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In this paper, the nonlinear dynamic analysis of the cutting process of composite cutting tool is performed. (e cutting tool is
simplified to a nonplanar bending rotating shaft. (e higher-order bending deformation, structural damping, and gyroscopic
effect of cutting tool are considered. It is assumed that cutting tool is subjected to a regenerative two-dimensional cutting force
containing the first and second harmonic components. Based on the Hamilton principle, the motion equation of nonlinear chatter
of the cutting system is derived. (e nonlinear ordinary differential equations in the generalized coordinates are obtained by
Galerkin method. In order to analyze the nonlinear dynamic response of cutting process, the multiscale method is used to derive
the analytical approximate solution of the forced response for the cutting system under periodic cutting forces. In the forced
response analysis, four cases including primary resonance and superharmonic resonance, i.e., Ω � ω1, Ω � ω2, 2Ω � ω1, and
2Ω � ω2, are considered.(e influences of ratio of length to diameter, structural damping, cutting force, and ply angle on primary
resonance and superharmonic resonance are investigated. (e results show that nonlinearity due to higher-order bending
deformation significantly affects the dynamic behavior of the milling process and that the effective nonlinearity of the cutting
system is of hard type. Multivalued resonance curves and jump phenomenon are presented.(e influences of various factors, such
as ratio of length to diameter, ply angle, structural damping, cutting force, and rotating speed, are thoroughly discussed.

1. Introduction

As a high-efficiency, high-quality, low-cost machining
method, high-speed cutting technology has been widely used
in aerospace and mold manufacturing. However, chatter
reduces the cutting stability during machining operations,
causes a decrease in the machining quality and cutting ef-
ficiency of the workpiece, damages the tool, and shortens the
service life of the machine.

(e passive chatter control methods are mainly based on
various types of dynamic vibration absorbers [1, 2] and
impact dampers [3]. However, composite materials are
known to have higher static stiffness, damping, and specific
stiffness. It has been found that the dynamic stiffness and
fundamental natural frequency of cutter bar may be im-
proved simultaneously if composite is employed [4–6]. (is
is very beneficial for the stability of high rotational speed
machining for deep holes.

Within the framework of linear chatter theories and
based on different theories, several of chatter phenomena as
well as their stability boundary in different cutting processes
were discovered [7–14]. Tobias [8] introduced the time-delay
instability in the cutting force and proposed the regeneration
theory, which is considered to provide a complete expla-
nation of the chatter phenomenon so far.

However, because linear theory cannot predict some
important dynamic behaviors of cutting process, nonlinear
modeling of cutting systems has received more attention.
(e nonlinearity in cutting systems is mainly caused by
structural nonlinearity, delayed nonlinearity of cutting force,
etc. [15–18]. Hanna and Tobias [15] first proposed a time-
delay nonlinear model with quadratic and cubic structural
stiffness and cutting forces, which has inspired great interest
in analyzing the global dynamics of the cutting system. (e
effective mathematical methods for the nonlinear theory of
cutting systems include center manifold theory, bifurcation
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theory, perturbation analysis, phase portraits, and Poincaré
sections.

Pratt [19] used the multiscale method, harmonic balance
method, and Floquet theory to study the models of Hanna
and Tobias [18]. (e results showed that subcritical Hopf
bifurcation may occur due to the existence of cubic struc-
tural nonlinearity. Moradi et al. [20] studied the existence of
different types of bifurcation in the cutting process con-
sidering the tool wear and process damping. (ey developed
a 2-dof linear model of the tool and a polynomial nonlinear
model of the cutting force. In addition, the multiscale
method was used to obtain the approximation analysis
solution of primary resonance. Moradi et al. [21] used a
model similar to that in literature [20] to analyze the forced
vibration of the milling process. In the study, not only the
primary resonance but also the superharmonic resonance
and the internal resonance were investigated. Moradi et al.
[22] investigated the internal resonance and regenerative
chatter of the milling process considering both the cutting
force and the structural nonlinearity.

However, in the above studies, the tool structure was
simulated with 1-dof or 2-dof vibration system, in which the
concentration parameters such as mass and stiffness were
obtained through experiments or empirical method.(ere is
no obvious correlation between these simplified models and
the continuous system equations of the tool.

In order to investigate the dynamic characteristics of
cutting system and the stability mechanism of machining
process, it is necessary to conduct a comprehensive analysis
on various influencing factors. In this case, if the empirical
method is used to establish the model of the tool structure, a
large number of repetitive tests are needed to obtain the
dynamic parameters of the tool structure of different sizes,
geometries, and materials, which is very time consuming
and of low effectiveness. (erefore, as a more effective
modeling method for cutting tool, the continuous parameter
dynamics modeling of cutting tool based on analytical
method, has received great attention [23–33].

However, in most of the existing continuous system
dynamics models, the influence of the nonlinearity of the
tool structure has not been considered. (erefore, the
existing dynamic model is only suitable for analyzing the
linear dynamics of the natural frequency, chatter frequency,
dynamic deformation, and chatter stability of the cutting
system. In addition, the current continuous system dynamic
studies are mainly focused on the tool structure made of
isotropic metal materials. Nevertheless, there is no research
about the nonlinear dynamics of the process with anisotropy
composite tool structures.

(e structural nonlinearity is essentially arisen by the
flexible nature of the cutting tools with small diameter or
long extension part. (e structural nonlinearity of the
cutting tools may be described using higher-order large
deformations [34] or geometric nonlinearity [35].

In this paper, the nonlinear dynamics of the cutting
process with a composite cutting tool are investigated. (e
composite tool structure is simplified to a nonplanar can-
tilever rotating shaft. (e structural nonlinearity is intro-
duced by considering the higher-order deformation of
cutting tool. It is assumed that the cutting tool is subjected to
a regenerative cutting force containing harmonic compo-
nents. Based on the Hamilton principle, the nonlinear
chatter equation of the cutting system is derived. (e
Galerkin method is used to obtain the nonlinear ordinary
differential equations in the generalized coordinates. (e
multiscale method is used to obtain the approximate so-
lution of the forced vibration response of the cutting process
subjected to periodic cutting forces. Nonlinear dynamics of
the system are studied for four cases of primary and
superharmonic resonances; i.e., Ω � ω1, Ω � ω2, 2Ω � ω1,
and 2Ω � ω2 are studied. (e numerical calculation is
conducted to investigate the effect of various parameters on
the frequency response of the cutting system.

2. Mathematical Model and Solution

2.1. Kinetic Energy and Potential Energy. (e structural
sketch of composite cutting tool with nonplanar bending is
shown in Figure 1. (e kinetic energy of the rotating cutting
tool without considering torsional deformation is as follows:
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where v and w represent the displacement at any point on
the neutral axis along the y and z directions, respectively. ψz

and ψy represent bending rotation angles of the cross section
around the y and z axes, respectively. ρA represents the mass
per unit length, and ρI represents the mass moment of
inertia of the cross section. (e superposed dots represent
derivatives with respect to the time t.

Using the expression of the displacement fields for
Euler–Bernoulli beam and the stress-strain displacement
relations of the composite cutting tool, as shown in Ap-
pendix A, one can obtain the following expression for the
potential energy of the rotating composite cutting tool with
the higher-order deformation:
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where Q11 refers to the off-axis stiffness coefficient of the kth
layer for the composite cutting tool.

Regardless of the influence of shear deformation, based
on the Euler–Bernoulli beam theory, the bending rotation

angles and the displacements have the following
relationship:

ψz � −
zw

zx
,ψy �

zv

zx
. (3)

2.2. Damping Dissipative Energy Function and Virtual Work
of Cutting Force. Rayleigh dissipative energy function of the
cutting tool can be expressed as follows:

Wc �
1
2

􏽚
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c _v
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2
􏼐 􏼑dx, (4)

where c is structural damping coefficient.
(e virtual work of the cutting force δW can be

expressed as

δW � 􏽚
L

0
Lvδv + Lwδw( 􏼁dx, (5)

where Lv � FyδD(x − L), Lw � FzδD(x − L), and δD(x − L)

is the delta function.
(e linear regenerative cutting forces Fy and Fz can be

obtained by [20]
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(6)

where

α0 � 0.5ς1 + 0.25πη1, β0 � 0.5η1 + 0.25πς1,

α0′ � − 0.5η1 + 0.25πς1, β0′ � 0.5ς1 − 0.25πη1,

c0 � η2 + ς2, c0′ � ς2 − η2,

ς1 � Ktca, ς2 � Ktea,

η1 � Krca, η2 � Krea,

v � v(x, t), vτ � v(x, t − τ), w � w(x, t), wτ � w(x, t − τ),

(7)

in which τ � 2π/NΩ is the delay time of milling process;N is
the number of teeth; (Ktc, Kte) and (Krc, Kre) are the cutting

force coefficients in the tangential and radial directions,
respectively; a is the axial cutting depth; and cf is the feed per
tooth per revolution.

2.3.DynamicModel ofMilling Process. In order to obtain the
equation of motion of the cutting system, the principle of
Hamilton is used as follows:

􏽚
t2

t1

δU + δWc − δT − δW( 􏼁dt � 0. (8)

Substituting (1), (2), (4), and (5) into (8), the equations of
motion in both y and z directions can be obtained:
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Figure 1: Composite cutting tool with nonplanar bending.
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Here, (EI)equiv and (EA)equiv represent the equivalent
bending and tensile stiffness of the cutting tool, respectively;
(ρI)equiv and (m)equiv represent the equivalent diametrical
mass moment of inertia and the equivalent mass per unit
length, respectively; ρk represents the density of the kth layer;
and rk and rk+1 represent the inner diameter and outer
diameter of the kth layer, respectively. (e detailed ex-
pression of Q11 can be found in Appendix B. In (9), the
primes denote differentiation with respect to x.

(e following nondimensional quantities are defined:
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Using the above dimensionless variables, (9) is rewritten
as
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In (12), the primes denote differentiation with respect to
x, and the superposed dots denote derivatives with respect to
the time t.

(e solution of (12) can be written as

v(x, t) � ϕ1(x)V(t), w(x, t) � ϕ1(x)W(t). (14)

For cantilever beams, ϕ1(x) has to meet the following
boundary conditions:

ϕ1(0) � ϕ1′(0) � ϕ1″(1) � ϕ‴1 (1) � 0. (15)

(e mode function that satisfies the boundary condition
in (12) can be expressed as follows:

ϕ1(x) � cos β1Lx − coshβ1Lx −
cos β1L + coshβ1L
sin β1L + sinhβ1L

sin β1Lx − sinhβ1Lx( 􏼁, x ∈ (0, 1), (16)

where β1L � 1.875.
Substituting (14) into (9), simplifying the equation by the

Galerkin method, and dropping the constant cutting force

terms, the following ordinary differential equations can be
obtained.
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Here, the superscript (4) means the fourth-order partial
derivative of x.

2.4. Perturbation Analysis of Milling Process Using Multiple
Scales Method. In order to solve (17) using the multiscale
method, the structural damping and nonlinear and ex-
citing force terms are scaled using small parameters ε as
follows:
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V(t) and W(t) are expanded in the form
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(20)

where T0 � t, T2 � ε2t.
Taking the derivative of (20), one obtains the following
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Substituting (20) and (21) into (17) and considering (19),
one can obtain the following equations by comparing the
coefficients of ε and ε3:
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O(ε3):
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Assume the solution of (22) is as follows:
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where i �
���
− 1

√
represents the imaginary unit, F1(T2) and

F2(T2) are the complex functions to be determined, and
F1(T2) and F2(T2) represent the complex conjugate. ω1 and
ω2 refer to the forward and backward whirling frequencies,
respectively, which are expressed as follows:
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Substituting (24) into (23) and dropping the constant
terms λV and λW, one obtains the following equations:
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where
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ϕ1(1),

Fz2
� Fz2

ϕ1(1). (27)
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In this paper, four cases of primary and superharmonic
resonances, i.e., case I: Ω � ω1, case II: Ω � ω2, case III:
2Ω � ω1, and case IV: 2Ω � ω2, are studied.

2.4.1. Case I: Primary Resonance (Ω � ω1). Assume

Ω � ω1 + ε2σ, (28)

where σ represents the detuning parameter.
Substituting (24) into (26), one can obtain the following

equations:

A1
z
2
V3

zT
2
0

− A3
zW3

zT0
+ A4V3 � P3e

iω1T0 + Q3e
iω2T0 ,

A1
z
2
W3

zT
2
0

+ A3
zV3

zT0
+ A4W3 � P4e

iω1T0 + Q4e
iω2T0 ,

(29)

where

P3 � P3 + ϕ1(1)q1e
iσT2 ,

P4 � P4 − iϕ1(1)q1e
iσT2 ,

Q3 � Q3,

Q4 � Q4,

(30)

where q1 � (ς2 − iη2)/2.
(e particular solutions of (29) are

V3 T0, T2( 􏼁 � F11 T2( 􏼁e
iω1T0 + F12 T2( 􏼁e

iω2T0 ,

W3 T0, T2( 􏼁 � F21 T2( 􏼁e
iω1T0 + F22 T2( 􏼁e

iω2T0 .
(31)

Substituting (31) into (29) and equating the coefficient of
eiω1T0 and eiω2T0 in both sides of (29), one has

A4 − A1ω
2
1􏼐 􏼑F11 − iA3ω1F21 � P3,

iA3ω1F11 + A4 − A1ω
2
1􏼐 􏼑F21 � P4.

(32)

A4 − A1ω
2
2􏼐 􏼑F12 − iA3ω2F22 � Q3,

iA3ω2F12 + A4 − A1ω
2
2􏼐 􏼑F22 � Q4.

(33)

Equations (32) and (33) constitute systems of two inho-
mogeneous algebraic equations for F11, F21 and F12, F22,

respectively. (eir homogeneous parts have a nontrivial
solution.(en their solvability conditions can bewritten as [36]

P3 − iA3ω1

P4 A4 − A1ω
2
1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
� 0,

A4 − A1ω
2
1 P3

iA3ω1 P4

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
� 0.

(34)

Q3 − iA3ω2

Q4 A4 − A1ω
2
2

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
� 0,

A4 − A1ω
2
2 Q3

iA3ω2 Q4

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
� 0.

(35)

After simplification, the solvability conditions are re-
duced to two independent governing equations in the fol-
lowing form:

4A5 F
2
1F1 + 2F1F2F2􏼐 􏼑 − iΛ1F1′ − iA2ω1F1 + ϕ2

1(1)
N

4π

β0′ − α0 + i α0′ + β0􏼐 􏼑􏽨 􏽩 1 − e
− iω1τ􏼐 􏼑F1 + ϕ1(1)q1e

iσT2 � 0,

(36)

4A5 F
2
2F2 + 2F1F2F1􏼐 􏼑 − iΛ2F2′ − iA2ω2F2 −

1
2
ϕ21(1)

N

2π
α0 + β0′ + i α0′ − β0􏼐 􏼑􏽨 􏽩 1 − e

− iω1τ􏼐 􏼑F2 � 0.

(37)

Assume that the solutions of (36) and (37) are

F1 �
1
2
a1 T2( 􏼁e

iθ1 T2( ),

F2 �
1
2
a2 T2( 􏼁e

iθ2 T2( ),

(38)

where aj(T2) and θj(T2) (j� 1,2) refer to the amplitudes and
phase angles of the response, respectively.

Substituting (38) into (36) and (37), separating the real
and the imaginary parts, one can obtain the following
equations:

Λ1a1′ � − A2ω1a1 + ϕ21(1)
N

4π
α0′ + β0􏼐 􏼑 1 − cosω1τ( 􏼁 + β0′ − α0􏼐 􏼑sinω1τ􏼐 􏼑a1 + ϕ1(1) ς2 sinψ1 − η2 cosψ1( 􏼁,

Λ1a1ψ1′ � Λ1σa1 − A5 a
3
1 + 2a1a

2
2􏼐 􏼑 + ϕ21(1)

N

4π
β0′ − α0􏼐 􏼑 1 − cosω1τ( 􏼁 − α0′ + β0􏼐 􏼑sinω1τ􏼐 􏼑a1 + ϕ1(1) η2 sinψ1 + ς2 cosψ1( 􏼁.

(39)

Λ2a2′ � − A2ω2a2 − ϕ21(1)
N

4π
α0′ + β0􏼐 􏼑 1 − cosω2τ( 􏼁 + α0 − β0′􏼐 􏼑sinω2τ􏼐 􏼑a2,

Λ2ψ2′a2 � − A5 a
3
2 + 2a

2
1a2􏼐 􏼑 − ϕ21(1)

N

4π
α0 − β0′􏼐 􏼑 1 − cosω2τ( 􏼁 − α0′ + β0􏼐 􏼑sinω2τ􏼐 􏼑a2,

(40)
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where σT2 − θj � ψj (j� 1,2).
To determine the steady-state forced response, the time

derivatives in (39) and (40) are set to zero. It can be im-
mediately concluded from (40) that only solution for a2 is
zero. (is shows that under the primary resonance Ω ≈ ω1,

only the first mode, i.e., the forward mode, can be excited,
while the second mode, i.e., the backward mode, does not
participate in the primary resonance and remains stationary.

Substituting a2 � 0 into (39) and solving for σ, one
obtains

σ � − ϕ21(1)
N

4πΛ1
β0′ − α0􏼐 􏼑 1 − cosω1τ( 􏼁 − α0′ + β0􏼐 􏼑sinω1τ􏽨 􏽩 +

A5

Λ1
a
2
1

±
1
Λ1

�����������������������������������������������������������������

ϕ21(1) ς22 + η22􏼐 􏼑

a
2
1

− A2ω1 − ϕ21(1)
N

4π
α0′ + β0􏼐 􏼑 1 − cosω1τ( 􏼁 + β0′ − α0􏼐 􏼑sinω1τ􏽨 􏽩􏼔 􏼕

2
.

􏽶
􏽴 (41)

To study the stability of the steady-state response of case
I, the nature of steady-state response can be investigated
numerically by linearizing (39) (with a2 � 0) around (a0, ψ0).

2.4.2. Case II: Primary Resonance (Ω � ω2). According to
(26), under such conditions, one introduces detuning pa-
rameters as

Ω � ω2 + ε2σ. (42)

Using their solvability conditions (which are not shown)
and (38) leads to

Λ1a1′ � − A2ω1a1 + ϕ21(1)
N

4π
α0′ + β0􏼐 􏼑 1 − cosω1τ( 􏼁 + β0′ − α0􏼐 􏼑sinω1τ􏼐 􏼑a1,

Λ1a1ψ1′ � Λ1σa1 − A5 a
3
1 + 2a1a

2
2􏼐 􏼑 + ϕ21(1)

N

4π
β0′ − α0􏼐 􏼑 1 − cosω1τ( 􏼁 − α0′ + β0􏼐 􏼑sinω1τ􏼐 􏼑a1,

Λ2a2′ � − A2ω2a2 − ϕ21(1)
N

4π
α0′ + β0􏼐 􏼑 1 − cosω2τ( 􏼁 + α0 − β0′􏼐 􏼑sinω2τ􏼐 􏼑a2 − ϕ1(1) ς2 sinψ2 − η2 cosψ2( 􏼁,

Λ2ψ2′a2 � − A5 a
3
2 + 2a

2
1a2􏼐 􏼑 − ϕ21(1)

N

4π
α0 − β0′􏼐 􏼑 1 − cosω2τ( 􏼁 − α0′ + β0􏼐 􏼑sinω2τ􏼐 􏼑a2 − ϕ1(1) ς2 cosψ2 + η2 sinψ2( 􏼁.

(43)

By using steady-state condition (i.e., set a1′ � 0, ψ1′ � 0, a2′
� 0, and ψ2′ � 0), the following steady-state response of case II
can be obtained:

σ � ϕ2
1(1)

N

4πΛ2
α0 − β0′􏼐 􏼑 1 − cosω2τ( 􏼁 − α0′ + β0􏼐 􏼑sinω2τ􏽨 􏽩 +

A5

Λ2
a
2
2

±
1
Λ2

���������������������������������������������������������������

ϕ21(1) ς22 + η22􏼐 􏼑

a
2
2

−
2
A
ω2 + ϕ21(1)

N

4π
α0′ + β0􏼐 􏼑 1 − cosω2τ( 􏼁 + α0 − β0′􏼐 􏼑sinω2τ􏽨 􏽩􏼔 􏼕

2

􏽶
􏽴

.

(44)

From (44), it can be seen that a1 � 0 and a2 ≠ 0, in-
dicating that only the forced vibration response of
backward mode is excited, while forward mode remains
stationary.

2.4.3. Case III: Superharmonic Resonance (2Ω � ω1). For
this case, the formulation of steady-state response is the
same as case I, but in (41), ς2 and η2 are replaced with cfς1/2
and cfη1/2, respectively.
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2.4.4. Case IV: Superharmonic Resonance (2Ω � ω2). For
this case, the formulation of steady-state response is the
same as case II, but in (43), ς2 and η2 are replaced with cfς1/2
and cfη1/2, respectively.

3. Numerical Results and Discussions

In this study, the composite material of carbon fiber/epoxy
resin is selected as the material of the cutting tool. (e
mechanical properties of the material are shown in Table 1.
Coefficients of cutting forces for simulation are given in
Table 2. (e cutting tool has a hollow structure, the outer
diameter of the cross section isD� 8mm, the inner diameter
isD� 4mm, the thickness of the section is h� 2mm, and the
length L is determined by the given ratio of length to di-
ameter. (e composite cutting tool has 16 layers with
identical thickness, and the stack sequence is [±θ]8. In all
cases, Ω � 200, except where other values are mentioned.

Figure 2 shows the natural frequency versus rotating
speed, which is generally known as a Campbell diagram. In
vibration of gyroscopic systems, there are two natural fre-
quencies associated with forward and backward whirling
motions. In forward natural frequency, the natural fre-
quency is measured when the rotating cutting tool whirls in
direction of the rotation. However, in backward natural
frequency, the natural frequency is measured when the
cutting tool whirls in the opposite direction of the rotation.
(e forward natural frequency (black solid line) increases
with the increase of the rotating speed, while the backward
natural frequency (blue dashed line) decreases with the
increase of the rotating speed.(e intersections of the curves
related to the natural frequencies with the straight line ωn �

Ω determine the critical rotating speeds of the rotating
cutting tool.

3.1. Stability LobeDiagram. By removing the nonlinear term
and the harmonic cutting force in the right-side term of (17),
the stability of the cutting system can be investigated. Fig-
ure 3 shows a stability lobe diagram where the Ω versus alim
curve separates the space into two regions. Any (Ω, alim) pair
that appears above the collective boundary indicates un-
stable milling process where regenerative chatter or self-
excited vibration occurs, while any pair below the boundary
is a stable milling process.

3.2. Primary Resonance Response

3.2.1. Case I. (e numerical solutions for the forced vi-
bration responses of the cutting system with composite
cutting tool are presented in Figure 4. As shown in Figure 4,
by increasing detuning parameters at point A, the amplitude
a1 gradually increases until reaching point B. a1 jumps
downward from point B to point C. Afterward, a1 gradually
drops to point D while continuing increasing the detuning
parameter. On the other hand, as the detuning parameter
decreases from point D to point E, a1 increases and jumps
upward from point E to point F. As the detuning parameter
further decreases, a1 drops until arriving at point A. By

considering the nonlinearity of higher-order bending de-
formation, the forced response curve of the cutting system
deviates toward the right, suggesting hard spring vibration

Table 1: Mechanical properties of carbon fiber/epoxy composite
[37].

ρ(kg/m3) E11 (GPa) E22 (GPa) G12 (GPa) G23 (GPa) ]12
1672 25.8 8.7 3.5 3.5 0.34

Table 2: Coefficients of cutting forces [21].

Cf (mm/rev-
tooth)

ς1 (N/
mm)

η1
(N)

ς2 (N/
mm)

η2
(N)

ac

(mm) N

0.2 620 208 43 52 3 4

5

4.5

4

3.5

3

2.5ω n

ω1
ω2

2

1.5

1

0.5

0
0 20 40

3.48
3.5

3.53

3.54

60

ωn = Ω

Ω
80 100

Figure 2: Natural frequency versus rotational speed (L/d� 10,
θ � 0°).

a li
m

 (m
m

)

1

0.8

0.6

0.4
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0
0 1000
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Unstable

2000 3000 4000 5000
Ω (rpm)

Figure 3: Stability lobe diagram of the cutting system with
composite cutting tool (L/d� 10, c � 0.3, θ � 0°).
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behavior of Duffing type oscillator. As the detuning pa-
rameter varies between σF and σB, the cutting system has
three steady-state vibration amplitudes, p1, p2, and p3,
among which p1 and p3 are stable and p2 is unstable. (is
means that the cutting system works in an unstable cutting
state. (erefore, cutting conditions and consequently initial
conditions should be adjusted such that the stable branch
with less vibration amplitudes is realized in practice.

Figures 5–9 show the effects of ratio of length to di-
ameter, structural damping, cutting force, ply angle, and
rotating speed on frequency response curve, respectively, for
the case Ω � ω1. As shown in Figure 5, when ratio of length
to diameter increases, vibration amplitudes decrease and
frequency response curve bends more strongly toward left.
(is is physically expected, because the nonlinear stiffness
coefficient λ � (EA)equivL

2/2(EI)equiv is proportional to
ratio of length to diameter according to (12). As is observed
and physically expected from Figure 6, the increase in the
structural damping leads to the decrease in vibration am-
plitudes. In order to study the effect of cutting force coef-
ficients, we define ς2 � Kfς2, η2 � Kfη2, with the parameters
ς2 and η2 given in Table 2. As is shown in Figure 7, by
increasing cutting forces, vibration amplitudes increase.
Figure 8 shows that the primary resonance amplitude in-
creases with the increase of the ply angle because the elastic
modulus E11 along the longitudinal direction of the fiber is
significantly larger than the transverse elastic modulus E22
(as shown in Table 1). (erefore, as the ply angle is greater,
the equivalent bending stiffness (EI)equiv of the composite
cutting tool is smaller; thus, the nondimensional cutting
force coefficients are greater (as shown in (11)). As a result,
the amplitude of the primary resonance response is larger.

Figure 9 shows that vibration amplitudes decrease with
the decrease of rotating speed. (is is physically expected,
because the equivalent damping of the cutting system (which
will be introduced in the subsequent section) increases with

the decrease of rotating speed due to the damping effect from
regenerative chatter mechanism.

Figures 10–14 show the amplitude versus damping
coefficient with different ratios of length to diameter,
detuning parameter values, cutting force coefficients, ply
angles, and rotating speeds, respectively, for the case
Ω � ω1. From these figures, it can be seen that for some
values of L/d, σ, Kf, or θ, there are multivalued curves. For
example, when L/d � 10 and c ＜0.45, as is shown in
Figure 10, the system has two stable and one unstable
branches, but for L/d � 10 and c ＞0.45, there exists only
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0.08
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0.1
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cutting
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p3
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Figure 4: Frequency response curve in case I.
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Figure 5: (e effect of ratio of length to diameter on frequency
response curve (c � 0.01, θ� 0°, case I).
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Figure 6: (e effect of structural damping on frequency response
curve (L/d� 10, θ� 0°, case I).
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one stable branch. For large values of c and large values of
L/d, curves are always single-valued.

Figures 15–19 show the amplitude versus ply angle with
different ratios of length to diameter, detuning parameter
values, cutting force coefficients, damping coefficients, and
rotating speeds, respectively (Ω � ω1). Similar to the cases in
Figure 10～14, again, for some values of L/d, σ, Kf, or c,
multivalued curves can be observed.

Figures 20–24 show the amplitude versus cutting force
coefficient with different ratios of length to diameter,
detuning parameter values, ply angle, damping coefficients,

and rotating speeds, respectively. Again, when cutting force
coefficient is less than the specified value, multivalued curves
can be obtained for some values of L/d, σ, θ, c, or Ω.

Figures 25–27 show the effects of ply sequences (see
Table 3) on the frequency response curve, the amplitude
versus dumping coefficient, and the amplitude versus cutting
force coefficient, respectively. It can be seen from Figure 25
that the configuration A leads to the largest vibration am-
plitude, while the configuration C leads to the smallest vi-
bration amplitude. (is phenomenon can also be found in
Figure 8 where the vibration amplitude increases with the

0
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0.07
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0.09

0.1
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kf =2.5

Figure 7: (e effect of cutting force coefficient on frequency re-
sponse curve (L/d� 10, c � 0.01, θ� 0°, case I).
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Figure 8: (e effect of ply angle on frequency response curve
(L/d � 10, c � 0.01, case I).
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Figure 9: (e effect of rotating speed on frequency response curve
(L/d� 10, c � 0.01, θ� 0°, case I).
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Figure 10: Amplitude versus damping coefficient with different
ratios of length to diameter (σ � 2, c � 0.01, θ� 0°, case I).
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ply angle when using the same configuration. Again, it can
be seen from Figures 26 and 27 that multivalued curves can
be observed for some values of L/d, σ, Kf, or c.

3.2.2. Case II. Figures 28–33 show the effects of ratio of
length to diameter, structural damping, cutting force, ply
angle, ply sequence, and rotating speed on frequency
response curve, respectively, for the case Ω � ω2. As is
observed, the frequency responses and effect of various
parameters for the cutting system are similar to those in

case I; as ratio of length to diameter and structural
damping increase, vibration amplitudes decrease. Fur-
thermore, as cutting force coefficient, ply angle, and ro-
tating speed increase, vibration amplitudes increase.
However, for this case, vibration amplitudes are less than
those of case I.

It should be noted that the equivalent damping of the
cutting system is composed of the structural damping and
the damping from regenerative chatter mechanism.
(e equivalent damping coefficient of case I can be
expressed as
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Figure 11: Amplitude versus damping coefficient with different
detuning parameter values (L/d� 10, c � 0.01, θ� 0°, case I).
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Figure 12: Amplitude versus damping coefficient with different
cutting force coefficients (L/d� 10, σ � 2, θ� 0°, case I).
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Figure 13: Amplitude versus damping coefficient with different ply
angles (L/d� 10, σ � 2, case I).
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cequiv1 � c − ϕ21(1)
N

4π
α0′ + β0􏼐 􏼑 1 − cosω1τ( 􏼁􏽨

+ β0′ − α0􏼐 􏼑sinω1τ􏽩/ ω1 􏽚
1

0
ϕ21(x)dx􏼢 􏼣.

(45)

In addition, the equivalent damping coefficient of case II
can be expressed as

cequiv2 � c + ϕ21(1)
N

4π
α0′ + β0􏼐 􏼑 1 − cosω2τ( 􏼁􏽨

+ α0 − β0′􏼐 􏼑sinω2τ􏽩/ ω2 􏽚
1

0
ϕ21(x)dx􏼢 􏼣.

(46)

Figures 34–38 show the effect of different parameters on
the equivalent damping coefficients. As is observed, the
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Figure 15: Amplitude versus ply angle with different ratios of
length to diameter (c � 0.01, σ � -1.5, case I).
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Figure 16: Amplitude versus ply angle with different detuning
parameter values (L/d� 10, c � 0.01, case I).
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Figure 17: Amplitude versus ply angle with different cutting force
coefficients (L/d� 10, c � 0.01, σ � 2, case I).
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Figure 18: Amplitude versus ply angle with different damping
coefficients (L/d� 10, σ � 2, case I).
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equivalent damping coefficients of case I are always larger than
those of case II. (is explains the reason why vibration am-
plitudes of case I are larger than those of case II. It can be also
seen that the equivalent damping coefficients increase with
ratio of length to diameter, ply angle, cutting force, and

structural damping but decrease with rotating speed.(erefore,
the increase of rotating speed leads to large vibration ampli-
tudes, as shown in Figures 9 and 32. When rotating speed
approaches infinity, the equivalent damping coefficient ap-
proaches the structural damping c (see Figure 38).
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Figure 19: Amplitude versus ply angle with different rotating
speeds (L/d� 10, c � 0.01, σ � 2, case I).
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Figure 20: Amplitude versus cutting force coefficient with different
ratios of length to diameter (θ� 0°, c � 0.01, σ � 2, case I).
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Figure 21: Amplitude versus cutting force coefficient with different
detuning parameter values (θ� 0°, c � 0.01, L/d� 10, case I).
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Moreover, for some values of L/d, σ, Kf, c, θ, or Ω,
multivalued solutions can be found from the amplitude
versus damping coefficient with different ratios of length to
diameter, detuning parameter values, cutting force coeffi-
cients, ply angles, and rotating speeds, respectively (not
shown).
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Figure 23: Amplitude versus cutting force coefficient with different
damping coefficients (σ � 2, θ� 0°, L/d� 10, case I).
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Figure 24: Amplitude versus cutting force coefficient with different
rotating speeds (σ � 2, c � 0.01, θ� 0°,L/d� 10, case I).
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Figure 25: (e frequency response curve with different ply se-
quences (c � 0.05, L/d� 10, case I).

0 0.1 0.2 0.3 0.4 0.5
c

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

a 1

Stable
Unstable

�e configuration B
�e configuration A

�e configuration C

Figure 26: Amplitude versus dumping coefficient with different ply
sequences (σ � 2, L/d� 10, case I).

Table 3: Configuration of composite.

Configuration Sequence
A [90°/90°/0°]s
B [0°/90°/0°/0°/90°/0°]
C [0°]6
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Figure 39 shows the frequency response curve for the
four cases. As is observed, the curves of cases I and III are
very similar, except that the amplitude in case I is larger than
that in case III. Likewise, the curves of cases II and IV are
very similar, except that the amplitude in case II is larger
than that in case IV.

3.2.3. Case III. For this case, the equivalent coefficient is
identical with that in case I, but the amplitude of excitation
force (c2fς1

+ c2fη1
)/4 in this case is lower than (ς22 + η22) in

case I (e.g., using the same parameters L/d� 10, θ� 90°, and
Kf � 3, the amplitudes of excitation force are 0.2695 and
0.2532 for cases I and III, respectively). (erefore, generally,
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Figure 27: Amplitude versus cutting force coefficient with different
ply sequences (c � 0.01, σ � 2, L/d� 10, case I).
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Figure 28: (e effect of ratio of length to diameter on frequency
response curve (θ� 0°, c � 0.01, case II).
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the behavior of nonlinear forced vibration in this case
(see Figure 39) is similar to case I, despite having less
vibration amplitudes compared with case I.

3.2.4. Case IV. For this case, the equivalent coefficient is
identical with that in case II, and the amplitude of excitation
force in this case is lower than that in in case II. (us, under
the same conditions, vibration amplitudes are generally

lower than those in case II. (e results of case IV are not
shown to save space.

In order to validate the calculated approximate solution
using multiscale method, the numerical simulation results
according to (17) are also displayed in Figures 40 and 41.
(ese two calculated results using different methods are in
good consistency.
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Figure 31: (e effect of ply angle on frequency response curve
(L/d � 10, c � 0.01, case II).
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Figure 32:(e effect of rotating speed on frequency response curve
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Figure 33: Frequency response curve with different ply configu-
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Figure 35:(e equivalent damping coefficients versus ply angle for
cases I and II.
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Figure 37: (e equivalent damping coefficients versus structural
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4. Conclusions

In this paper, a nonlinear dynamic model of the milling
process with composite rotational cutting tool is presented.
(e cutting tool is simplified to a nonplanar bending
Euler–Bernoulli beam, and the structural nonlinearity is
attributed to the higher-order bending deformation of the
cutting tool. A linear cutting force model considering re-
generative mechanism, which includes time-delay terms and
the first and second harmonic terms, is used. In addition,
structural damping and gyroscopic effect are also consid-
ered. Nonlinear ordinary differential equations in the gen-
eralized coordinates are derived using the Hamilton
principle and the Galerkin method. (e lobe diagram of the
cutting system is obtained. (e multiscale method is used to
construct the analytical approximate solutions of the forced
vibration frequency response. It is found that, for all cases of
primary resonance and superharmonic resonance, excita-
tion of the forward (backward) mode does not produce the
vibration responses in the backward (forward) mode be-
cause of not taking into account internal resonance in the
proposed model. For primary and superharmonic resonance
conditions, the effective nonlinearity of the cutting system
with higher-order bending deformation rotating composite
cutting tool is of a hard type. Jump phenomenon and
multivalued solutions can be observed.

(e influence of higher-order bending deformation
causes the frequency response curve to bend more strongly
toward right when ratio of length to diameter increases.(e
study also finds that the vibration amplitudes of the cutting
tool increase with cutting force or ply angle. It can be seen
that the damping of the cutting system has a significant
influence on the vibration amplitude of the composite
cutting tool. (e damping capacities of the cutting system
can be measured by the two different equivalent damping

coefficients cequiv1 and cequiv2 which include the structural
damping and the damping from regenerative chatter
mechanism. Cases I and III have the same equivalent
damping coefficient cequiv1, and cases II and IV have the
same equivalent damping coefficient cequiv2. It has been
found that cequiv2 is larger than cequiv1, so the vibration
amplitudes of case I are larger than those of case II. In
addition, for all resonant cases, as rotating speed decreases
or structural damping increases, the equivalent damping
coefficient is strengthened, and consequently less vibration
amplitudes are observed. (erefore, from this point of
view, low rotating speeds are preferable to keep vibration
amplitudes small. [38].

Abbreviations

T: Kinetic energy
L: Length of the cutting tool
t: Time
ρ: Density
A: Cross-sectional area
I: Second moment of area of the beam cross

section
v, w: Transverse deflections of the shaft element
x, y, z: Variable coordinates
ψy,ψz: Rotation angles of the cross section around

the y and z axes
Ω: Rotating speed of the shaft
Q11: Off-axis stiffness coefficient of the kth layer

for the composite cutting tool
U: Potential energy
Wc: Rayleigh dissipative energy function of the

cutting tool
c: Structural damping coefficient
δ: Variational operator
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δW: Virtual work of the cutting force
Fy, Fz: Linear regenerative cutting forces
τ: Delay time of milling process
N: (e number of teeth
Ktc: Cutting force coefficients in the tangential

directions
Kte: Edge force coefficients in the tangential

directions
Krc: Cutting force coefficients in the radial

directions
Kre: Edge force coefficients in the radial

directions
a: Axial cutting depth
cf: Feed per tooth per revolution
(EI)equiv,
(EA)equiv:

Equivalent bending and tensile stiffness of
the cutting tool

(ρI)equiv,
(m)equiv:

Equivalent diametrical mass moment of
inertia and equivalent mass per unit length

ρk: Density of the kth layer
rk, rk+1: Inner diameter and outer diameter of the kth

layer
ϕ1(x): Mode function
ω1, ω2: Forward and backward whirling frequencies
ε: Small parameter
i:

���
− 1

√
.

Appendix

A. The Stain Energy of the Composite
Cutting Tool

If the torsional deformation is negligible, the bending dis-
placements of the composite cutting tool in x, y, and z
directions are as follows:

ux � − zψy + yψz, uy � v, uz � w. (A.1)

(e strain in the x direction is

εxx � εl + εnl, (A.2)

where

εl � − z
zψy

zx
+ y

zψz

zx
, εnl �

1
2
ψ2

y +
1
2
ψ2

z, (A.3)

where εl and εnl are the linear strain and the nonlinear strain
generated in high-order bending deformation, respectively.

Bending energy for the composite cutting tool can be
expressed as

U �
1
2

􏽚
L

0
B

A
σxxεxx( 􏼁dAdx. (A.4)

(e elastic stress-strain relations of the laminate cutting
tool can be expressed as

σxx � Q11εxx. (A.5)

Employing (A.2), (A.3), and (A.5), (A.4) can be rewritten
as

U �
1
2

􏽚
L

0
B

A
Q11 z

2 zψy

zx
􏼠 􏼡

2

+ y
2 zψz

zx
􏼠 􏼡

2

− 2yz
zψy

zx

zψz

zx
+
1
4
ψ4

y +
1
4
ψ4

z +
1
2
ψ2

yψ
2
z − 2 z

zψy

zx
+ y

zψz

zx
􏼠 􏼡

1
2
ψ2

y +
1
2
ψ2

z􏼒 􏼓⎛⎝ ⎞⎠

2

dAdx.

(A.6)

Due to the symmetry of the cross section, the third and
seventh terms in the above equation are equal to zero.

(erefore, the strain energy of the composite cutting tool
can be reduced as follows:

U �
(EI)equiv

2
􏽚

L

0

zψy

zx
􏼠 􏼡

2

+
zψz

zx
􏼠 􏼡

2
⎛⎝ ⎞⎠dx +

(EA)equiv

2
􏽚

L

0

1
4
ψ4

y +
1
4
ψ4

z +
1
2
ψ2

yψ
2
z􏼒 􏼓dx. (A.7)

B. The Expression of the Off-Axis
Stiffness Coefficient

(e off-axis stiffness coefficient of the kth layer for the
composite cutting tool is defined as

Q11 � C11cos
4θ(k)

+ C22sin
4θ(k)

+ 2 C12 + 2C66( 􏼁sin2θ(k)cos2θ(k)
,

(B.1)

where θ(k) is the layer angle of each layer of the material.
(e expressions of C11, C12, C22, and C66 are as follows:

C11 �
E11

1 − ]12]21
, C12 �

]12E11

1 − ]12]21
�

]21E22

1 − ]12]21
, C22 �

E22

1 − ]12]21
, C66 � C12, (B.2)
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where

]21 �
]12E11

E22
. (B.3)
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