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Longwall top coal caving mining is one of the main methods of mining thick coal seams in China. *erefore, carrying out the
classification evaluation of top coal caving is of great significance to ensure mining success and reduce the risk of mining
technology. In order to realize the classification evaluation of top coal caving, this article introduces the method of using BigML to
establish the classification evaluation model of top coal caving. Furthermore, using the data from the CNKI database as sample
data, a classification evaluation model of top coal caving is established on BigML. After training, testing, and optimization, the
model is used to evaluate the top coal caving in No. 3 coal seam of Gucheng Coal Mine, and the evaluation result is grade 1, which
is consistent with the engineering practice. *e final research results show that the application of BigML in the classification
evaluation of top coal caving is successful; the evaluation of top coal caving through BigML is reliable; BigML provides another
scientific reliability way for the classification evaluation of top coal caving.

1. Introduction

According to theWorld Energy Statistics Review published in
2020, global coal consumption decreased by 0.6% in 2019,
and the proportion of coal in primary energy reached the
lowest level in 16 years, but the proportion of coal in primary
energy is still up to 27% [1]. *erefore, in the continuous
development of other energy sources, coal is still one of the
most critical energy sources [2], especially for a country such
as China that is “rich in coal, poor in oil, and less in gas” and
whose economy is developing rapidly, the status of coal is
vital. In 2015, China’s coal production and consumption had
reached 47% and 50.01% of the world’s coal production and
consumption [3], respectively. By 2019, when global coal
consumption is declining, China’s coal consumption will
still account for 51.7% of the world’s coal consumption [1]. It
shows that a large amount of coal needs to be consumed to
support China’s rapid economic development. Among the
proven recoverable coal reserves in China, thick coal seams
account for 44% of the total recoverable coal reserves [4],
and coal seams with a thickness of more than 5m are as

much as 10 billion tons [5], so nearly half of the coal
consumed comes from the mining of thick coal seams [6]. As
the longwall top coal caving mining technology has the
advantages of high output, high efficiency, low energy
consumption, low cost, and strong adaptability [7], it is
estimated that the use of longwall top coal caving mining in
thick seams can double the production efficiency and reduce
the production cost by 30% to 40% [8]. *erefore, since
China introduced it from abroad in the 1980s, it has become
the primary technology for mining thick coal seam in China,
Australia, Turkey, Russia, and Vietnam through continuous
development and improvement [9–16]. *e top coal caving
(that is, the difficulty of top coal mining under the action of
in situ stress and gravity [17]) is one of the critical factors
determining the success of longwall top coal caving mining,
and it is also an essential reference for designing longwall top
coal caving mining technology and improving the recovery
rate of top coal [18]. In addition, if the top coal caving can be
understood from the feasibility study to the formal design
stage, the relevant technical risks will be significantly re-
duced [19]. *erefore, the evaluation of top coal caving has
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always been a hot spot in the research of longwall top coal
caving mining at home and abroad.

At present, the evaluation of top coal caving at home and
abroad is mainly based on observation and empirical
methods [7, 19], established mathematical evaluation
models [20], and numerical simulations [21–23]. However,
there are some shortcomings in these methods. For example,
based on observation and experience, there are strict re-
quirements on the experience level of the evaluator, and at
the same time, they also need to bear the massive risk of
mistakes due to lack of experience. *e establishment of
mathematical models and numerical models to evaluate top
coal caving requires that the model builder has a very high
level of professional knowledge. At the same time, as the
simulation size of the current numerical simulation is get-
ting larger and larger, the requirements for the computer are
getting higher and higher, which makes the technical cost
and time cost of the evaluation very high, and the evaluation
efficiency is not high. In recent years, with the continuous
development of science and technology, advanced artificial
intelligence and machine learning algorithms such as ant
colony clustering algorithms, expert systems, and artificial
neural networks have been gradually used in coal production
[24–26]. *erefore, experts and scholars are also trying to
use artificial intelligence algorithms. Moreover, machine
learning algorithms are used to evaluate top coal caving and
have achieved certain results. For example, Mohammadi
et al. [27] used fuzzy multicriteria decision-making methods
to establish a classification system for evaluating the caving
of the direct roof of coal seams; Yongkui et al. [28] used
Bayesian theory and rough set theory to establish a Bayesian
classifier model used for the evaluation and prediction of
roof caving properties of coal seams, which can accurately
classify; Oraee and Rostami [29] used fuzzy logic algorithms
to establish a fuzzy system for quantitative analysis of roof
caving in longwall top coal caving mining face and applied
the model to Tabas·Palward Mine’s longwall top coal caving
mining face which located in Palward District, Yazd
Province, and the model prediction results in application are
consistent with the on-site measured results; Shi et al. [17]
established a top coal caving prediction model based on
vector support vector machines, and the test results showed
that the model has a certain feasibility and generalization; Yu
andMao [30] used SPSS statistical software to establish a top
coal caving prediction model based on an artificial neural
network. *e training and test results show that the model
has good top coal caving prediction capabilities. However,
most of the prediction models of the above experts and
scholars are built by computer programming, which requires
higher computer language and professional level of users,
especially when users want to optimize and modify the
model to make it conform to the actual situation. *erefore,
it leads to the poor portability of the model and the difficulty
of popularization and application.

*erefore, in order to make the model have better
portability, at the same time, without programming, it is easy
to use the established model to evaluate the caving ability of
top coal, and even easy to modify and optimize the estab-
lished model to make it more in line with their practical

application. In this article, BigML is applied to establish the
classification evaluation model of top coal caving. It is hoped
that through this, it is possible to easily use the established
model to evaluate the top coal caving without programming,
and even easily modify and optimize the established model
to make it more in line with their actual application
situation.

2. Introduction to BigML

BigML (https://bigml.com) is a cloud-based machine learning
platform dedicated to enabling all people who understand
computer language and do not understand computer language
to build their machine learning prediction model without
writing a line of code and tomake it automatic, remote callable,
programmable, and extensible. It can perfectly and easily solve
modeling tasks such as classification, regression, time series
forecasting, cluster analysis, anomaly detection, correlation
analysis, and realize model visualization. Because BigML has
powerful functions and advanced algorithms and it is easy to
use, it can realize a one-stop service from data loading, data
cleaning, model building, and model evaluation to the final
model prediction. So, BigML has been widely used in agri-
culture [31], medicine [32], finance [33], and other scientific
research fields and has successfully helped thousands of ana-
lysts, software developers, and scientists all over the world solve
machine learning tasks from “end-to-end” and seamlessly
transform data into operational models for remote services, or
embed them locally into applications for prediction. In addi-
tion, BigML has more than 147000 global users, andmore than
600 universities and research institutions have cooperated with
it. *e global user distribution of BigML is shown in Figure 1.

3. InfluencingFactorsofTopCoalCavingandIts
Evaluation Grade Division

3.1. Influencing Factors of TopCoalCaving. Two main factors
are affecting top coal caving: geological and mining tech-
nology factors. In the longwall top coal caving mining, the
mining technology is generally determined by geological
factors [34], so this article mainly studies the top coal caving
under the influence of geological factors. *e practical ex-
perience [30] and research [9] show that the buried depth
(H), thickness of coal seam (M), thickness of gangue (MG),
uniaxial compressive strength of coal (Rc), fracture devel-
opment degree (DN, that is, the product of the number of
through cracks N1m on the surface of 1m2 coal and the
fractal dimensionD1 of the number of cracks counted by the
coal sample), and filling coefficient of direct roof (K,
K� hkp/M) are essential geological factors affecting top
coal caving [35]. *erefore, this article considers the factors
above influencing factors for the classification evaluation of
top coal caving.

3.2. TopCoalCavingEvaluationGradeDivision. *e top coal
caving is generally divided into five grades, namely, “(1)
excellent caving,” “(2) good caving,” “(3) fair caving,” “(4)
poor caving,” and “(5) extremely poor caving” [18].
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However, the engineering practice shows little difference
between grades “4” and “5.” Both are difficult to cave.
*erefore, in this article, the top coal caving is only divided
into four grades, which are “(1) excellent caving,” “(2) good
caving,” “(3) fair caving,” and “(4) poor caving.” *e specific
situation of each grade is shown in Table 1.

4. Sample Data and Data Preprocessing

4.1. Source of Sample Data. *ere are a large number of
research studies on top coal caving in the CNKI publicly
published paper database. *erefore, to meet the needs of
model training and testing, this article obtained 68 sets of
sample data from the CNKI publicly published paper da-
tabase. *e specific conditions of the sample data are shown
in Table 2, and the data distribution is shown in Figure 2.
*rough the shape and volume of the violin in the data
distribution diagram (Figure 2), it can be seen that the
“grade” of the obtained sample data is unbalanced. *ere-
fore, to ensure that the established model has good stability
and strong prediction ability, the sample imbalance is a
problem worthy of attention, and it is necessary to rea-
sonably select model performance evaluation indicators to
evaluate the model.

4.2. Data Cleaning and Segmentation. Although all the
sample data are from CNKI’s publicly published paper
database, outliers are inevitable in these sample data. *e
quality of the data sample generally has an essential impact
on establishing the model and the predictive ability of the
established model. *erefore, cleaning the data sample and
eliminating outliers make the established model better
predictive. BigML’s data anomaly detection function is based
on the most advanced isolated forest algorithm [36], which

has a powerful ability of outlier detection. *erefore, this
article uses BigML’s data anomaly detection function to do
outlier detection on the data samples in this article. Before
BigML performs data anomaly detection, it is set to find at
least three sets of relatively abnormal sample data. After
testing, only the sample with the coal seam name “No. 8-1
coal seam of Baode Mine” is an outlier (in BigML, it is
usually considered that the score is more than 60%, which is
the actual abnormality [37]). *e BigML anomaly detection
result is shown in Figure 3. *erefore, “No. 8-1 coal seam of
Baode Mine” is removed from the sample data set to obtain
clean sample data. *e sample data distribution after
cleaning is shown in Figure 4.

In order to train the model and test the model’s per-
formance, using the data segmentation function of BigML,
the sample data are randomly divided according to 7 : 3, 70%
of which is the training set and 30% is the test set.*e sample
data distribution of the training set and test set after seg-
mentation is shown in Figure 5.

5. Selection of Model Performance
Evaluation Indicators

Top coal caving classification evaluation is a problem of
classification and prediction. In classification prediction
model training and testing, model performance evaluation
indicators play a vital role in obtaining the optimal classifier.
*erefore, choosing appropriate model performance eval-
uation indicators is essential to identifying and obtaining the
optimal classifier [38]. Most of the performance indicators of
the current evaluation and classification prediction model
are based on the confusion matrix similar to Table 3, and
these performance indicators can be divided into three
categories.

Figure 1: Global user distribution map of BigML.
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Table 1: Caving grade of top coal.

Grade Top coal
caving Description

1 Excellent *e top coal can cave very well. As long as the appropriate caving support is selected, the coal can be discharged,
and no extra measures need to be taken.

2 Good
*e top coal can also cave well. Similarly, the coal can be discharged after selecting the appropriate caving support,
but there are large blocks in the discharged coal, which is easy to cause the phenomenon of the bayonet, so

corresponding measures need to be taken.

3 Fair *e top coal can cave, but not well. At the same time, the discharged coal is large and often has a bayonet
phenomenon. Corresponding measures must be taken to discharge the coal.

4 Poor *e top coal is very difficult to cave, and more measures are needed to release the coal.

Table 2: Sample data.

Number Coal seam name H (m) Rc (MPa) MG (m) M (m) DN K Grade
1 No. 3 coal seam of Yaoqiao Mine 193 25.00 0.30 6.70 7.50 0.71 4
2 No. 13-1 coal seam of Xieqiao Mine 357 10.00 0.12 12.00 14.00 2.44 2
3 No. 3 coal seam of Dayan No. 2 Mine 435 16.60 0.00 8.80 9.23 0.52 2
4 No. 3 coal seam of Qishan Mine 300 14.00 0.00 8.00 10.10 1.00 2
5 No. 2 coal seam of Taoer Mine 290 6.50 0.20 7.20 16.77 1.44 1
6 No. 2 coal seam of Xuecun Mine 300 16.00 0.40 14.50 16.20 0.36 3
7 No. 4-2 coal seam of Cuijiagou Mine 262 17.50 0.05 6.85 9.50 1.78 2
8 No. 5 coal seam of Xuangangjiaojiazhai 140 2.80 0.00 6.50 14.71 1.20 2
9 No. 15 coal seam of Yangquan No. 1 Mine 250 20.00 0.30 6.00 8.01 1.91 3
10 No. 7-8 coal seam of Pingdingshan No. 1 Mine 300 14.00 0.00 7.90 12.09 1.16 2
11 No. 3 coal seam of Lu’anwangzhuang Mine 200 16.00 0.00 7.00 7.43 0.56 2
12 No. 4-2 coal seam of Xiashijie Mine 177 17.50 0.00 12.00 9.10 0.17 3
13 No. 18 coal seam of Hegang Nanshan Mine 150 10.00 0.40 12.20 11.20 1.34 3
14 No. 15 coal seam of Yinying Mine 220 8.50 0.00 6.30 10.65 0.82 2
15 No. 2-4 coal seam of Gujiaojialequan 127.5 10.00 0.52 8.20 9.11 0.56 4
16 No. 3 coal seam of Xinzhuang Mine 175 10.00 0.00 7.00 13.02 0.78 2
17 No. 3 coal seam of Tang’an Mine 200 15.00 0.30 6.50 13.82 0.81 2
18 No. 5 coal seam of Xiangshan Mine 230 8.50 0.00 6.50 16.08 0.72 2
19 No. 2-4 coal seam of Dongliang Mine 300 16.00 0.30 12.50 14.80 1.14 3
20 No. 2-14 coal seam of Wulong Mine 300 16.00 0.40 14.50 16.20 0.36 3
21 No. 11 coal seam of Yaodatong Mine 300 30.00 0.40 8.60 9.85 0.25 4
22 No. 3 coal seam of Fenghuangshan Mine 140 35.00 0.10 6.50 8.01 0.62 4
23 No. 10 coal seam of Shuiyu Mine 190 6.50 0.00 7.20 16.77 1.44 1
24 No. 5 coal seam of Liujialiang Mine 140 2.80 0.00 6.00 19.40 1.20 2
25 Shenyang Puhe Mine lignite 357 10.00 0.12 12.00 14.00 2.44 2
26 No. 8-9 coal seam of Wangfeng Mine 90 14.00 0.70 8.00 10.10 0.00 4
27 No. 3 coal seam of Baodian Mine 435 16.60 0.00 8.80 9.23 0.52 2
28 No. 3 coal seam of Xinglongzhuang Mine 412.5 13.74 0.30 7.80 12.88 0.58 2
29 No. 2 coal seam of Chaohua Mine 160 5.00 0.00 8.40 16.00 0.73 2
30 No. 5 coal seam of Dalong Mine 200 6.70 0.20 6.50 17.00 0.60 2
31 No. 3 coal seam of Yong’an Mine 193 25.00 0.10 6.70 7.50 0.71 4
32 No. 15 coal seam of Yangquan No. 4 Mine 240 20.00 0.20 6.50 8.60 0.40 3
33 No. 6-17 coal seam of Gaozhuang Mine 300 14.00 0.00 8.00 10.05 1.00 2
34 No. 2-1 coal seam of Micun Mine 130 5.00 0.00 8.50 17.60 1.14 2
35 No. 2 coal seam of Xingtai Mine 360 20.00 0.40 6.20 8.30 0.41 3
36 No. 8-1 coal seam of Baode Mine 263.5 8.00 0.15 7.46 9.50 0.52 3
37 No. 4-2 coal seam of Buertai Mine 424.5 15.00 0.12 6.71 15.00 2.04 2
38 No. 3 coal seam of Wangpo Mine 380 25.00 0.00 6.97 12.00 0.39 2
39 No. 12 coal seam of Huojitu Mine 106 33.00 0.14 6.45 14.20 1.20 2
40 X coal seam of No.3 Hebi Mine 750 6.50 0.30 8.00 16.00 0.33 2
41 No. 8 coal seam of Wobei Mine 600 8.91 0.88 2.75 26.16 1.04 1
42 No. 8301-5 coal seam of X Mine 484 24.00 0.26 6.39 9.00 1.40 4
43 No. 8101-5 coal seam of X Mine 240 13.80 0.45 7.43 12.40 0.61 3
44 No. 8101-8 + 10 coal seam of X Mine 273 13.80 0.30 9.00 12.00 2.30 3
45 No. 2-1304 coal seam of Zhaozhuang Mine 440 14.03 0.19 6.36 11.98 0.44 2
46 No. 28071-2 coal seam of Anlin Mine 365 13.58 0.00 5.06 3.00 2.60 3
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Table 2: Continued.

Number Coal seam name H (m) Rc (MPa) MG (m) M (m) DN K Grade
47 Coal seam of Zhangshuanglou Mine 600 14.60 0.30 4.50 18.00 1.25 2
48 Coal seam of Changcun Mine 350 20.00 0.30 6.70 2.00 1.23 2
49 Coal seam of Wangcun Mine 250 25.00 0.20 6.50 2.00 1.28 2
50 Coal seam of Zhangcun Mine 230 20.00 0.20 7.00 2.00 0.68 2
51 No. 16 coal seam of Lutian Coal Mine 150 9.55 0.30 8.07 30.25 0.90 2
52 No. X coal seam of Datong No. 2 Mine 325 30.00 0.35 7.75 6.00 0.25 4
53 No. X coal seam of Tiefa Daming Mine 200 22.50 0.25 8.25 10.00 0.95 3
54 No. X coal seam of Nantun Mine 500 7.00 0.15 7.00 12.00 0.25 1
55 No. X coal seam of Xinji Mine 325 17.50 0.25 8.00 8.00 0.80 3
56 Mine big coal of No. 6 Hebi Mine 325 12.50 0.25 6.50 10.00 1.50 2
57 No. 7 coal seam of Sanhejian Mine 200 17.50 0.05 7.50 12.00 0.60 2
58 No. X coal seam of Guzhuang Mine 200 17.50 0.15 7.00 12.00 0.95 2
59 No. X coal seam of Yangchangwan Mine 350 14.50 0.25 10.00 12.50 1.50 2
60 No. X coal seam of Baicaoyu Mine 500 7.00 0.25 9.75 14.00 0.95 2
61 No. X coal seam of Yuhua Mine 500 12.50 0.15 7.75 14.00 0.80 2
62 No. X coal seam of Jiahe Mine 405 17.5 0 2.4 13.5 1.45 1
63 No. 3 coal seam of Bofang Mine 390 12 0 4.5 13 1.5 1
64 No. 13 coal seam of Jinshan Mine 235 6.4 0.5 13.53 14.5 2 1
65 No. 4 coal seam of Majialiang Mine 540 25 0 7 15 1 1
66 No. X coal seam of Wajinwan Mine 310 11 0 4.22 15 1.5 1
67 No. X coal seam of Shigejie Mine 424 16.5 0.3 6.64 13.5 1.65 1
68 No. X coal seam of Wuyang Mine 350 10 0.1 6.59 14 0.77 1
∗Data come from the database of publicly published papers on CNKI.
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Figure 2: Distribution of sample data.
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5.1. Paired Indicators. *e paired indicators mainly include
the evaluation indicators of the binary prediction model,
such as accuracy and error rate (Acc&Err), precision and
recall (P&R), and true positive rate and true false rate
(TPR&TFR), and the evaluation indicators of the multi-
classification prediction model, such as macro-accuracy and
macro-error rate and macro-precision and macro-recall,
which are expanded from binary classification to
multiclassification.

Accuracy and error rate (Acc&Err) is used to calculate
the proportion of the samples with correct prediction
classification and the samples with wrong prediction clas-
sification to the total samples. *e calculation formula of
accuracy and error rate is shown in equations (1) and (2).
*e range of accuracy and error rate (Acc&Err) is both [0, 1].
Generally, the closer the accuracy is to 1, the better the
performance of the model. On the contrary, the closer the
error rate is to 0, the better the model’s performance:

accuracy � 1 −
FP + FN
Nsample

�
TP + TN
Nsample

, (1)

error rate �
FP + FN
Nsample

, (2)

where FP is the number of samples predicted to be false
positives, FN is the number of samples predicted to be false
negatives, TP is the number of samples predicted to be true
positives, TN is the number of samples predicted to be true
negatives, and Nsample is the total number of samples.

Precision rate and recall rate, respectively, calculated the
proportion of the predicted positive samples to the predicted
positive samples and the actual positive samples. *e cal-
culation formula of precision and recall is shown in equa-
tions (3) and (4). *e range of precision and recall is both [0,
1]. Ideally, the closer the precision and recall are to 1, the
better the model’s performance. However, in practice, the
relationship between FP and FN is the relationship between
type I error and type II error, so precision and recall (P&R) is
a contradictory relationship. *erefore, it is generally nec-
essary to find a balance between the precision and recall:

precision �
TP

TP + FP
, (3)

recall �
TP

TP + TN
, (4)

where TP is the number of samples predicted to be true
positives, TN is the number of samples predicted to be true
negatives, and FP is the number of samples predicted to be
false positives.

True positive rate and true false rate (also called sensi-
tivity and specificity, TPR&TFR), respectively, calculate the
proportion of samples correctly predicted as positive cases to
the total positive samples, and the proportion of samples
correctly predicted as negative cases to the total negative
samples. *e calculation formula of true positive rate and
true false rate is shown in equations (5) and (6).*e range of
true positive rate and true false rate is both [0, 1]. Ideally, the

closer the true positive rate is to 1 and the closer the true false
rate is to 0, the better the model performance:

TPR � sensitivity �
TP

TP + FN
, (5)

TFR � specificity �
TN

TN + FP
, (6)

where FP is the number of samples predicted to be false
positives, FN is the number of samples predicted to be false
negatives, TP is the number of samples predicted to be true
positives, and TN is the number of samples predicted to be
true negatives.

Macro-accuracy andmacro-error rate andmacro-precision
and macro-recall are also called averaged-accuracy and aver-
aged-error rate and averaged-precision and averaged-recall,
which extended from the problem of dichotomy for require-
ments of multiclassification problems. *ey all treat each
category equally, add up the same indicators of different
categories, and then calculate the average to realize the eval-
uation of the multiclassification prediction model. *erefore,
their value range and significance are the same as evaluating the
two-classification prediction models. *eir calculation formula
is shown in the following equations:

macro − accuracy �
1
n

× 
n

i�1

TPi + TNi

Nisample
, (7)

macro − error rate �
1
n

× 

n

i�1

FPi + FNi

Nisample
, (8)

macro − precision �
1
n

× 
n

i�1

TPi

TPi + FPi

, (9)

macro − recall �
1
n

× 
n

i�1

TPi

TPi + TNi

, (10)

where FPi is the number of samples predicted to be false
positive in class i, FNi is the number of samples predicted to
be false negative in class i, TPi is the number of samples
predicted to be true positive in class i, TNi is the number of
samples predicted to be true negative in class i,Nisample is the
total number of samples of class i, and n is the number of
categories.

5.2. Comprehensive Indicators. *e comprehensive indica-
tors mainly include F-measure (also known as F-score, F1)
[40], Matthews correlation coefficient (Phi coefficient) [41],
Kendall’s tau, and Spearman’s rho, used for binary classi-
fication. Furthermore, as well as for evaluating the multi-
classification prediction model, the macro-F-measure and
macro-Matthews correlation coefficient (macro-Phi coeffi-
cient) of the evaluation indicators of the multiclassification
prediction model are expanded from the evaluation indi-
cators of the two-classification prediction model.

F-measure is proposed to solve the contradictory model
performance measurement value of precision and recall.
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*erefore, F-measure is a balance point between precision
and recall (that is, the harmonic average of precision and
recall), which can take into account the precision and recall of
the classificationmodel at the same time. Its formula is shown

in equation (11). *e value range of F-measure is [0, 1].
Ideally, the closer the F-measure value is to 1, the better the
model performance, and vice versa, the worse the model
performance:
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Figure 3: Anomaly detection results of sample data.
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1
F1

�
1
2

·
1
P

+
1
R

 ,

F1 �
2 × P × R

P + R
�

2TP
2TP + FP + FN

,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(11)

where P is precision, R is recall, FP is the number of samples
predicted to be false positives, FN is the number of samples
predicted to be false negatives, and TP is the number of
samples predicted to be true positives.

*e Matthews correlation coefficient (Phi coefficient),
which is mainly used to measure the two classification

problems, is a relatively balanced indicator. It compre-
hensively considers TP, TN, FP, and FN, and it can also be
used in the case of unbalanced sample data categories. *e
value range of Phi coefficient is [−1, 1], a value of 1 indicates
that the prediction is entirely consistent with the actual, a
value of 0 indicates that the predicted result is not as good as
the random predicted result, and −1 indicates that the
predicted result is utterly inconsistent with the actual result
[42]. Its calculation formula is shown in the following
equation:

Phi coefficient �
TP × TN − TP × FN

����������������������������������������
(TP + FP) ×(TP + FN) ×(TN + FP) ×(TN + FN)

 , (12)

where FP is the number of samples predicted to be false
positives, FN is the number of samples predicted to be false
negatives, TP is the number of samples predicted to be true
positives, and TN is the number of samples predicted to be
true negatives.

Macro-F-measure and macro-Matthews correlation
coefficient (macro-Phi coefficient) are also called averaged F-
measure and averaged-Matthews correlation coefficient,
respectively. It is also based on the needs of the

multiclassification problem and extended from the two
classification problems. *ey all treat each category equally,
add up the same indicators of different categories, and then
calculate the average to realize the evaluation of the mul-
ticlassification prediction model. *eir value range and
significance are the same as the evaluation of the two-
classification prediction models. *eir calculation formula is
shown in the following equations:

macro − F1 �
1
n

× 
n

i�1

2 × Pi × Ri

Pi + Ri

�
1
n

× 
n

i�1

2TPi

2TPi + FPi + FNi

, (13)

macro − Phi coefficient �
1
n

× 
n

i�1

TPi × TNi−TPi × FNi��������������������������������������������
TPi + FPi(  × TPi + FNi(  × TNi + FPi(  × TNi + FNi( 

 , (14)
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Figure 5: Sample data distribution of training set and test set. (a) Distribution of training sample data. (b) Distribution of test sample data.
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where FPi is the number of samples predicted to be false
positive in class i, FNi is the number of samples predicted to
be false negative in class i, TPi is the number of samples
predicted to be true positive in class i, TNi is the number of
samples predicted to be true negative in class i, and n is the
number of categories.

5.3.Visual Indicators. Visual indicators mainly include ROC
curve [43] and AUC [44], precision-recall curve (also known
as PR curve) [45], gain curve [46], K-S curve and K-S
statistical value [47], and lift curve [48] and lift value.

ROC curve, also known as receiver operating charac-
teristic curve, is a comprehensive indicator that reflects TPR
and FPR with the decision threshold [49]. It is a curve
composed of points (TPR and FPR), the abscissa is FPR, and
the ordinate is TPR. ROC curve is mainly used to compare
the relative performance of different classification models.
However, when the ROC curves of different classification
models intersect, it is not easy to reasonably evaluate the
models’ relative performance.

AUC, also known as the area under the ROC curve, is
often used in conjunction with the ROC curve. *e value
range of AUC is [0, 1]. According to experience, when the
AUC value is less than 0.5, the predictive ability of the model
is worse than random guessing, but if the prediction is
reversed, it is better than random guessing; when the AUC
value is equal to 0.5, the model has no predictive value, just
as a random guess; when AUC value is more than 0.7, the
model’s predictive ability can be considered acceptable;
when the AUC value is equal to 1, the model’s predictive
ability is perfect, and using this model, no matter what
threshold is set, a perfect prediction can be obtained (most of
the time does not exist).*e specific AUC value range and its
empirical evaluation of the model are shown in Table 4.

PR curve is a curve that reacts to the relationship be-
tween precision and recall. It is also used to evaluate the
relative performance of different classification models and
can be used with the AUC value.*e PR curve is an essential
supplement to the ROC curve, especially in unbalanced
sample categories; the PR curve can reflect the classifier’s
quality more effectively than the ROC curve.

*e gain curve (or cumulative gain curve) is an indicator
to describe the global accuracy. It represents the relationship
between the percentage of correct predictions for positive
cases and the effort required to achieve them, measured by
the percentage of prediction cases. *e Y-axis in the gain
curve is equal to recall and sensitivity (TPR), and the X-axis
is the percentage of positive instances. *e formulas of these
indicators are shown in the following equations:

gain � recall � TPR �
TP

TP + FN
, (15)

%of positive instances �
TP + FP

TP + FP + TN + FN
, (16)

where FP is the number of samples predicted to be false
positives, FN is the number of samples predicted to be false
negatives, TP is the number of samples predicted to be true
positives, and TN is the number of samples predicted to be
true negatives.

K-S curve (Kolmogorov–Smirnov curve), also called
Lorentz curve, is used to describe the quality of the classi-
fication model. *e K-S curve draws two curves with TPR
and FPR as the vertical axis and the threshold as the hor-
izontal axis. *us, it reflects the difference between TPR and
FPR at the same threshold. In general, the farther the two
broken lines are, the better the classification model distin-
guishes between positive and negative samples. *e K-S
statistical value measures the maximum difference between
TPR and FPR within the range of all possible thresholds, that
is, the upper limit of the classification model for the dis-
crimination between positive and negative samples. *e
calculation formula of the K-S statistic is shown in equation
(17). *e value range of the K-S statistic is [0, 1]. Ideally, the
closer the K-S statistic is to 1, the stronger the classification
model’s ability to distinguish between positive and negative
samples. According to experience, when the K-S statistic is
less than 0.2, the model cannot distinguish between positive
and negative samples, and when the K-S statistic is more
significant than 0.4, the model can distinguish between
positive and negative samples [51]. *e specific range of K-S
statistics and its empirical evaluation of the model are shown
in Table 5:

K − S statistic � max(TPR − FPR), (17)

where FPR is the negative cumulative response, FPR� FP/
TR+FP, and TPR is sensitivity.

Lift curve, which measures the increase in the accuracy
of the model’s prediction results under a certain threshold
compared to the accuracy of the random prediction results
without the model. In short, it is how much the prediction
effect has been improved by using this model and not using
this model for prediction. *e larger the lift, the better the
prediction effect of themodel.*e calculation of lift is shown
in the following equation:

lift �
TP/TP + FP

TP + FN/TP + TN + FP + FN

�
TP × (TP + TN + FP + FN)

(TP + FP) ×(TP + FN)
,

(18)

where FP is the number of samples predicted to be false
positives, FN is the number of samples predicted to be false
negatives, TP is the number of samples predicted to be true
positives, and TN is the number of samples predicted to be
true negatives.

*e above parameters and indicators for evaluating
model performance are provided in BigML. *rough the

Table 3: Confusion matrix of two-classification problems [39].

Actual positive
class

Actual negative
class

Predicted positive
class True positive (TP) False negative (FN)

Predicted negative
class False positive (FP) True negative (TN)
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brief introduction of the above indicators, it is not difficult to
find that these indicators evaluate the performance of the
classification prediction model from different evaluation
angles to realize the multidirectional and multiangle analysis
andmeasurement of the predictionmodel performance [52].
In addition, it can also be seen that there is no single in-
dicator that can evaluate the performance of the classifi-
cation prediction model in an all-around way, and more is
the collaborative evaluation of multiple parameter indica-
tors. It can be seen from Figure 4 that the sample data of top
coal caving have severe category imbalance (i.e., grade
imbalance), and the classification evaluation of top coal
caving is a multiclass prediction problem. So, it is necessary
to select multiple parameters and indicators from the above
indicators to evaluate the prediction model’s performance to
ensure that the prediction model is robust.

Accuracy/error rate is the most commonly used indi-
cator for researchers to evaluate the performance of clas-
sification prediction models, because they calculated the
ratio of the number of correctly classified predictions to the
total number of predictions and the number of incorrectly
classified predictions accounted for the total number of
predictions, and they can objectively reflect the global
quality of the model. However, accuracy/error rate is not a
good indicator when the sample data categories are un-
balanced, because when the sample data categories are
unbalanced, the prediction will favor the category that ac-
counts for the majority of the total sample and ignore the
category that accounts for the minority of the total sample,
resulting in the category that accounts for theminority of the
total sample does not have the classification prediction
ability or the classification prediction ability is weak. In
addition, because the top coal caving classification evalua-
tion is a multiclassification prediction problem, this article
will not take the accuracy/error rate and precision and recall
rate as the indicators of model performance evaluation. So,
only take the macro-accuracy/macro-error rate and macro-
precision and the macro-recall rate as the auxiliary indi-
cators. Moreover, taking the macro-Matthews correlation
coefficient, ROC curve, PR curve, K-S curve, gain curve, lift
curve K-S statistics, AUC value, and lift value are the leading
indicators to evaluate the model’s performance.

6. Predictive Model Establishment and Its
Performance Evaluation

It is often not easy to get amore robust and stable classification
prediction model, and therefore, it is also challenging to
achieve overnight. *erefore, more needs to continue

exploring and optimizing the model to obtain a more robust
and stable classification prediction model. In BigML, the
methods of establishing classification prediction models in-
clude models (decision trees), ensemble (bagging, random
decision forests, and boosted trees), deep nets, logistic re-
gression, and other methods. However, it is not easy to know
in advance the specific ways and methods to obtain. So, it is
necessary to use the modeling method provided by BigML to
establish one or more exploratory models and continuously
evaluate and optimize the models to obtain a robust and stable
classification evaluation model of top coal caving.

BigML is not only a very friendly machine learning
platform, which can build models (decision tree), en-
semble (bagging, random decision forests, and boosted
trees), deep nets, and logical regression models with one
click. Nevertheless, it also considers that noncomputer
professional users may have model parameter adjustment
and optimization problems, so the “automatic optimiza-
tion” function is also specially set up. *e user can effi-
ciently complete the modeling task through this function
by simply specifying training samples and training ob-
jectives. *e model parameters will be automatically ad-
justed to the theoretical optimal by BigML. In order to
evaluate the performance of model establishment, BigML
has set up modules such as single model evaluation,
multimodel evaluation, and cross-validation evaluation.
*ese modules only need the user to specify the model to
be evaluated and the test set sample used to evaluate the
model, and then the model performance evaluation can be
easily completed.

6.1. Establishment of the Classification Evaluation Model of
Top Coal Caving. *e decision tree is the most commonly
used method to establish a classification prediction model,
so this article uses the decision tree in BigML to establish the
top coal caving exploratory classification evaluation model.
In addition, when the model (decision tree) in BigML is used
to establish the classification evaluation model of top coal
caving exploratory, the “automatic optimization” function
in BigML is used to build the model, and the prepared
training set samples are taken as the model training samples,
and the “Grade” in the samples is taken as the training target.
Finally, BigML obtains the classification evaluation model of
top coal caving based on the training set samples, as shown
in Figures 6–9. In order to evaluate the performance of the
top coal caving grading evaluation model established by
BigML, the “single model evaluation” module of BigML is
used to test the model and evaluate themodel’s performance.
*e test sample is the test set sample because the sample is
small, with only 21 groups, so the sampling method is set to
be replaceable. *e evaluation results are shown in
Figures 10– 13 and Tables 6 and 7.

According to Tables 6 and 7 and Figures 10–13, it can be
seen that the established classification evaluation model of
top coal caving can be barely accepted when the probability
threshold is 50% (the default probability threshold of the
classification prediction model is 50%, which is also a
commonly used threshold for establishing classification

Table 4: AUC value range and its empirical evaluation of the
model [50].

Range of AUC values Model performance evaluation
0.50∼0.60 Fail
0.60∼0.70 Poor
0.70∼0.80 Fair
0.80∼0.90 Good
1.00 Excellent
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prediction models [53]). *e global prediction accuracy rate
(ACCURACY) of themodel is 80.95%, the average recall rate
(AVG.RECALL) and precision rate (AVG. PRECISION) are
79.17% and 85.42%, respectively, and the average Matthews
correlation coefficient (AVG. Phi) and average F-measure
(AVG. F) of the model reach 0.7436 and 0.8087, respectively.
However, from the model’s graphical performance evalua-
tion indicators, lift curve (Figure 13), the lift value of each
grade is greater than 100% (that is, the model’s prediction

ability for top coal caving of each grade is stronger than the
randommodel). However, from the values of ROC AUC, PR
AUC, and K-S in the ROC curve (Figure 10), PR curve
(Figure 11), and K-S curve (Figure 12), the model has a
certain prediction ability for top coal caving of grade 2 and
grade 4, while it has low prediction ability for top coal caving
of grade 1 and grade 2. *e ROC AUC and PR AUC of
grades 2 and 4 are greater than 0.7, and the K-S values are
100%, while the ROC AUC and PR AUC of grades 1 and 3

Table 5: K-S statistical range and its empirical assessment of model differentiation ability.

Range of K-S statistics Model differentiation ability
0.00∼0.20 Fail
0.20∼0.40 Poor
0.40∼0.50 Fair
0.50∼0.60 Good
0.60∼0.750 Very good
0.75∼1.00 Excellent

>1.71
3

K
>1.42

K
<=0.46

<=23.25

>4.75

>0.08

<=11.60

Prediction path
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Figure 6: *e established decision tree model.
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Figure 7: Prediction distribution of the decision tree model from the perspective of the sunburst chart.
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Figure 9: Variable distribution of the decision tree model from the perspective of the sunburst chart.
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Figure 10: Continued.
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Figure 10: ROC curve of each classification test of the decision tree model.
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Figure 11: PR curve of each classification test of the decision tree model.
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are less than 0.7, and the K-S values are about 60%. Opti-
mization or a better modeling method can be considered to
establish a classification evaluation model of top coal caving
to achieve a perfect prediction of each grade top coal caving.

*e deep network is also a method to establish a clas-
sification prediction model, so try to use the deep network in
BigML to establish a better top coal classification and caving
classification evaluation model. When using the deep net-
work in BigML to establish the top coal classification and
caving classification evaluation model, the “automatic op-
timization” function is also used for modeling, and the
automatic method is selected as “Network search.” *e
model training sample is the training set sample, and the
training target is the “Grade” in the sample. After the model

is trained, use the test set sample data to test and evaluate the
model’s performance, and the test sampling method is still
set to replaceable sampling. *e test results are shown in
Figures 14 –17 and Tables 8 and 9.

According to Tables 8 and 9, when the probability
threshold is 50%, the global performance of the classification
evaluation model of top coal caving established by the deep
network is not much better than that established by the
decision tree. *e global prediction ACCURACY of the
classification evaluation model of top coal caving established
by the deep network is 80.95%, the same as that established
by the decision tree; the AVG.RECALL and AVG.PRECI-
SION are 82.26% and 83.04%, respectively, and the AVG.
Phi and AVG. F are 0.7571 and 0.8084, respectively, which
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Figure 12: K-S and gain curve of each classification test of the decision tree model.
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are little different from the AVG.RECALL, AVG.PRECI-
SION, AVG. Phi, and AVG. F of the classification evaluation
model of top coal caving established by a decision tree. *e
global performance parameters of these models show that
the global performance of the classification evaluationmodel
of top coal caving established by the deep network is not
much better than that established by the decision tree.

However, according to Figures 14–17, among the local
evaluation parameters of the model, the model established
by the deep network is better than the decision tree. From
the model’s graphical performance evaluation indicators,
lift curve (Figure 17), the lift value of each evaluation
grade is greater than 100%, which means that the pre-
diction ability of the model established by the deep net-
work for top coal caving of each grade is stronger than the

random model. From the ROC AUC, PR AUC, and K-S
values of each grade in ROC curve (Figure 14), PR curve
(Figure 15) and K-S curve (Figure 16), the ROC AUC, PR
AUC, and K-S values of each grade in the classification
evaluation model of top coal caving established by the
deep network are greater than or equal to that established
by the decision tree. In addition, from the ROC AUC, PR
AUC, and K-S values of each grade of the classification
evaluation model top coal caving established by the deep
network, it can be seen that the model has good prediction
ability for the top coal caving of each grade. *e ROC
AUC of each grade in model is greater than 0.7, the PR
AUC is basically greater than or equal to 0.7, and the K-S
value is greater than 80%. *e above analysis shows that
under the probability threshold of 50%, although the
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Figure 13: Lift curve of each classification test of the decision tree model.
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Table 6: Confusion matrix of decision tree model test results and model evaluation related indicators.

Actual vs. predicted 1 2 3 4 Actual Recall (%)
1 2 1 0 0 3 66.67
2 1 9 0 0 10 90.00
3 0 2 3 0 5 60.00
4 0 0 0 4 3 100.00

Predicted 3 12 3 3 21 79.17
AVG.RECALL

Precision (%) 66.67 75.00 100.00 100.00 86.42 80.95
AVG.PRECISION ACCURACY

Table 7: Performance evaluation results of the decision tree model.

Grade F-measure Phi coefficient
1 0.67 0.61
2 0.82 0.63
3 0.75 0.73
4 1.00 1.00

0.8087 0.7436
AVG. F AVG. Phi
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Figure 14: Continued.
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Figure 14: ROC curve of each classification test of the deep network model.
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Figure 15: Continued.
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Figure 15: PR curve of each classification test of the deep network model.
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Figure 16: K-S curve and gain curve of each classification test of the deep network model.
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Figure 17: Continued.
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classification evaluation model of top coal caving estab-
lished by deep network and the classification evaluation
model of top coal caving established by decision tree have
little difference in global performance, the classification
evaluation model of top coal caving established by deep
network is better than that established by decision tree
model in local. In order to get a more robust classification
evaluation model of top coal caving, the combination and
average of the two models can be considered.

6.2.OptimizationofTopCoalCavingClassificationEvaluation
Model. In the modeling process, it is not difficult to find
that, in general, if several different models can be combined
and their prediction results are averaged, the ideal prediction
results can be obtained. At the same time, if the combined
average model can balance the shortcomings of a single
participating combined model, then the final model gen-
erally obtained is robust and stable. However, it is based on
this idea to develop a fusionmodelingmethod in BigML.*e
fusion modeling method combines different models and
averages their predictions to balance the weaknesses of each
model so that the model can produce better performance.
*e principle is similar to model integration, except that the
fusion modeling method can combine and average a single
decision tree and combine and average models such as
logistic regression and deep network.

In order to optimize the model and get a more robust and
stable classification evaluation model of top coal caving, the
classification evaluationmodel of top coal caving established by
decision tree and depth network is fused. According to the
model performance evaluation parameters, although the global
performance of the classification evaluation model of top coal
caving established by decision tree and deep network is similar,

the local performance of the model established by the deep
network is better than that of the model established by a
decision tree. *erefore, the weight of the prediction result of
themodel established by the decision tree and depth network is
1 : 3. After the model fusion, the model’s performance is tested
and evaluated with the sample data of the test set, and the test
sampling mode is set to replaceable sampling. *e test results
are shown in Figures 18– 21 and Tables 10 and 11.

According to Tables 10 and 11 and Figures 18–21, it can
be seen that under the probability threshold value of 50%,
the classification evaluation model of top coal caving
established by fusion is perfect and robust no matter from
the global or local view, which has fully met the demand of
prediction. *e global prediction ACCURACY, AVG. RE-
CALL, and AVG. PRECISION of the classification evalua-
tion model of top coal caving established by fusion reached
90.45%, 95.45%, and 88.75%, respectively. In addition, the
AVG. Phi and AVG. F of the classification evaluation model
of top coal caving established by fusion reached 0.8838 and
0.9115, respectively. From the ROC AUC, PR AUC, and K-S
values of each grade in the ROC curve (Figure 18), PR curve
(Figure 19), and K-S curve (Figure 20) in model local
performance evaluation parameters, the ROC AUC, PR
AUC and K-S values of each grade of the classification
evaluation model of top coal caving established by fusion are
greater than or equal to that established by decision tree and
depth network, respectively. At the same time, from the
model’s lift curve (Figure 21), the lift value of each evaluation
grade is greater than 100%, which also shows that the
model’s prediction ability established by fusion is stronger
than the randommodel. In addition, through the ROCAUC,
PR AUC, and K-S values of each grade of the classification
evaluation model of top coal caving established by fusion, it
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Figure 17: Lift curve of each classification test of the deep network model.
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Table 9: Performance evaluation results of the deep network model.

Grade F-measure Phi coefficient
1 0.75 0.73
2 0.77 0.67
3 0.86 0.79
4 0.86 0.84

0.81 0.7436
AVG. F AVG. Phi

Table 8: Confusion matrix of deep network model test results and model evaluation related indicators.

Actual vs. predicted 1 2 3 4 Actual Recall (%)
1 3 1 1 0 5 60.00
2 0 5 0 1 6 83.33
3 0 1 6 0 7 86.71
4 0 0 0 3 3 100.00

Predicted 3 7 7 4 21 82.26
AVG.RECALL

Precision (%) 100.00 71.43 86.71 75.00 83.04 80.95
AVG.PRECISION ACCURACY
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Figure 18: Continued.
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Figure 18: ROC curve of each classification test of the fusion model.
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Figure 19: Continued.
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Figure 19: PR curve of each classification test of the fusion model.
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Figure 20: Continued.
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Figure 20: K-S curve and gain curve of each classification test of the fusion model.
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Figure 21: Continued.
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can be seen that the model has good prediction ability for the
top coal caving of each grade. *e ROC AUC of each model
grade is greater than 0.9, the PR AUC is basically greater
than or equal to 0.9, and the K-S value is 100%. *e above
analysis shows that under the probability threshold of 50%,
the classification evaluation model of top coal caving
established by fusion is perfect and robust and has fully met
the prediction needs, whether from the global or local point
of view.

7. Practical Application of Prediction
Model in Engineering

Because the evaluation model of top coal caving classifica-
tion is optimized by the fusion method, the model is perfect
and robust no matter from the global or local view and has
fully met the demand of prediction, so the model is applied
to the evaluation of top coal caving of No. 3 coal seam in
Gucheng Coal Mine. Gucheng Coal Mine belongs to Lu’an
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Figure 21: Lift curve of each classification test of the fusion model.

Table 10: Confusion matrix of fusion model test results and model evaluation related indicators.

Actual vs. predicted 1 2 3 4 Actual Recall (%)
1 3 0 0 0 3 100.00
2 1 9 0 1 11 81.82
3 0 0 3 0 3 100.00
4 0 0 0 4 4 100.00

Predicted 3 7 7 4 21 96.45
AVG.RECALL

Precision (%) 75.00 100.00 100.00 80.00 88.75 90.45
AVG.PRECISION ACCURACY

Table 11: Performance evaluation results of the fusion model.

Grade F-measure Phi coefficient
1 0.86 0.84
2 0.90 0.83
3 1.00 1.00
4 0.89 0.87

0.9115 0.8838
AVG. F AVG. Phi
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(Group) Co., Ltd., located west of Changzhi City, Shanxi
Province, China. Its geographical location is shown in
Figure 22. *e average thickness of No.3 Coal Seam in
Gucheng Coal Mine is 6.33m, without gangue; *e buried
depth of coal seam is 583–637m, with an average of 610m;
the average uniaxial compressive strength of coal is

10.66MPa, which belongs to medium-hard coal. *e top
coal can be mined with caving, and the filling coefficient of
the direct roof is 0.25; the development degree of coal seam
joints is good (DN� 12.5). *e prediction result shows that
the top coal caving grade of No.3 Coal Seam in Gucheng
Coal Mine is grade 1, as shown in Figure 23. From the

Shanxi
Province

Gucheng
Coal Mine

Figure 22: Geographical location of Gucheng Mine.

Figure 23: Top coal caving prediction results of No. 3 coal seam in Gucheng Coal Mine.
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engineering side, the predicted results are consistent with the
actual situation. In the mining of No. 3 coal seam in
Gucheng Coal Mine, the top coal can cave well without extra
measures.

8. Conclusion

Because of the current, most of the evaluation and prediction
models of top coal caving established by experts and scholars
are established by computer programming, which makes it
difficult for people who do not understand the calculation
language to use or modify the models and makes it difficult
for these models to be widely applied in the actual appli-
cation process. *is article introduces a method to establish
the evaluation and prediction model of top coal caving
without programming. At the same time, the model can be
used to predict and evaluate top coal caving and modify the
model according to its own needs without programming.
*is method establishes the prediction model of top coal
caving by using the machine learning platform BigML based
on the cloud. At the same time, this paper establishes the
prediction model of top coal caving evaluation by using
BigML and applies it to evaluating top coal caving of No. 3
coal seam in Gucheng Coal Mine. *e evaluation result is
grade 1, which is consistent with the engineering practice. It
fully proves that the application of BigML in evaluating top
coal caving is successful and feasible and provides another
more convenient method for the classification evaluation
and prediction of top coal caving. In addition, it provides
another way to realize the classification evaluation of top
coal caving properties and the establishment of other
evaluation predictions using machine learning without
programming.

Data Availability

*e data used to support the findings of this study are in-
cluded within the article.

Conflicts of Interest

*e authors declare that they have no conflicts of interest.

Acknowledgments

*is work was supported by the discipline innovation team
of Liaoning Technical University (LNTU20TD-01).

References

[1] By Fuel Type-Exajoules, Consumption Emissions and
C. Dioxide, “BP statistical review of world energy 2020,” 2020.

[2] M. D. Leonard, E. E. Michaelides, and D. N. Michaelides,
“Substitution of coal power plants with renewable energy
sources - shift of the power demand and energy storage,”
Energy Conversion and Management, vol. 164, pp. 27–35,
2018.

[3] B. Dudley, “BP statistical review of world energy 2016,” 2016.
[4] J. Wang, B. Yu, H. Kang et al., “Key technologies and

equipment for a fully mechanized top-coal caving operation
with a large mining height at ultra-thick coal seams,”

International Journal of Coal Science & Technology, vol. 2,
no. 2, pp. 97–161, 2015.

[5] N. Zhang, C. Liu, and M. Pei, “Effects of caving-mining ratio
on the coal and waste rocks gangue flows and the amount of
cyclically caved coal in fully mechanized mining of super-
thick coal seams,” International Journal of Mining Science and
Technology, vol. 25, no. 1, pp. 145–150, 2015.

[6] M. Bhattacharya, S. Rafiq, and S. Bhattacharya, “*e role of
technology on the dynamics of coal consumption-economic
growth: new evidence from China,” Applied Energy, vol. 154,
pp. 686–695, 2015.

[7] Z. Wang, G. Zhang, and L. Zhao, “Recognition of rock-coal
interface in top coal caving through tail beam vibrations by
using stacked sparse autoencoders,” Journal of Vibroengin-
eering, vol. 18, no. 7, pp. 4261–4275, 2016.

[8] J. Wu, Y. Qin, and M. Zhai, “Mining safety of longwall top-
coal caving in China,” in Proceedings of the 8th U.S. Mine
Ventilation Symposium, Rolla, Missouri, June 1999.

[9] T. D. Le, R. Mitra, J. Oh, and B. Hebblewhite, “A review of
cavability evaluation in longwall top coal caving,” Interna-
tional Journal of Mining Science and Technology, vol. 27, no. 6,
pp. 907–915, 2017.

[10] N. E. Yasitli and B. Unver, “3D numerical modeling of
longwall mining with top-coal caving,” International Journal
of Rock Mechanics and Mining Sciences, vol. 42, no. 2,
pp. 219–235, 2005.

[11] H. Alehossein and B. A. Poulsen, “Stress analysis of longwall
top coal caving,” International Journal of Rock Mechanics and
Mining Sciences, vol. 47, no. 1, pp. 30–41, 2010.

[12] G. Si, S. Jamnikar, J. Lazar et al., “Monitoring and modelling
of gas dynamics in multi-level longwall top coal caving of
ultra-thick coal seams, part I: borehole measurements and a
conceptual model for gas emission zones,” International
Journal of Coal Geology, vol. 144-145, pp. 98–110, 2015.

[13] G. Si, J.-Q. Shi, S. Durucan et al., “Monitoring and modelling
of gas dynamics in multi-level longwall top coal caving of
ultra-thick coal seams, Part II: numerical modelling,” Inter-
national Journal of Coal Geology, vol. 144-145, pp. 58–70,
2015.

[14] V. Klishin, S. Nikitenko, and G. Opruk, “Longwall top coal
caving (LTCC) mining technologies with roof softening by
hydraulic fracturing method,” IOP Conference Series: Mate-
rials Science and Engineering, vol. 354, Article ID 012015,
2018.

[15] V. I. Klishin, V. N. Fryanov, L. D. Pavlova, and G. Y. Opruk,
“Modeling top coal disintegration in thick seams in longwall
top coal caving,” Journal of Mining Science, vol. 55, no. 2,
pp. 247–256, 2019.

[16] Z. Ti, J. Li, M. Wang, K. Wang, Z. Jin, and C. Tai, “Fracture
mechanism in overlying strata during longwall mining,”
Shock and Vibration, vol. 2021, Article ID 4764732, 15 pages,
2021.

[17] Y. K. Shi, T. T. Sun, J. Hao, and S. Hao, “Prediction of top coal
caving ability based on support vector machine,” Applied
Mechanics and Materials, vol. 217-219, pp. 2702–2705, 2012.

[18] A. Vakili and B. K. Hebblewhite, “A new cavability assessment
criterion for longwall top coal caving,” International Journal
of Rock Mechanics and Mining Sciences, vol. 47, no. 8,
pp. 1317–1329, 2010.

[19] P. Humphries, B. Poulsen, and T. Ren, “Longwall top coal
caving application assessment in Australia,” ACARP Report
for project C, vol. 130187, 2007.

[20] B. Singh and R. Goel, Engineering Rock Mass Classification,
Elsevier, Amsterdam, Netherlands, 2011.

Shock and Vibration 27



[21] Y.-S. Xie and Y.-S. Zhao, “Numerical simulation of the top
coal caving process using the discrete element method,” In-
ternational Journal of Rock Mechanics and Mining Sciences,
vol. 46, no. 6, pp. 983–991, 2009.

[22] J. Wang, S. Yang, Y. Li, L. Wei, and H. Liu, “Caving mech-
anisms of loose top-coal in longwall top-coal caving mining
method,” International Journal of Rock Mechanics andMining
Sciences, vol. 71, pp. 160–170, 2014.

[23] Y. Xin, P. Gou, and F. Ge, “Analysis of stability of support and
surrounding rock in mining top coal of inclined coal seam,”
International Journal of Mining Science and Technology,
vol. 24, no. 1, pp. 63–68, 2014.

[24] K. Yu, W. Qiang, M. Elhoseny, and X. Yuan, “Application of
ant colony clustering algorithm in coal mine gas accident
analysis under the background of big data research,” Journal
of Intelligent and Fuzzy Systems, vol. 38, no. 2, pp. 1381–1390,
2020.

[25] Z. Ruilin and I. S. Lowndes, “*e application of a coupled
artificial neural network and fault tree analysis model to
predict coal and gas outbursts,” International Journal of Coal
Geology, vol. 84, no. 2, pp. 141–152, 2010.

[26] H. Jiang, Q. Song, K. Gao, Q. Song, and X. Zhao, “Rule-based
expert system to assess caving output ratio in top coal caving,”
PloS One, vol. 15, no. 9, Article ID e0238138, 2020.

[27] S. Mohammadi, M. Ataei, R. Kakaie, A. Mirzaghorbanali,
Z. F. Rad, and N. Aziz, “A roof cavability classification system
and its use for estimation of main caving interval in longwall
mining,” in Proceedings of the 2020 Coal Operators’ Confer-
ence, pp. 104–115, Wollongong, Australia, February 2020.

[28] S. Yongkui, L. Pengrui, W. Ying, Z. Jingyu, and L. Meijie, “*e
prediction of the caving degree of coal seam roof based on the
naive bayes classifier,” Electronic Journal of Geotechnical
Engineering, vol. 19, no. Z2, p. 201, 2014.

[29] K. Oraee and M. Rostami, “Qualitative and quantitative
analysis of hangingwall caving in longwall mining method
using a fuzzy system,” in Proceedings of the 21st world mining
congress & expo, Poland, Krakóów-Katowice-Sosnowiec,
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