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Smoothness and discontinuous (SD) oscillator is a nonlinear oscillator with the variable frequency, whose frequency can be varied
with the smoothing parameter. However, how to adjust the smoothing parameter has not been solved in the actual device. In this
paper, the shape memory alloy (SMA) is introduced into the SD oscillator to form the SMA-SD oscillator to adjust the smoothing
parameters. Combining the SMA-SD oscillator with MRF, a nonlinear dynamic vibration absorber (DVA) with variable frequency
and damping is designed. (e structure and control principle of the designed DVA is studied to achieve the two variable char-
acteristics simultaneously by adjusting the current intensity. Numerical results on a two-degree-of-freedom coupled system show that
the proposed DVA can adapt to different working conditions only by adjusting the current intensity.

1. Introduction

Vibration widely exists in civil engineering and mechanical
industry. Requirements of dynamic vibration absorbers
(DVAs) are different for variable environments. (erefore, it
is an urgent problem to construct a DVA with the variable
frequency which can meet the changeable working condi-
tions. Smooth and discontinuous (SD) oscillator was a
nonlinear system proposed by Cao [1] in 2006. Due to its
geometric nonlinearity, the restoring force yielded the irra-
tional nonlinear form, which made its frequency vary
depending on the smoothness parameter α. In recent years,
the applications of SD oscillator for the vibration reduction
have been studied [2, 3], which showed that the desired effect
of the vibration reduction can be achieved by adjusting the
smooth parameter α. However, in these papers, how to change
α to realize the frequency conversion is barely mentioned.

In the SD oscillator system, the smoothing parameter α is
related to the original length lof the springs. If l changes, αwill
be different accordingly. In this paper, the shape memory

property of the shape memory alloy (SMA) will be used to
adjust the smooth parameters of the SD oscillator. SMA is a
functional material with sensing and driving characteristics
[4]. (e springs made of SMA can be extended or shortened
by controlling the temperature. (erefore, the length of SMA
springs can be controlled by using the thermal effect of the
current, which will change the geometric nonlinear structure
of the SD oscillator to achieve the variable frequency.

To a certain extent, a nonlinear structure such as the SD
oscillator can effectively adjust the frequency of the system
and reduce the vibration. For example, Ding [5] built a
nonlinear isolation system with the quasizero stiffness,
which had three springs for the transverse vibration of
prepressure beams. Jing et al. [6] investigated a passive
bioinspired limb-like structure (LLS). Hence, the dynamic
absorber with the variable frequency was beneficially
adaptable to the changeable working conditions.

For the nonlinear damping, magnetorheological fluid
(MRF) was a controllable fluid discovered by Jacob [7] in the
late 1940s, whose rheological behavior can change
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dramatically under the action of the magnetic field. Based on
the advantages of rapid response, low energy consumption,
and large shear stress, MRF has been very useful for vi-
bration control. More critically, it can be controlled by using
the magetic effect of th current.

(e main purpose of this paper is to solve the problem of
the unadjustable smoothness parameter in the SD oscillator
system. Combining the SMA-SD oscillator and magneto-
rheological fluid (MRF), a nonlinear dynamic vibration
absorber (DVA) with variable frequency and damping will
be constructed, whose frequency and damping can be
controlled simultaneously by adjusting the current intensity.

(e main structure of this paper is as follows. In Section
2, the implementation of the variable frequency for the SD
oscillator system is constructed. In the next section, the
structure and principle of the nonlinear DVA with variable
frequency and damping are designed. Furthermore, the
expression of the damping force provided by MRF is given.
In Section 4, the designed nonlinear DVA is applied to a
variable-section beam to discuss the response of the system
under an infinite series of moving loads, demonstrating the
damping performance and potential for suppressing
broadband vibration of the designed DVA.

2. Variable-Frequency Implementation for SD
Oscillator System

2.1. Relationship between the Elongation of SMA Spring and
Temperature. For normal cylindrical helical springs sub-
jected to tension or compression, the load force acts on the
axis of the springs. (e restoring force of the spring is [8]

F �
Gd

4

8ND
3 δ, (1)

where F, G, N, D, d, and δ are the external force, the shear
modulus, the number of the spring coils, the diameter of the
spring coils, the diameter of the spring wires, and the de-
formation of the spring under the load, respectively.

According to the theory of material mechanics, the shear
strain c on the spring wire is [8]

c �
τ
G

�
8FD

πd
3
G

. (2)

According to equations (1) and (2), the relationship
between the spring’s deformation δ and the shear strain c is

δ �
πD

2
Nc

d
. (3)

For SMA material, there are four important transition
temperatures: the martensite finish (Mf), the martensite
start (MS), the austenite end (Af), and the austenite start
(AS) [9]. When the temperature changes, the properties of
SMA springs will change and some deformation occurs. (e
relationship between the shear modulus and temperature is
as follows [10]:

G �

GM, T<Ms,

GT, Ms ≤T≤Af,

GA, T>Af,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(4)

where T, GM, and GA are the temperature, the shear
modulus of SMA in the low-temperature martensite phase,
and the shear modulus in the high-temperature austenite
phase. GT � GM + (GA − GM/2)[1 + sin ω(T − TM)] [10] is
the shear modulus of the SMA between Ms and Af, where
TM and ω are the parameters related to the temperature.

According to equations (1) and (3), under the external
force F, we can conclude that

δLGM � δTGT, (5)

cmax

cT

�
δL

δT

, (6)

where δL and cmax are the displacement and the maximum
shear strain when T<Ms and δT and cT are the displace-
ment and the shear strain when Ms ≤T≤Af.

From equations (5) and (6), when Ms ≤T≤Af, the shear
strain is cT � (GMcmax/GT). Hence, according to equation
(3), the length variation of the SMA spring is given by

l � l0 + Δδ � l0 +
NπD

2

d
1 −

GM

GT

 cmax

� l0 +
NπD

2

d
1 −

GM

GM + GA − GM/2(  1 + sinω T − TM(  
 cmax,

(7)

where l0 is the initial length of the spring when the
temperature is unchanged and l is the length of the spring
after the temperature changed. Δδ is the deformation of
the spring when Ms ≤T≤Af. Clearly, the length of the
SMA spring can be regulated by controlling the
temperature.

2.2. Restoring Force and Stiffness of the SMA Spring. In fact,
we can discuss the constitutive model of SMA from the
microscopic point of view.(e SMA constitutive model used
in this paper is a stress-strain-temperature polynomial
model proposed by Falk [11] in 1980. (e free energy
function of SMA depends on the strain ε and the temper-
ature T, without considering other variables.(e stress σ, the
strain ε, and the temperature T of the model yield [11]

σ � a1 T − Mf ε − a2ε
3

+ a3ε
5
, (8)

where a1, a2, a3, and Mf are positive. Af has the following
form [12]:

Af � Mf +
1
4

a
2
2

a1a3
. (9)
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In the analysis of the spring deformation, there are shear
stress τ and shear strain c [4]. From equations (8) and (9),
introducing τ � σ/

�
3

√
and c � ε/

�
3

√
, the relationship be-

tween τ, c, and the temperature T is

τ � a1 T − Mf c − 3a2c
3

+
9
4

a
2
2

a1 Af − Mf 
c
5
. (10)

Let r be the radial coordinate of the SMA spring section.
(e relationship between the force F and the shear stress
distribution on the spring wire section is

F �
4π
D


d/2

0
τr

2dr, (11)

where D and d represent the diameter of the spring and the
diameter of the wire.

Suppose the shear strain is linearly distributed on the
cross section [12]:

c �
2r

πD
2
N

Y, (12)

where Y is the displacement of the spring.
(e following equation can be obtained by equations

(10)–(12):

F �
4π
D


d/2

0
τr

2dr � F1 + F2 + F3, (13)

where F1 � (a1(T − Mf)Yd4/8D3N), F2 � − (πa2Y
3d6/4

(πD2N)3D), and F3 � (9πa2
2Y

5d8/64 Da1(πD2N)5(Af−

Mf)).
From the expression of the spring recovery force, the

stiffness of the SMA spring is as follows:

K �
zF

zY

�
a1 T − Mf d

4

8D
3
N

−
πa2d

6
Y
2

4 πD
2
N 

3
D

+
9πa

2
2d

8
Y
4

64 Da1 πD
2
N 

5
Af − Mf 

� K1 + K2Y
2

+ K3Y
4
,

(14)

where K1 � (a1(T − Mf)d4/8D3N), K2 � − (πa2d
6Y2/4

(πD2N)3D), and K3 � (9πa2
2d

8Y4/64 Da1(πD2N)5(Af−

Mf)).
Obviously, the stiffness of the SMA spring is related to

the temperature, which will lay a foundation for the ad-
justment of the smooth parameter.

2.3. SMA-SD Oscillator System. (e SMA-SD oscillator is
established as shown in Figure 1, where the springs made of
SMA can vary with the temperature.

(e dynamic equation of the SMA-SD oscillator model is
as follows:

m €X + 2KX 1 −
l

�������

X
2

+ l
2
00

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠ � 0, (15)

where m, X, K, l, and l00 are the quality of the mass block,
the displacement of the mass block, the stiffness of the SMA
spring (K in equation (14)), the length of the spring (l in
equation (7)), and the horizontal distance from the mass
block and the support, respectively. From equation (15), the
stiffness of the SMA spring K consists of three components
and is a temperature-dependent variable.

Let α � (l00/l), x � (X/l), and ω2
0 � (2K/m), and

equation (15) can be written as

€x + ω2
0x 1 −

1
������
x
2

+ α2
  � 0, (16)

where α � (l00/l) � (l/l0 + Δδ) � (l/l0 + (NπD2/d)(1− (GM

/GT))cmax). Clearly, the smoothing parameter α can be
changed depending on the temperature T, which means the
natural frequency of the system can be changed by adjusting
the temperature.

2.4. Restoring Force Analysis. (e restoring force of springs
in the SMA-SD oscillator is expressed as follows:

FSD(x, T) �
2K

m
x 1 −

1
������
x
2

+ α2
 . (17)

From equation (17), it can be seen that the restoring force
is related to the displacement x and the temperature T. At
different temperatures, a graph of the relationship between
the restoring force and displacement can be obtained as
shown in Figure 2.

(e parameters are chosen as m � 3 kg, d � 0.002m,
D � 0.03m, Mf � 22°C, N � 10, Ms � 48°C, As � 50°C,
a1 � 9600, a2 � 12800, GA � 15GPa, GM � 6.5GPa,
cmax � 1.5%, L0 � 0.05m, and l � 0.03m. In Figure 2, the
restoring force curves are centrosymmetric with respect to the
point (0, 0). When T � 25°C, the restoring force curve is
basically straight because the SMA just reaches the martensitic
reverse temperature, resulting in little stiffness and almost no
deformation. When T � 32°C, instead of a monotonically
increasing curve of the restoring force, there is a drop region,
which indicates the presence of negative stiffness. When the
temperature is 46°C, the restoring force curve has the same
trend as that at T � 32°C, but the slope of the curve increases.
For T � 58°C, the peak and slope of the curve are greater than
the previous temperatures. SMA transforms from low-tem-
perature martensite to high-temperature austenite, and the
spring stiffness increases significantly. At the same time, the
spring also reaches a larger deformation.

2.5. Stiffness Analysis. From equation (17), the stiffness of
the SMA-SD oscillator is given by

k(x, T) �
zFSD(x, T)

zx
. (18)

(e parameters are the same as above. (e spring
stiffness of the SMA-SD oscillator is analyzed.

From Figure 3(a), we can find that the value of stiffness is
smallest and negative in the vicinity where the displacement
is equal to zero, which indicates the existence of negative
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stiffness. It can be examined from Figure 3(b) that the entire
surface is symmetrical about the axis x � 0. In addition, with
the increase of the temperature, the range of variation in
stiffness becomes progressively larger.

Hence, in the SMA-SD oscillator system, the restoring
force and stiffness exhibit nonlinear and changeful char-
acteristics. (e smooth parameters and stiffness associated
with the natural frequency of the system are both related to
the temperature.

2.6.:eRelation betweenTemperature andCurrent. In order
to adjust the SMA springs in the SD oscillator, the spring is
heated by an electric current to control its temperature. (e
thermodynamic model is as follows [13]:

ρVC
dT

dt
� P − hA T − T∞( , (19)

where T∞, ρ, V, C, P, h, and A are the ambient temperature,
the material density, the volume, the material specific heat,

l00 l00

A BSMA SMA

X
mX··

Figure 1: SMA-SD oscillator system model.
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Figure 2: Restoring force-displacement of SMA-SD oscillator.
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the electric power when the current is heated, the convection
coefficient, and the surface area of the component, re-
spectively. Let h be a constant. (e electric power P can be
expressed as P � I2R, where I is the electric current and R is
the resistance.

Let τ � (ρVC/hA) and c � (1/hA), and the relationship
between the temperature and the current is deduced as

τ _T + T − T∞(  � cI
2
R. (20)

From equation (20), we know that the temperature can
be regulated by adjusting the current intensity, which leads
to realizing the frequency conversion for the SMA-SD
oscillator.

3. The Nonlinear DVA with Variable
Frequency and Variable Damping

Based on the frequency conversion characteristics of the
SMA-SD oscillator, which can be controlled by the current
intensity, a new model consisting of the SD oscillator with
SMA springs and MRF is constructed. (e schematic dia-
gram of the dynamic vibration absorber designed is shown
in Figure 4.

A mass is fixed on the piston rod. Two inclined springs
made of SMA are connected to the mass at one end, and the
other end is fixed on the shell of the absorber, thus forming
the SMA-SD oscillator. (e lower part of the absorber is a
magnetorheological damper structure. (ere are wires in the
piston rod. On the one hand, the wires wound on the springs
are used to control the elongation and stiffness of the springs
using the thermal effect of current. On the other hand, the
magnetic field is generated by the magnetic effect of current
to adjust the related characteristics of MRF. When the vi-
bration absorber is working, the appropriate current
according to the vibration signal is optimized to change the
characteristics of the SMA springs and the MRF. Firstly,

when SMA springs are electrified, they are heated up and
deformed to a suitable length. And then the temperature
remains constant, which completes the adjustment of the
smooth parameters in the SD oscillator system. At this time,
the stiffness of springs will also change due to the tem-
perature. However, since the length and the stiffness of
springs are both related to the temperature, a relatively
moderate current should be selected based on the vibration
signal. Meanwhile, the magnetic effect of the current is
utilized to bring the viscosity of the MRF to the desired
value. When the piston moves up and down, it receives both
the restoring force produced by the SMA springs and the
damping force. When the frequency of the designed DVA is
the same as the excitation frequency, the resonance occurs
and the vibration of the main system is suppressed.

For the designed absorber, variable stiffness can be
achieved by winding coils on SMA springs. Specifically, by
connecting an external power supply, the current intensity in
the coils wounded on the SMA springs can be adjusted, thus
changing the temperature of the SMA. Furthermore, we can
see from Figures 2 and 3 that the designed DVA can obtain
positive, negative, and zero stiffness under the temperature
effect of SMA springs.

It is known that the damping force provided byMRF can
be controlled by adjusting the current. (en, it can be
expressed as [14]

FD � b0I
2

+ b1I + b2  _y � C _y, (21)

where b0, b1, and b2 are the parameters of MRF, which can be
determined by experiments. _y and I are the equivalent
damping of MRF and the current intensity.

From the above analysis, we can conclude that the
designed nonlinear DVA consisting of the SMA-SD oscil-
lator and MRF has not only the large energy dissipation and
the adjustable damping but also the variable frequency.
Furthermore, the frequency and damping of the absorber
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Figure 3: Stiffness of the SMA-SD oscillator.
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can be adjusted by changing the current intensity, which is
beneficial to practical engineering applications.

4. The Application of the Designed
Nonlinear DVA

(e loads on the beam bridge can take various forms, such as
moving vehicle loads and wind loads. Based on this fact, the
nonlinear DVA proposed in this paper can adjust its fre-
quency or damping by changing the current intensity to
adapt to different external environments. Consider the
nonuniformed beam-vibration absorber model, as shown in
Figure 5.

(e variable cross-section beam bridge subjected to an
infinite series of moving loads with speed v is coupled with

the designed absorber.(e coupled system is mathematically
modeled as

ρA0(x)
z
2
u

zt
2 + c0

zu

zt
+

z
2

zx
2 EI(x)

z
2
u

zx
2  � Qδ(x − vt)

− Fδ x − dDVA( 

m €y − F � 0

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

, 0≤ t≤
L

v
,

(22)

where

F � 2 K1 u dDVA, t(  − y(  − K2 u dDVA, t(  − y( 
3

+ K3 u dDVA, t(  − y( 
5

 

· 1 −
l

�������������������

u dDVA, t(  − y( 
2

+ l00

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠ + k u dDVA, t(  − y(  + C
z u dDVA, t(  − y( 

zt
− _y .,

(23)

where E is Young’s modulus, I is the second moment of area,
u(x, t) is the vertical displacement of the beam, ρA0(x) is the
mass of unit length, L is the length of the beam, c0 is the
damping coefficient of the beam, K1, K2, and K3 are the
stiffness coefficient of the SMA spring, k is the stiffness of
MRF, C is the equivalent damping coefficient of the MRF,
dDVA is the distance from the absorber to the beam bridge
set, Q is the equivalent mass of the load, and v is the velocity
of the moving load.

(e boundary conditions of the variable-section beam
are as follows:

u(0, t)
z
2
u(0, t)

zx
2 � 0,

u(L, t)
z
2
u(0, t)

zx
2 � 0.

(24)

SD oscillator

SMA spring

MRF

Piston rod

Piston head

Floating piston

High-pressure airtight chamber

Wires

Shell

Excitation coil

Piston head sleeve

Figure 4: A sketch of the nonlinear dynamic vibration absorber.
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(e form of variable cross-section beam yields [15]

h(x) � h0 1 − β
x

L
 ,

A(x) � A0 1 − β
x

L
 ,

I(x) � I0 1 − β
x

L
 

3
,

S(x) � 1 − β
x

L
 

3
,

(25)

where h0, A0, I0, and β are the height, the cross-sectional
area, the inertia of the beam at x � 0, and the variability of
beam’s cross section, respectively.

(e first mode of the beam is the dominant mode in this
application and a single-mode model can be adopted in this
application. (en, u will be written as

u(x, t) � q(t)sin
πx

L
, (26)

where q(t) is the amplitude of the mode.
Substituting equations (25) and (26) into (22), and by

using the orthogonality of modes, integrating the first formula
of equation (22) with respect to x over (0, L), we can obtain

B1
d2q
dt

2 +
2c0
ρA0

dq

dt
+

EI0π
2

2ρA0L
4B2q �

4Q

ρA0L
2 sin

πvt

L
−

4e

ρA0L
2 k(eq − y) + C e

dq

dt
−
dy

dt
  + 2 K1(eq − y)−(

K2(eq − y)
3

+ K3(eq − y)
5
 1 −

l
������������

(eq − y)
2

+ l00

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠
⎫⎪⎬

⎪⎭

m2
d2y
dt

2 − k(eq − y) + C e
dq

dt
−
dy

dt
  + 2 K1(eq − y)(

− K2(eq − y)
3

+ K3(eq − y)
5
 1 −

l
������������

(eq − y)
2

+ l00

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠
⎫⎪⎬

⎪⎭
� 0

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

, 0≤ t≤
L

v
, (27)

where e � sin(πdDVA/L), B1 � 2 − β, and
B2 � (β − 2)(π22β − 2π2 + 3β2 − πβ2). Here, the moving
loads with the constant velocity at time L/v intervals pass
through the variable-section beam bridge. Further, to

discuss the vibration of the beam subjected to the moving
loads successively for a long time, we can use |sin τ|(τ ≥ 0)

to substitute sin τ(0≤ τ ≤ π) [16]. Hence, equation (30)
yields

L

Moving load

v

u 

d.
y 

K C

Figure 5: Nonuniformed beam-vibration absorber model.
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B1
d2q
dt

2 +
2c0

ρA0

dq

dt
+

EI0π
2

2ρA0L
4B2q �

4Q

ρA0L
2 sin

πvt

L




−

4e

ρA0L
2 k(eq − y) + C e

dq

dt
−
dy

dt
  + 2 K1(eq − y)−(

K2(eq − y)
3

+ K3(eq − y)
5
 1 −

l
������������

(eq − y)
2

+ l00

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠
⎫⎪⎬

⎪⎭

m2
d2y
dt

2 − k(eq − y) + C e
dq

dt
−
dy

dt
  + 2 K1(eq − y)−(

K2(eq − y)
3

+ K3(eq − y)
5
 1 −

l
������������

(eq − y)
2

+ l00

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠
⎫⎪⎬

⎪⎭
� 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(28)

Let

τ � ω1t,

y �
y

l
,

α �
l00

l
,

q �
q

l
,

p � eq − y,

ω2
1 �

EI0π
2
B2

2L
4ρA0B1

.

(29)

Equation (28) can be transformed into dimensionless
equation as

d2q
dt

2 + q + λ1
dq

dt
+ 2μ c11p − c12p

3
+ c13p

5
  1 −

1
������

p
2

+ α2
⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

+μc2p + μc3
dp

dt
− f sin ω1τ


 � 0,

d2p
dt

2 − e
d2q
dt

2 + 2 c11p − c12p
3

+ c13p
5

  1 −
1

������

p
2

+ α2
⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

+c2p + c3
dp

dt
� 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(30)

where ω � (πv/ω1L), f � (4Q/B1LlρA0ω2
1),

μ � (4em2/B1LρA0), λ � (2c0/B1ρA0ω1), c11 � (K1/m2ω2
1),

c12 � (l2K2/m2ω2
1), c13 � (l4K3/m2ω2

1), c2 � (k/m2ω2
1), and

c3 � (C/m2ω1).
To examine the effect of the designed nonlinear DVA,

two sets of parameters of the nonuniformed beam and the
moving load are chosen. In the two cases, the parameters of
the nonlinear DVA have no change except the three current-
controlled variables, i.e., the smooth parameters, the stiffness
of the springs, and the viscosity of MRF. (e first set of
parameter values is listed in Table 1.

Here, the absorber is hung on the midspan of the beam,
and the horizontal distance from the mass block and the
support is l00 � 0.6m. Furthermore, the other parameter
values of variable frequency and damping DVA are shown in
Table 2.

Choose the heating temperature in SMA springs as T �

46°C and the current intensity in MRF as I � 0.3A. Let
K1 � 1997.438N/m, C � 1500.170N/(m/s), and α � 0.397.
Besides, the proposed DVA is abbreviated as VFDDVA.
From Figure 6, we can see that the midspan amplitude of the
beam bridge with vibration absorber decreases obviously.

(e second set of parameter values of beam and load are
listed in Table 3.

In the second case, for the designed DVA, only the pa-
rameters affected by current are changed, including the smooth
parameters, the stiffness of the SMA springs, and the viscosity
coefficient of MRF. (e heating temperature in SMA spring
and the current intensity are set as T � 55°C and I � 0.5A.
Accordingly, the variable parameters are K1 � 2746.477N/m,
C � 3080.130N/(m/s), and α � 0.352. (e second case of
bridge mid-span vibration is shown in Figure 7. Similarly, the
amplitude of the bridge with the designed absorber also de-
creases dramatically. From the above analysis, we can conclude
that the designed nonlinear DVA can cope with different
situations by changing the current intensity, which demon-
strates the variable frequency and variable damping capabilities
of the DVA.

Figure 8 shows the amplitude-frequency curve of the
beam, where the vertical coordinate is the root mean square
value of the acceleration of the beam after dimensionless. For
the bare beam, a main peak near ω1 � 1 exists (see the black
dotted line). Based on the VFDDVA, using the particle swarm
optimization (PSO) algorithm for resonance condition, the
peak for the beam is split into two new peaks. Clearly, the
beam with the VFDDVA behaves better than the bare beam.
Furthermore, the optimal method mentioned by Den Hartog
[17] is applied in the design of the parameters for the
VFDDVA. It can be seen that, with this optimization scheme,
the damping frequency band is the widest. (e results prove
that the VFDDVA can achieve a better damping effect in a
wide frequency domain by adjusting the parameters, which
illustrates its potential for suppressing broad band vibration.
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Table 1: (e first set of values of beam and load.

E0 (GPa) ρ0 (kg·m− 3) A0 (m2) I0 (m4) L (m) β c0 (N·s·m− 1) Q (kN) v (m·s− 1)

11.591 7850 4.8 1.153 40 0.8 0.001 210 13

Table 2: (e first set of values of the designed DVA.

Mf (°C) Ms (°C) Af (°C) As (°C) GM (GPa) GA (GPa) cmax (%) N D (m) d (m) l0 (m) a1 a2

22 45 60 50 5.5 7.5 2.7 30 0.9 0.45 1 3.55×105 7.13×107

41000 41100 41200 41300 41400 41500 41600
–0.2

–0.1

0.0

0.1

0.2

0.3

q

t

Bare beam
With VFDDVA

Figure 6: First maximum beam deflection.

Table 3: (e second set of values of beam and load.

E0 (GPa) ρ0 (kg·m− 3) A0 (m2) I0 (m4) L (m) β c0 (N·s·m− 1) Q (kN) v (m·s− 1)

35.910 2500 19.274 1.043 60 0.1 0.001 189 75

8500 8600 8700 8800 8900 9000
–0.2

–0.1

0.0

0.1

0.2
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t

Bare beam
With VFDDVA

Figure 7: Second maximum beam deflection.
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Figure 8: (e amplitude-frequency curve of the beam.
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5. Conclusion

In this paper, SMA was introduced into the SD oscillator to
adjust the smooth parameter α. When the SMA springs
transformed from martensite to austenite phase, the SMA-
SD oscillator possessed the variable and controllable
smoothness parameter α, which was related to the natural
frequency. By analyzing the effect of temperature on the
stiffness and restoring force, it can be concluded that the
SMA-SD oscillator can be a negative stiffness, zero stiffness,
and positive stiffness system. (e relationship between
temperature and current proved that the SMA-SD oscillator
can achieve frequency conversion by adjusting the current
intensity. Furthermore, combining the SMA-SD oscillator
and MRF, a nonlinear vibration absorber with variable
frequency and damping was constructed. (e current can be
used to control the damping of the absorber according to the
relationship between the damping force and the current.
(ese results indicated that the designed VFDDVA can be
managed actively to meet the changeable engineering en-
vironments by controlling the current intensity. (e variable
cross-sectional beam coupled with the designed VFDDVA
was constructed to study the vibration attenuation and
adjustability of the frequency and the damping of the ab-
sorber. (e numerical results showed that the proposed
VFDDVA can adapt itself to reduce the vibration energy of
the beam in different conditions and achieve broadband
vibration reduction by adjusting the current intensity, which
promoted the application of the designed VFDDVA in
engineering practice.
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