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In the process of fault feature extraction of rolling bearing, the feature information is difficult to be extracted fully. A novel method
of fault feature extraction called hierarchical dispersion entropy is proposed in this paper. In this method, the vibration signals
firstly are decomposed hierarchically. Secondly, dispersion entropies of different nodes are calculated. Hierarchical dispersion
entropy can realize the comprehensive feature extraction of the high- and low-frequency band information of vibration signals
and overcome the problems that dispersion entropy and multiscale dispersion entropy are insufficient to extract the fault feature
information of vibration signals. ,e feasibility of hierarchical dispersion entropy is obtained by analyzing the hierarchical
dispersion entropy of Gaussian white noise and compared with the multiscale dispersion entropy of Gaussian white noise.
Meanwhile, a fault diagnosis method for rolling bearings based on hierarchical dispersion entropy and k-nearest neighbor (KNN)
classifier is developed. Finally, the superiority of the proposed fault diagnosis method is verified in the realization of fault diagnosis
of the rolling bearing in different positions and different degrees of damage.

1. Introduction

As a key component of rotatingmachinery, the failure rate of
rolling bearing accounts for 30%–40% of rotating machinery
failure [1]. So it is very important to monitor and diagnose
the fault of rolling bearing to ensure the safe and reliable
operation of the rotating machinery. However, the rolling
bearing often runs in different working conditions and
worse environments, which makes the vibration signals have
nonlinear and nonstationary characteristics. How to effec-
tively extract fault features from the vibration signals is very
crucial [2].

In recent years, many nonlinear dynamic analysis methods,
such as approximate entropy [3], sample entropy [4], fuzzy
entropy [5], and permutation entropy [6] are widely used in
fault feature extraction due to their abilities to measure the
complexity of time series. Zheng et al. [7] firstly realized the

decomposition of vibration signals through local characteristic-
scale decomposition (LCD). ,en, the fault features of the
modal components through fuzzy entropy are extracted to
realize fault diagnosis of rolling bearing. Zhong et al. [8]
extracted the fault features by sample entropy after empirical
mode decomposition (EMD) of vibration signals to realize fault
diagnosis of rolling bearing. Aiming at the parameter selection
of multiscale permutation entropy, Wang et al. [9] proposed a
method of optimizing parameters of multiscale permutation
entropy to extract fault features. Li et al. [10] improved
multiscale permutation entropy to extract fault features which
were inputted into binary tree support vector machine to
realize fault diagnosis of rolling bearing. Above entropies and
their improvement are widely used in fault feature extraction,
but the relationship between vibration amplitudes is not
considered. So Rostaghi and Azami [11] proposed the dis-
persion entropy to characterize the complexity of time series
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which was proved better than the permutation entropy and
sample entropy in the dataset fields of biology and finance.
Because the dispersion entropy is not only efficient in the
calculation but also it can describe the relationship between
vibration amplitudes. Based on the dispersion entropy which
can describe the relationship between vibration amplitudes,
Mostafa [12] applied the dispersion entropy to the fault di-
agnosis of rotating machinery, which showed the dispersion
entropy was better than the permutation entropy and the
approximation entropy such as more stable in the detection of
high SNR signals. However, the dispersion entropy could not
extract multiscale fault features of signals. For this, Yi et al. [13]
proposed the multiscale dispersion entropy which could realize
fault feature extraction of vibration signals under multiscale.
Luo et al. [14] proposed refined composite multi-scale dis-
persion entropy to realize fault diagnosis of rolling bearing by
improving coarsening process.,ismethod realized the feature
extraction in the multiscale of vibration signals. However,
literature [15, 16] pointed out that multiscale entropy could
only extract the feature information of vibration signals in the
low-frequency band and ignore the feature information in the
high-frequency band. But the fault information of vibration
signals of rolling bearing not only exists in the low-frequency
band but also in the high-frequency band.

,erefore, in order to achieve a comprehensive fault
feature extraction of rolling bearing, a new fault feature
extraction method named hierarchical dispersion entropy is
proposed. ,e fault features of vibration signals of rolling
bearing are extracted by the hierarchical dispersion entropy
and inputted into the KNN classifier [17] to realize fault
diagnosis. ,e main contributions of this paper are as
follows:

(1) Compared with traditional methods, such as sample
entropy, approximate entropy, and permutation en-
tropy, dispersion entropy has the advantage of
measuring the relationship between vibration signal
amplitudes. In this paper, the hierarchical dispersion
entropy is proposed by introducing hierarchical de-
compose based on dispersion entropy. Hierarchical
dispersion entropy can extract feature information
from the high-frequency band and low-frequency
band. It overcomes the problem that multiscale dis-
persion entropy could not extract fault information
from high-frequency band.

(2) ,e hierarchical dispersion entropy could extract
more fault features. So it is applied in the fault feature
extraction of rolling bearing vibrations. ,e method
of fault diagnosis of hierarchical dispersion entropy
combined with KNN is realized.

,is paper is organized as follows: Section 2 presents
dispersion entropy and multiscale dispersion entropy.
Section 3 is the theory of hierarchical dispersion entropy and
its parameter selection and simulation analysis. Section 4 is

the fault diagnosis of rolling bearing based on hierarchical
dispersion entropy. Section 5 is experimental verification.
Section 6 summarizes the conclusions.

2. The Theory of Dispersion Entropy

2.1. Dispersion Entropy. Dispersion entropy is a method
which can characterize the irregularity of time series [11].
,e greater the value of dispersion entropy, the higher the
irregularity of time series. On the contrary, the smaller the
value of dispersion entropy, the lower the irregularity of time
series. ,e calculation steps of dispersion entropy for the
time series x � xi, i � 1, 2, . . . , N􏼈 􏼉 are as follows:

(1) ,e normal distribution function (1) is selected to
map the time series x to y � yj, j � 1, 2, . . . , N􏽮 􏽯 and
yj∈ (0, 1).

yj �
1

σ
���
2π

√ 􏽚
xj

− ∞
e

− (t− μ)2( )/2σ2)dt,( (1)

where uandσ, respectively, represent mean and
standard deviations of time series x.

(2) yj is mapped into integer indices between
[1, 2, . . . , c] by linear expression.

zc
j � round c · yj + 0.5􏼐 􏼑, (2)

where round is the rounding function and cis the
number of classes after mapping.

(3) ,e embedded vectorzm,c
i is calculated by the fol-

lowing equation:

zm,c
i � z

c
i , z

c
i+d, . . . , z

c
i+(m− 1)d􏽮 􏽯, (3)

where i � 1, 2, . . . , N − (m − 1)d, m represents the
embedded dimension, and drepresents the delay
time.

(4) ,e dispersion entropy patterns πv0 ,v1 ,...,vm− 1
(v �

1, 2, . . . , c) of each time serieszm,c
i are calculated. cm is

the number of possible patterns, zc
i � v0, zc

i+d �

v1, . . . , zc
i+(m− 1)d � vm− 1.

(5) Forcmdispersion patterns, the probability of each
dispersion pattern πv0v1...vm− 1

is as follows:

p πv0v1...vm− 1
􏼐 􏼑 �

number πv0v1...vm− 1
􏼐 􏼑

N − (m − 1)d
, (4)

where number(πv0v1...vm− 1
) is the number of disper-

sion patterns πv0v1...vm− 1
.p(πv0v1...vm− 1

) equals to the
number of dispersion patterns πv0v1...vm− 1

divided by
the number of elements inzm,c

i .
(6) Dispersion entropy of time series is defined as

follows:
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DE(x, m, c, d) � − 􏽘
cm

π�1
p πv0v1...vm− 1

􏼐 􏼑ln p πv0v1...vm− 1
􏼐 􏼑􏼐 􏼑.

(5)

2.2. Multiscale Dispersion Entropy. In 2002, Costa et al. [18]
proposed a multiscale entropy method which characterized
the complexity of time series under multiscale conditions.
Azami et al. [19] introduced the multiscale analysis method
and proposed the multiscale dispersion entropy. ,e cal-
culation steps of multiscale dispersion entropy are as follows:

(1) yτ(j)is obtained by coarsening original
sequencex(i)as follows:

y
τ
(j) �

1
τ

􏽘

jτ

i�(j− 1)τ+1
x(i), 1< j<

τ
N

, (6)

where τis the scale factor, τ � 1, 2, . . . , n.
(2) According to the calculation process of dispersion

entropy in Section 2.1, the multiscale dispersion
entropy is obtained by analyzing the dispersion
entropy of coarse-grained time seriesyτ(j).

,us, it may be known that the key step of calculation of
multiscale dispersion entropy is the coarse-grained of
original time series. ,e coarsening process is to sum time
series according to different scales and then average them to
form a new time series. According to the analysis of liter-
ature [15, 16], we know that multiscale dispersion entropy
only obtains the low-frequency information of time series,
but ignores the high-frequency information. In fact, the fault
information contained in vibration signals not only exists in
the high-frequency band but also in the low-frequency band.

3. The Theory of Hierarchical
Dispersion Entropy

3.1.HierarchicalDispersionEntropy. Hierarchical dispersion
entropy is proposed by introducing hierarchical analysis.
,e first step is to hierarchically decompose vibration sig-
nals. ,e second step is to get the dispersion entropy of
different hierarchical nodes. ,e detailed calculation process
is as follows:

Step 1. Vibration signals are decomposed hierarchically
as follows:

(1) For the obtained vibration signals, the operatorQjis
defined as follows:

Qj �

1
2

−
1
2

􏼒 􏼓
j

0 0 . . . 0 0

0 0
1
2

−
1
2

􏼒 􏼓
j

. . . 0 0

0 0 0 0 . . .
1
2

−
1
2

􏼒 􏼓
j

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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2n− 1×2n

,

(7)

where j � 1 or 0, the form of the matrix Qj is
determined by the length of vibration signals.
,erefore, the following operators are defined as
follows:

Q0(μ) �
μ(2j) + μ(2j + 1)

2
, j � 0, 1, 2, . . . , 2n

,

Q1(μ) �
μ(2j) − μ(2j + 1)

2
, j � 0, 1, 2, . . . , 2n

,

(8)

Q0 and Q1 represent the low-frequency and high-
frequency parts of the first layer of vibration signal
decomposition. According to the operator Q0 and
Q1, the reconstructed vibration signal is as follows:

μ � Q0(μ)j + Q1(μ)j, Q0(μ)j − Q1(μ)j􏽮 􏽯, (9)

where j � 0, 1, 2, . . . , 2n− 1.
(2) N-dimensional vector[c1, c2, . . . cn] ∈ 0, 1{ }is

reconstructed. ,e integerecan be expressed bycjas
follows:

e � 􏽘
k

j�1
cj2

k− j
. (10)

(3) According to the vector [c1, c2, . . . , cn], the nodes
of each layer decomposition of vibration signaluiare
defined as follows, and the hierarchical structure is
shown in Figure 1.

Step 2. ,e calculation function of hierarchical dis-
persion entropy of different nodes is as follows:

HDE(k) � DE(data, k, m, c, d), (12)

where data are the original vibration signals, kis the number
of decomposition order, mis the embedded dimension, cis
the number of mapping class, and d is the time delay.

It can be seen from the definition of operators that Q0 and
Q1 represent the low frequency and the high frequency, which
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are equivalent to the low pass and the high pass in wavelet
analysis. ,e dispersion entropies of u(1,0), u(2,0), and u(3,0) on
the left of Figure 1 are equivalent to the dispersion entropies of
different scales in multiscale dispersion entropy. In essence, the
dispersion entropy of uk,0 is the dispersion entropy of different
scales in multiscale, which represents the low-frequency part of
time series. ,e high-frequency part is on the right of Figure 1,
which is ignored by the multiscale entropy. It can be seen that
hierarchical dispersion entropy can not only extract the low-
frequency information of vibration signals but also extract the
high-frequency information. ,erefore, the ability of hierar-
chical dispersion entropy is better than multiscale dispersion
entropy for extracting fault features of rolling bearing from the
theoretical analysis.

3.2. Parameter Selection. In the process of calculating hi-
erarchical dispersion entropy, the related parameters need to
be set in advance.,ese parameters are decomposition order
k, embedding dimension m, mapping classes c, and time
delay d. When the k value is small, the frequency band of
vibration signals would be larger and the detailed fault
feature information from low frequency to high frequency
could not be obtained. If the k value is large, the calculation
efficiency of the algorithm would be reduced and the points
involved in the calculation would be reduced. In general, the
value of decomposition k � 3 is selected [20].

At the same time, according to the influence of the
parameters of the dispersion entropy in literature [12], the
embedded dimension m � 2, mapping classes c � 5, and
time delay d � 1 are selected.

3.3. Simulation Analysis. ,e irregularity of Gaussian white
noise in different frequency bands is basically unchanged [21].
,erefore, the feasibility of hierarchical dispersion entropy is
verified by analyzing the hierarchical dispersion entropy of
Gaussian white noise signal and compared with multiscale
dispersion entropy of Gaussianwhite noise signal.,eGaussian
white noise signal with a length of N � 2048 is generated by
simulation as shown in Figure 2. ,e sample frequency of the
Gaussian white noise is 12 kHZ. ,e spectrum diagram can be
obtained by Fourier transforming as shown in Figure 3.

,e parameter settings k � 3 and τ � 8 are used to extract
the hierarchical dispersion entropy and multiscale dispersion
entropy. At each scale, two kinds of entropy values are cal-
culated for 100 groups of white noise generated randomly.

,e error bars are shown in Figure 4. From Figure 4, we can
see that the hierarchical dispersion entropy at different hi-
erarchical nodes is basically unchanged. It is consistent with
the fact that the complexity of Gaussian white noise in dif-
ferent frequency bands is basically unchanged. However, the
multiscale dispersion entropy decreases with the scale
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Figure 1: Time series decomposition diagram (k� 3).
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Figure 3: Spectrum of Gaussian white noise.
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increase which is not consistent with the fact that the com-
plexity of Gaussian white noise in different frequency bands is
basically unchanged. At the same time, the error bar of
multiscale dispersion entropy is small when the scale is small.
With the increase of scale, the error bar of multiscale dis-
persion entropy is larger. But the error bar of hierarchical
dispersion entropy is basically unchanged. It means that the
stability of multiscale dispersion entropy is poor and the
stability of hierarchical dispersion entropy is better. To sum
up, the hierarchical dispersion entropy could represent the
complexity of signals and its performance is better than
multiscale dispersion entropy.

4. Fault Diagnosis of Rolling Bearing Based on
Hierarchical Dispersion Entropy

,e complexity of vibration signal is different in a different
position and damage degree of rolling bearing. ,erefore,
different fault features of vibration signals of rolling bearing
can be extracted by the proposed hierarchical dispersion
entropy. ,e fault diagnosis of rolling bearing is realized by
inputting hierarchical dispersion entropies of vibration
signals into the KNN classifier. ,e implementation steps of
fault diagnosis are shown in Figure 5.

(1) Vibration signals of rolling bearing are collected.
(2) ,e hierarchical dispersion entropies of vibration

signals in different states of rolling bearing are
extracted. Eight different nodes are obtained by
setting k � 3. Other parameters are set m � 2,c � 5,
and d � 1.

(3) Fault features are divided into training samples and
test samples.

(4) ,e training samples are inputted into the KNN
classifier for model training.

(5) ,e testing samples are inputted into the KNN
classifier to get fault diagnosis results.

5. Experimental Verification

,e rolling bearing experimental data of the Case Western
Reserve University of the United States are selected [21]. ,e
test system is shown in Figure 6 and the bearing is 6205-
2RSJEMSKF deep groove ball bearing. Different fault set-
tings of bearing inner ring, outer ring, and rolling element
are made by electrodischarge machining (EDM) technology.
,e information of fault data is shown in Table 1.

5.1. Fault Diagnosis of Different Positions. At the sampling
frequency of 12 kHz, the vibration signals of rolling bearing
under normal (NR), inner ring fault (IRF), outer ring fault
(ORF), and rolling element fault (BF) are collected when the
load is 1.5 kW and the speed is 1750 r/min.,e time-domain
waveform of vibration signals is shown in Figure 7.

We can see from Figure 7 that, it is difficult to directly
identify different fault types of rolling bearing only through
time-domain waveform. Firstly, the multiscale dispersion
entropy of 120 samples (30 samples for each state) are
extracted, and the mean value of the multiscale dispersion
entropy is shown in Figure 8, where the scale τ � 8 is set and
other parameters remain unchanged.

It can be seen from Figure 8 that multiscale dispersion
entropy of vibration signals under normal conditions of
rolling bearing is larger than that under fault conditions.
,is is due to the periodic impact of vibration signals in fault
states is more regular than the randomness of vibration
signals in the normal state. ,e multiscale dispersion

Collecting 
vibration signals

Fault feature extraction 
based on hierarchical 

dispersion entropy

Training sets Testing sets

KNN 
classifier

Output 
diagnostic results

Figure 5: Flowchart of the hierarchical dispersion entropy +KNN
method.
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entropies of the balling and the inner ring are larger than
that of the outer ring and are close to each other when the
scale is small. Because the outer ring is fixed, but the balling
and the inner ring run together with the bearing. ,is leads
to balling and inner ring vulnerable to more noise inter-
ference in the path transmission and more irregularities.

,e extracted multiscale dispersion entropy is inputted
into the KNN classifier for fault diagnosis. We set the
number of nearest neighbors K � 2, where classification
label 1 represents NR, classification label 2 represents IRF,
classification label 3 represents ORF, and classification label
4 represents BF. ,e diagnosis results are shown in Figure 9.

From Figure 9, we can see that one sample of ball fault is
considered as the inner ring fault. ,e overall diagnosis
accuracy is 99.17%.

,e dispersion entropy is extracted from the same
sample and is inputted into the KNN classifier for fault
diagnosis as shown in Figure 10. Except for the scaleτ, the
other parameters are the same as the multiscale dispersion
entropy. ,e diagnosis accuracy is 75% and there are serious
errors for the classification of inner ring and balling. Due to
the rotation of inner ring and balling together, the fault
impact signals interfere with each other. Dispersion entropy
and multiscale dispersion entropy are not easy to extract the
distinguishing features and are easy to cause misjudgment.

,e fault features of rolling bearing are extracted by the
proposed hierarchical dispersion entropy. ,e decomposi-
tion order is set k � 3 and the other parameters are the same
as the multiscale dispersion entropy and dispersion entropy.
,e hierarchical dispersion entropies of samples are shown
in Figure 11.

Firstly, from Figure 11, we know that hierarchical dis-
persion entropy in normal state decreases with the increase
of nodes in general. ,is indicates that the feature infor-
mation mainly exists in the low frequency of vibration
signals. Secondly, hierarchical dispersion entropy of vibra-
tion signals in node� 1 (low frequency part) and node� 8
(high-frequency part) is large in fault state. ,is indicates
that the fault feature exists not only in the low frequency but
also in the high frequency. ,irdly, the hierarchical dis-
persion entropy of the same node in different states is ba-
sically unchanged. ,is means that the stability of
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Figure 7: Time-domain waveform.
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Figure 6: ,e test system for roll bearing.

Table 1: Fault data information.

Fault type Label Fault diameter
NR 1 0

IRF

2 0.1778mm
3 0.3556mm
4 0.5334mm
5 0.7112mm

ORF
6 0.1778mm
7 0.3556mm
8 0.5334mm

BF

9 0.1778mm
10 0.3556mm
11 0.5334mm
12 0.7112mm
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hierarchical dispersion entropy is better, and the fault fea-
ture information exists in the high and low frequencies of
vibration signals of rolling bearing. But multiscale dispersion
entropy and dispersion entropy can only extract part of fault
feature information.,e hierarchical dispersion entropy can
extract more comprehensive fault feature information which
is more suitable for fault feature extraction of rolling bearing.
Finally, the fault features extracted by hierarchical dispersion
entropy are inputted into the KNN classifier for fault di-
agnosis under the same environment. ,e results are shown
in Figure 12. We can see from Figure 12 that the accuracy of
diagnosis result is 100% which is higher than 99.17% of
multiscale dispersion entropy and 75% of dispersion en-
tropy.,e diagnostic accuracy of the threemethods is shown

in Table 2. ,e effective feature extraction of inner ring and
balling is realized.,erefore, hierarchical dispersion entropy
is better than multiscale dispersion entropy and dispersion
entropy for fault feature extraction.

5.2. Fault Diagnosis of Different DamageDegrees. In order to
further verify the fault feature extraction ability of hierar-
chical dispersion entropy at the sampling frequency of 12
kHZ, the vibration signals of different fault damage degrees
of rolling bearing at the load of 0 kW and the speed of 1797 r/
min are shown in Figure 13. 12 different fault damage de-
grees and the corresponding classification labels are shown
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Figure 10: Diagnosis results of dispersion entropy.
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in Table 1. Among them, vibration signals of the outer ring 2,
balling 1, and the balling 3 are greatly disturbed by noise and
have no obvious impact.

Firstly, the fault features of different damage degrees are
extracted by using dispersion entropy and multiscale dis-
persion entropy. ,en, the fault features are inputted into
the KNN classifier for fault diagnosis. ,e diagnosis results
are shown in Figures 14 and 15, respectively.,e parameters
of dispersion entropy, multiscale dispersion entropy, and the
KNN classifier are the same as fault feature extraction of
different positions.

It can be seen from Figures 14 and 15 that fault diagnosis
accuracies of different fault damage degrees by dispersion
entropy and multiscale dispersion entropy are 63.33% and
73.67%, respectively. Compared with the fault diagnosis of

different positions, the fault diagnosis accuracies of different
fault damage degrees by using dispersion entropy and
multiscale dispersion entropy are greatly reduced. Because
the fault signals with different damage degrees are more
similar which make them more difficult to distinguish. At
the same time, the two methods are less able to distinguish
the signals with stronger similarity. ,us, it is not feasible to
diagnose different damage faults directly by dispersion
entropy and multiscale dispersion entropy. Similarly, the
accuracy of fault diagnosis with different damage degrees by
using hierarchical dispersion entropy is 98.33%, and the
results are shown in Figure 16.,ere is an error classification
between the inner ring and the balling. ,e diagnosis ac-
curacy of the three methods is shown in Table 3. Compared
with the dispersion entropy and multiscale dispersion

Table 2: ,e accuracy of fault diagnosis with different positions.

Method Accuracy (%)
Dispersion entropy +KNN 75
Multiscale dispersion entropy +KNN 99.17
Hierarchical dispersion entropy +KNN 100
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Figure 13: Time-domain waveforms of different damage degrees.

8 Shock and Vibration



entropy, the accuracy is greatly improved. ,is shows that
hierarchical dispersion entropy can realize the diagnosis of
different damage fault degrees and has a stronger ability to
extract fault features. At the same time, the fault diagnosis
accuracy of 100% can be achieved for the outer ring 2, the
balling 1, and the Balling 3 with strong noise interference.

,is further shows that hierarchical dispersion entropy has
better fault feature extraction ability under strong noise.

To summarize, the fault diagnosis ability of dispersion
entropy for different positions and damage degrees is poor. So
it is not feasible to directly extract the fault features of vi-
bration signals. ,e multiscale dispersion entropy has a high
diagnostic accuracy of fault diagnosis for different positions,
but its discrimination ability of different damage degrees is
not satisfied. Hierarchical dispersion entropy not only ach-
ieves good results for fault diagnosis of different positions but
also achieves satisfactory results for fault diagnosis of different
damage degrees. Because it can extract the fault feature in-
formation of vibration signals in high- and low-frequency
bands simultaneously. So hierarchical dispersion entropy has
obvious advantages for fault features extraction of complex
signals and is better than dispersion entropy and multiscale
dispersion entropy. Finally, for the same dataset, the accu-
racies of the proposed method and other methods are shown
in Table 4. It can be seen that the proposed method in this
paper has a high-fault diagnosis rate and a good diagnostic
accuracy in fault diagnosis of multiclassification.

0 25 50 75 100 125 150 175 200 225 250 275 300
0
1
2
3
4
5
6
7
8
9

10
11
12

Number of testing samples

Cl
as

sifi
ca

tio
n 

la
be

l

Expect output
Actual output

Figure 14: Diagnosis results of dispersion entropy.
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Figure 15: Diagnosis results of multiscale dispersion entropy.
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Figure 16: Diagnosis results of hierarchical dispersion entropy.

Table 3: ,e accuracy of fault diagnosis with different damage
degrees.

Method Accuracy (%)
Dispersion entropy +KNN 63.33
Multiscale dispersion entropy +KNN 73.67
Hierarchical dispersion entropy +KNN 98.33

Shock and Vibration 9



6. Conclusions

In this paper, a rolling bearing fault diagnosis method based
on hierarchical dispersion entropy and KNN is proposed.
,e main conclusions are as follows:

(1) Based on the dispersion entropy, this paper proposed
the hierarchical dispersion entropy by combining
with hierarchical decomposition.

(2) Hierarchical dispersion entropy can extract the high-
and low-frequency band characteristics of the signal.
It solves the problem that dispersion entropy and
hierarchical dispersion entropy cannot extract high-
frequency band information of signal.

(3) Finally, the method combined with KNN can realize
the fault diagnosis of rolling bearing in different
positions and damage degrees. It provides a new idea
for fault feature extraction of rolling bearing.
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