationarity
blind deconvolution (CYCBD). Wiggins first proposed the
minimum entropy deconvolution method [17], and thenmany
researchers applied MED to the field of fault diagnosis. Li et al.
presented an improved MED which used the shuffled frog
leaping algorithm to find the optimal filter coefficients,
resulting in the accuracy of threshold selection being higher
[18]. Cheng et al. adopted the standard particle swarm opti-
mization algorithm to solve the filter coefficients of MED and
successfully applied it to the fault signal extraction of railway
bearings [19]. However, the limitation of MED is that it can
deconvolve only a single impulse or a selection of impulses. In
order to overcome the defects of the MEDmethod, McDonald
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et al. proposed the maximum correlated kurtosis deconvolu-
tion (MCKD) which enhances high correlated kurtosis and
encourages periodicity about a specific period [20]. Wang et al.
adopted the MCKD as the prefilter to denoise the vibration
signals of heavy-load slewing bearing.+en, the intrinsic mode
functions (IMFs) of the signals were decomposed by com-
plementary ensemble empirical mode decomposition, and the
optimal entropy values of IMFs were inputted into support
vector machine. +e fault feature extraction results of the
practical combined failure signals were verified [21]. Zhang
et al. employed MCKD to weaken the influence of the
transmission path followed by TQWT, and then the signals
were decomposed intomultiple sub-bands in differentQ values
to enhance the fault features [22]. +e number of shock pulses
extracted by MCKD was increased, but only a limited number
of shocks could be extracted locally. McDonald and Zhao
proposed the multipoint optimal minimum entropy decon-
volution adjusted (MOMEDA) which used a time objective
vector to define the position and weight of the impulse se-
quence obtained by deconvolution, and the optimal filter can
be solved without iterative algorithm [23]. Wang et al. used the
grid search method to solve the optimal filter length of
MOMEDA, and reliably applied it to extract the compound
fault pulse signals in strong noise environment [24]. Li et al.
proposed an algorithm based on the multipoint kurtosis
spectrum characteristics and MOMEDA which adopted the
spectrum fusion method to reconstruct the signal spectrum
[25]. MOMEDA has a significant effect on the noise reduction,
but it also greatly reduces the pulse amplitude in the vibration
signal [15]. Buzzoni et al. proposed the maximum cyclo-
stationarity blind deconvolution (CYCBD) which can well
extract continuous periodic pulse and enhance the impact
amplitude [14]. Chen et al. introduced the periodicity detection
techniques (PDTs) to automatically identify the impulse period,
and the PDT-assisted CYCBD can be enhanced bearing fault
features with respect to CYCBD [26]. Wang et al. proposed a
novel method that applied ACYCBD to obtain the deconvo-
lution signal and then used instantaneous energy slice bis-
pectrum (IESB) as a postprocessing method to suppress the
residual noises [27]. Wang et al. proposed an adaptive method
to determine the cyclic frequency set and filter length of
CYCBD. +e cyclic frequency set is determined by the auto-
correlation function of morphological envelope, and the filter
length is selected by the equal-step search strategy [15].
Compared with other deconvolution algorithms, CYCBD has
better noise reduction performance, but the cyclic frequency
and filter length have a great influence on it.

+e seagull optimization algorithm (SOA) was put
forward in 2019 by Dhiman and Kumar, and the test results
prove that SOA acquired the competitive results compared
with nine well-known optimization algorithms [28]. In this
paper, the ratio of SNR to kurtosis is taken as the objective
function, and SOA is used to adaptively select the filter
length of CYCBD.+e reliability of the combination of SOA
and CYCBD is verified from the simulation signal and the
experimental signal, respectively.

2. Basic Theory

2.1. Seagull Optimization Algorithm. +e most important
characteristics of seagulls are migration and aggressive be-
havior. Migration is the movement of animals from one
place to another, according to the seasons in order to find the
most abundant food sources and obtain enough energy.
During migration, animals travel in groups. Each seagull is
positioned differently during migration to avoid bumping
into each other. In a group, seagulls can move in the di-
rection of the best position. Seagulls often attack migratory
birds forming a spiral movement pattern, as shown in
Figure 1. +e steps are as follows:

(1) Seagull population Ps parameter initialization: given
the movement behavior of seagull in a given search
space A, the behavior of B is randomized which is
responsible for proper balancing between explora-
tion and exploitation; the maximum number of it-
erations is Maxiteration; fc is introduced to control the
frequency of employing variable A which is linearly
decreased from fc to 0; uand v are constants to
define the spiral shape.

A � fc − x∗
fc

Maxiteration
  ,

B � 2∗A
2 ∗ rd,

(1)

where x� 0, 1, 2, . . . , Maxiteration, rd is a random
number which lies in the range of [0, 1].

(2) Calculation of the new search agent position to avoid
the collision between neighbors, and movement
towards best neighbor’s direction:

C
→

s � A × P
→

s(x), (2)

M
�→

s � B × P
→

bs(x) − P
→

s(x) , (3)

D
→

s � C
→

s + M
�→

s



, (4)

where C
→

s represents the position of search agent
which does not collide with other search agents,
P
→

s(x) represents the current position of the search
agent, x indicates the current iteration, M

�→
s repre-

sents the positions of the search agent P
→

s(x) towards
the best fit search agent P

→
bs(x) (i.e., fittest seagull),

and D
→

s represents the distance between the search
agent and the best fit search agent.

(3) While attacking the prey, the spiral movement be-
havior occurs in the air.+is behavior in x, y, z planes
is described as follows.+e best solution is calculated
and saved and the position of other search agents is
updated.
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x′ � r × cos(k), (5)

y′ � r × sin(k), (6)

z′ � r × k, (7)

r � u × e
kv

, (8)

where r is the radius of each turn of the spiral, k is a
random number in the range [0≤ k≤ 2π], and e is
the base of the natural logarithm. +e updated po-
sition of the search agent is calculated using equa-
tions (5)–(9).

P
→

s(x) � D
→

s × x′ × y′ × z′  + P
→

bs(x), (9)

where P
→

s(x) saves the best solution and updates the
position of other search agents.

(4) Iterate from step (2) to step (3) to update the optimal
solution until the maximum number of iterations.

2.2. CYCBD Algorithm. Generally, the purpose of blind
deconvolution is to recover the source signal s0 from the
noise observation signal X, viz.,

s � X∗ h

� s0 ∗g( ∗ h ≈ s0.
(10)

+e matrix form is as follows:

s[N − 1]

⋮

s[L − 1]

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ �

x[N − 1] · · · x[0]

⋮ ⋱ ⋮

x[L − 1] · · · x[L − N − 2]

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

h[0]

⋮

h[N − 1]

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

(11)

where g is the unknown impulse response function (IRF), h
is the inverse filter, s is the estimated input, and ∗ refers to
the convolution operation, and L andN are the total samples
of s and h, respectively.

In reference [14], cyclic frequency of a discrete-time
signal is defined as

α �
k

Ts

, (12)

where k is the sample index and Ts is the period (in the
sample), which can be related to the failure rate.

+e second-order cyclostationarity (ICS2) is defined as
follows:

ICS2 �
k>0 c

k
s




2

c
0
s



2 , (13)

with

c
k
s �

E
H

|s|
2

L − N + 1
, (14)

c
0
s �

s
H

s

L − N + 1
, (15)

where

|s|
2

� |s[N − 1]|
2
, . . . , |s[L − 1]|

2
 

T
,

E � e1 . . . ek . . . eK ,

ek �

e
− j2π k/Ts( )(N − 1)

⋮

e
− j2π k/Ts( )(L − 1)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(16)

According to (14) and (15), (13) can be expressed as

ICS2 �
|s|

2H
EE

H
|s|

2

s
H

s



2 . (17)

In this case, the signal containing the periodic compo-
nent |s|2 is called P[|s|2], which contains all the interested
periodic frequencies k, and can be written as

Ρ |s|
2

  �
1

L − N + 1

k

ek e
H
k |s|

2
  �

EE
H

|s|
2

L − N + 1
. (18)

Bringing (10) and (18) into (17) gives the following
formula:

ICS2 �
h

H
X

H
WXh

h
H

X
H

Xh
, (19)

where h is the inverse filter; the weighting matrix W can be
expressed as

W � diag
Ρ|s|2

s
H

s
 (L − N + 1)

�

⋱ 0

P |s|
2

 

0 ⋱

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(L − N + 1)


L−1
l�N−1s

2 .

(20)
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Figure 1: Migration and attacking behaviors of seagulls [28].
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According to (19) and (20), the shock source with the
largest ICS2 behavior can be extracted.

2.3. CYCBD Based on the Seagull Optimization Algorithm.
Seagull optimization algorithm has a simple program, which
can not only obtain the global optimal solution but also has
high search precision and efficiency. +e objective function
is established and the seagull optimization algorithm is used
to find the optimal filter length of CYCBD. Generally, the
larger the SNR of the periodic fault pulse signals in the
background of strong noise is, the better it is. For the
kurtosis, if the signal fluctuates gently and contains several
impulses, the kurtosis value is large. If the signal contains
continuous pulses, the more the number of pulses, the
smaller the corresponding kurtosis value. +erefore, the
SNR is taken as the numerator and the kurtosis as the
denominator to establish the objective function and can be
written as

F �
SNR

kurtosis
. (21)

+at is, when the objective function value is the maxi-
mum, the corresponding filter length is the optimal solution.
+e flow chart of the proposed method is shown in Figure 2.

3. Simulation Analysis

3.1. Effects of Filter Lengths L on CYCBD. To illustrate the
effect of L on the CYCBD results, a simulated signal y is
constructed, as shown in formula (22). +e signal consists of
periodic pulses and random noise:

y � A1e
− g×2πfnt

× sin 2πfnt ×

�����

1 − g
2



  + 0.5 × ζ,

(22)

where the nature frequency fn � 50, damping coefficient
g � 0.1, and amplitude A1 � 1.5.

+e waveform of the signal is shown in Figure 3.
Figure 3 shows the time-domain graph of the simulated

signal. Figure 3(a) is the fault impulse signal, and Figure 3(b)
is the composite signal after adding noise. It can be observed
that the periodic impact (Figure 3(a)) is submerged by noise.

CYCBD recovers the fault source by solving a finite
length filter to perform the deconvolution and extract the
continuous periodic pulse well. However, the filter length
has a great influence on the noise reduction results. In order
to illustrate the influence of the filter length on CYCBD
results, the different filter lengths (L� 200, 400, 600, and 800)
were used to denoise the simulation signal y. +e frequency
corresponding to the fault period of the simulation signal is
50Hz. Referring to [14], the cycle frequency set is set as [50,
100, 150, 200, 250, 300, 350, 400, 450, 500]. Figure 4 shows
the processing results of CYCBDwith different filter lengths.
+e left side is the time-domain waveform after noise re-
duction, and the right side is the frequency-domain wave-
form after FFT.

It can be obviously seen from Figure 4 that different filter
lengths have a great influence on the noise reduction results

and periodic pulse extraction of CYCBD. When L� 200, the
result denoised by CYCBD contains a large amount of noise,
and there are individual pulses in the corresponding fre-
quency-domain waveform. However, the pulse frequencies
are 19.99Hz, 79.96Hz, 119.9Hz, 179.9Hz, and 219.9Hz.
+ere is no fault frequency and its frequency doubling.
When L� 400, the noise amplitude decreases and more
pulses appear in the frequency-domain waveform, but the
pulse frequencies are 39.98Hz, 59.96Hz, 89.94Hz, 109.9Hz,
139.9Hz, etc.; the signal mixing phenomenon still exists.
When L� 600, the noise amplitude is greatly reduced, and
the continuous periodic pulses can be observed in the time
domain. +e fault frequency of 50Hz and its multiples are
uniformly distributed in the frequency-domain waveform.
When L� 800, the signal extracted by CYCBD is distorted,
and no protruding pulse appears in the frequency-domain
waveform. +e results show that if the filter length is not
properly selected, CYCBD cannot effectively extract the
periodic pulse submerged by noise.

3.2. Adaptive Determination of the Optimal Filter Length.
In order to find the optimal filter length adaptively, the
seagull optimization algorithm is used to search the opti-
mum solution. +e less the noise contained in the signal, the
greater the SNR value. +e larger the number of periodic
pulses extracted, the smaller the kurtosis value. +erefore,
the objective function value is taken as the optimization
objective to find the filter length corresponding to the
maximum.

+e method proposed in this paper is used to extract the
fault signal from the simulation signal in Section 3.1. +e
optimal filter length obtained by the SOA is 499, and the
corresponding CYCBD result is shown in Figure 5. +e
results show that the fault signals with fault frequencies of
50Hz and its multiples can be extracted effectively.

4. Experimental Verification

4.1. Test Bench. In order to verify the practicability of
CYCBD-SOA in the fault features extraction of the outer
ring of the rolling bearing, a closed power flow gearbox test
bench was used to carry out the relevant tests. +e vibration
signals of the outer ring faults were collected. +e closed
power flow test bench is loaded by the internal force gen-
erated by the torsion bar, and the speed is adjusted by the
electromagnetic speed-regulating asynchronous motor with
a range of 0 r/min–1500 r/min. +e gearbox test bench is
shown in Figure 6.+e type of the piezoelectric sensor is CA-
YD-186 with a sensitivity of 10.41 mv/m · s−2and a sampling
frequency of 12000Hz. +e tapered roller bearings, type is
32212, are arranged on a side of the headstock driving wheel
away from the coupling. +e bearing with outer ring cracks
was used to replace the healthy bearing, as shown in Figure 7.
+e crack of the outer ring is formed by the electrical spark
machining, as shown in Figure 8. After calculation, the
instantaneous frequency of bearing outer ring is f � 4.73fr,
where fr is the rotational frequency of the rotating shaft.
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4.2. Comparison and Analysis. In the test, the sampling
frequency is 12000Hz and the rotating speed is 510 r/min.
After calculation, the fault frequency of the outer ring is
40Hz. +e vibration signals collected are shown in Figure 9.
Due the noise is too large, the periodic pulse cannot be

observed in the time-domain waveform, and the fault fea-
tures in the frequency-domain waveform are not obvious.

Referring to [14], the cycle frequency set is set as [40, 80,
120, 160, 200, 240, 280, 320, 360, 400]. +e vibration signals
obtained from the tests were denoised by CYCBD-SOA.+e

Start

Load the time
domain signal

Perform CYCBD

Calculate F of
deconvolution signal

Find the maximum value
and record the current

best position

Whether set
iteration number has

reached

Output the optimal
filter length L

Run CYCBD with
the optimal L

Calculate objective
function value and record

the global best position

Up the optimal
seagulls position

The objective function:
F = SNR/kurtosis

Define cyclic frequency
and inverse filter length

Initial SOA control
parameters: maxiter, lb,

ub, and dim

Frequency spectrum
analysis

Fault feature
extraction

End

Yes No

Figure 2: Flow chart of the proposed method.
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calculated optimal filter length is 499, and the corresponding
CYCBD-SOA result is shown in Figure 10. It can be seen
from the time-domain waveform that the noise component
is greatly reduced, and the fault pulse is prominent in the
frequency-domain waveform. +ere are 24 obvious peaks at
50Hz and its integer multiples, and the frequency cluster
reaches to 980Hz. +erefore, the CYCBD-SOA can suc-
cessfully extract the fault frequency of the outer ring faults.

To illustrate the superiority of CYCBD-SOA, the test
vibration signal was processed with MCKD and MOMEDA.
+e results obtained by the three methods mentioned above
are compared and analyzed.

MCKD is used to process the test vibration signal. +e
filter length is set to 600 and the deconvolution period is 50.
+e results of MCKD are shown in Figure 11. It can be seen
from the time-domain waveform that the noise is weakened
and the fault pulse is prominent. +ere are 24 continuous
periodic pulses with frequencies of 38.3Hz, 81Hz, 123Hz,
202.3Hz, 240.3Hz, and so on, in the frequency-domain

waveform. +e extracted fault frequency is close to 40Hz
and its integer multiples, but exists in some deviations. In
addition, the amplitude of the fault frequency extracted by
MCKD is small; it is easy to be submerged by the strong
noise signal.

+e filter length is set as 600 and the period is 50.
MOMEDA is used to process the test vibration signal. +e
results are shown in Figure 12. +e time-domain waveform
shows that the noise is attenuated. For the frequency-do-
main waveform, it can be observed that there are 24 con-
tinuous pulses at 39.2Hz, 81Hz, 120Hz, 162Hz, 200Hz, and
so on. Compared with MCKD, the extraction accuracy of
fault frequency is improved and the amplitude is
strengthened.

+erefore, the comparative analysis of the results ob-
tained by the three deconvolution methods shows that
CYCBD-SOA has obvious advantages. It can extract the
continuous periodic pulses accurately and enhance the
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Figure 9: Experimental fault signal: (a) time-domain waveform and (b) frequency-domain waveform.

Figure 8: +e crack fault of bearing outer ring.
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amplitude of fault signals greatly, which is helpful for fault
signal extraction under strong noise background.

5. Conclusion

+e selection of filter length will affect the results of the
CYCBD. Inappropriate filter length may cause the inaccu-
rate extraction of fault signal. In this paper, the SOA is
applied to the CYCBD, and the objective function con-
structed by the ratio of SNR to kurtosis is taken as the

optimal target value. +e optimal filter length is obtained by
the iterative pattern.

+e conclusion is as follows: if the filter length is too large
or too small, CYCBD results will be distorted. In this study,
the optimal filter length is adaptive determined by using
CYCBD-SOA. +e accuracy of the proposed method is
verified by the periodic pulse extraction of the simulation
signal. Meanwhile, CYCBD-SOA is successfully applied to
bearing fault diagnosis. +e crack fault of the outer ring of
the bearing is obvious, and fault frequency 40Hz and its
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Figure 12: Results of MOMEDA: (a) time-domain waveform and (b) frequency-domain waveform.
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Figure 10: Results of CYCBD-SOA: (a) time-domain waveform and (b) frequency-domain waveform.
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integer multiples can be extracted. By comparing the
CYCBD-SOA with MCKD and MOMEDA in the test vi-
bration signal, the reliability of the proposed method is
verified.
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